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A Variable Reference Trajectory for Model-Free Glycemia Regulation

Taghreed MohammadRidha*
Michel Fliess *1

Abstract

The control design of an artificial pancreas, a hot research topic in diabetology, is
tackled via the newly introduced model-free control and its corresponding “intelligent”
proportional controller, which were already quite successful in many concrete and
diverse situations. It results in an insulin injection for type 1 diabetes which displays
via constant references a good nocturnal/fasting response, but unfortunately a poor
postprandial behavior due to long hyperglycemia. When a variable reference is
introduced, that switches between a constant one, when glycemia is more or less
normal or moderate, and an exponential decay reference path, when a high glycemia
rate indicates a meal intake, the results in silico, which employ real clinical data,
become excellent. We obtain a bolus-shaped insulin injection rate during postprandial
phases. The hyperglycemic peaks are therefore lowered a lot.

Keywords Type 1 diabetes, artificial pancreas, control algorithms, model-free
control, intelligent proportional controller, variable reference trajectory, algebraic

estimation techniques.

1 INTRODUCTION

Type-1 diabetes mellitus (TIDM), or insulin-dependent dia-
betes, is a chronic disease that results from the autoimmune
destruction of the insulin-producing beta cells in the pan-
creas (see, e.g., [3], and the references therein). A functional
insulin therapy (FIT) is a most effective pedagogical treat-
ment (see, e.g., [26], and the references therein) where ex-
ogenous insulin is injected, or infused subcutaneously via a
pump, according to the patient’s everyday life.

Rapid technological advancements justify the research
of an artificial pancreas, i.e., of an automated device which
consists of:

e ablood glucose sensor, or a continuous glucose monitor
(CGM),
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e an insulin pump,

e a control algorithm for injecting the appropriate insulin
dose.

Most diverse control techniques have been proposed
and often tested in silico, i.e., via computer simulators.
See, e.g., [6, 9, 12, 14, 33, 51] for reviews. Obtaining
a suitable mathematical modeling is therefore an essential
issue (see, e.g., the previous reviews, and [1, 10, 34]).
Like in many concrete applications, PID control (see, e.g.,
[12, 37, 39, 49]) and model-based predictive control (see,
e.g., [13, 25, 31, 35, 41]) are quite often encountered (see,
e.g., [24]).! They are however far from being completely
satisfactory:

1. Although PIDs do not require a precise mathematical
model, their tuning (see, e.g., [2, 40]) may be extremely
difficult and quite sensitive to “disturbances” like meals
or stress.

2. The reference trajectory which is connected to model-
based predictive control (see, e.g., [7, 23, 42]) is a most
attractive and useful feature. It is however paid by the
need of a mathematical modeling and by cumbersome
optimization procedures.

Let us also mention [43] which presents a wearable,
automated, bihormonal, bionic pancreas that improved mean
glycemic levels, with less frequent hypoglycemic episodes.

Our purpose is to show that the new model-free control
(MFC) [16], which has already been successfully applied in
many concrete and diverse situations (see [16, 29, 38], and
the references therein), might get closer to a real artificial
pancreas. As a matter of fact the benefits of this control
algorithm are numerous:

e As for PIDs there is no need of any mathematical
modeling, which is anyway extremely difficult to write
down in the case of diabetes, and, more generally, for
biological systems.

Other mathematical techniques have also been investigated, like delay
differential equations and partial differential equations (see, e.g., [36], and

the references therein).



e Contrarily to PIDs the tuning of the corresponding
intelligent controller is straightforward.

e This controller, which may be easily implemented on
a cheap programmable device [27], is moreover quite
robust with respect to disturbances and system modifi-
cations.

e Our feedforward standpoint, i.e., the choice of a refer-
ence trajectory, is similar to what is done in flatness-
based control (see [17, 18], and [32, 45]). Contrarily to
predictive control, optimal control becomes pointless.

An excellent description of the tremendous advantages of
a model-free setting is provided by the following citation,
which is extracted from Section 1.4.3 in [5], where a ma-
chine learning viewpoint is developed:
Model-free methods, in either open-loop or closed-loop sys-
tems, have some advantages over their model-based coun-
terparts. ...One problem with the model-based methods
is that they need an accurate model, and building such a
model usually requires special and costly physiological stud-
ies of the processes involved in glucose regulation. However,
model-free control algorithms rely solely on the “simple”
type of data that patients normally collect. Another prob-
lem with the model-based methods is their dependence on
a patient specific model. Thus any modification to a com-
ponent of the mathematical model will require the parame-
ters of the model-based method to be re-calculated. ... We
believe model-free methods are an important avenue of re-
search that has not been exploited to its full advantage by
the diabetes community.

Our contributions, which seem to be quite new in the
huge, and, sometimes, old literature on automated pancreas,
might be summarized as follows:

1. The design of a fully automated intelligent controller
for blood glucose (BG) regulation including postpran-
dial phase.

2. The design of an ad hoc time-varying glycemic refer-
ence trajectory, based on the results of [37]. It is modi-
fied to reproduce an artificial insulin bolus, i.e., regular
to rapid-acting insulin dose, when meals are taken.

3. This variable reference yields a postprandial bolus-
shaped injection rate which is more effective in han-
dling hyper peaks of glycemia.

4. Clinical data are used to test the design.

Our paper is organized as follows. Model-free control
and the corresponding controllers are briefly reviewed in
Section 2. Section 3 and 4 present respectively the virtual
patient simulator, and the system constraints and limitations.
Implementation issues are discussed in Section 5. Promising
simulation results are displayed in Section 6. Concluding
remarks are given in Section 7.

2 Model-free control and intelligent controllers>

2.1 The ultra-local model Replace the unknown global
description by the ultra-local model:

e the control and output variables are respectively u and
y?

2.1)

where

e the derivation order of y is 1 like in most concrete
situations,

e o € R is chosen by the practitioner such that ocu and y
are of the same magnitude.

The following explanations on F' might be useful:

e F is estimated via the measure of u and y,

e F subsumes not only the unknown system structure but
also any perturbation.

2.2 Intelligent controllers The loop is closed by intelli-
gent proportional controller, or iP,

F —y*+Kpe

(2.2) U= .

where
e y* is the reference trajectory,
e ¢ =y—y*is the tracking error,
e Kp is the usual tuning gain.
Combining Equations (2.1) and (2.2) yields:
é+Kpe=0

where F' does not appear anymore. The tuning of Kp
becomes therefore quite straightforward. This is a major
benefit when compared to the tuning of “classic” PIDs (see,
e.g., [2, 40], and the references therein), which

e necessitate a “fine” tuning in order to deal with the
poorly known parts of the pant,

e exhibit a poor robustness with respect to “strong” per-
turbations and/or system alterations.

See Figure 1 for the corresponding block diagram.

REMARK 2.1. See [16] for academic comparisons with
classic PIDs, and [21] for a concrete one.

REMARK 2.2. See [16] for the connection with the classic
integral-proportional (PI) controllers.

REMARK 2.3. See [22, 30] for a slightly different presenta-

tion of model-free control. See [16] for other references.

2See [16] for more details.
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Figure 1: MFC block diagram .

2.3 Estimation of F The calculations below stem from
new estimation techniques (see [19, 20], and [46]).

2.3.1 First approach The term F in Equation (2.1) may
be assumed to be “well” approximated by a piecewise con-
stant function Fi. Rewrite then Equation (2.1) in the opera-
tional domain (see, e.g., [50]): sY = % +aU +y(0), where ®
is a constant. We get rid of the initial condition y(0) by mul-
tiplying both sides on the left by %: Y +s% = —% + a%.
Noise attenuation is achieved by multiplying both sides on
the left by s—2. It yields in the time domain the realtime
estimate, thanks to the equivalence between % and the mul-
tiplication by —1,

(2.3) | Fest(t) = —% /t; [(t—20)y(c)+aoc(t—o)u(o)]do

2.3.2 Second approach Close the loop with the iP (2.2):

1
(24) Fest(l) = = |:

t
/ (y* —au—Kpe)do
T |Jt—7

REMARK 2.4. Note the following facts:
o integrals (2.3) and (2.4) are low pass filters,

o T > 0 might be quite small, i.e., online estimation is
achieved,

o the integrals may of course be replaced in practice by
classic digital filters.

3 Virtual patient

Our control algorithm is tested and evaluated in silico via
a long-term linear time-invariant model, which was recently
developed [34]: .

- 0—kg; O 1 0 0 0 128
G G _s
i 00 1.0 0], 0 0 ki o
. 1 2 .

G5 |i|=|%z w0 I+ vf(;fz ut| O |r] 0
D 00 0 0 1 ||D o 0 0
b 00 0 7é7% D 0 Vpr? 0

e G(1) is the glycemia (mg/dL),
o I(r) is the insulinemia (U/dL),

e D(t) is the increase of glycemia due to digestion of
carbohydrate (mg/dL).min ",

e u(t) is the insulin infusion rate (U/min),
e r(t) is the carbohydrate in the meal (mg).

The parameters are given in Table 1. Recall some advantage
of this modeling with respect to existing ones. It was shown,
for instance in [34], that the parameters in [11] cannot be
estimated from standard clinical data (CGM, injection and
meal intake). Most existing models introduce, however,
some apparent equilibria which are not consistent with real
life. Equation (3.5), though it is linear, or, more exactly,
affine, appears to be a significant scientific alternative as
it displays a long-term fit with clinical data unlike other
short-term predictions models such as [8, 28]. Fundamental
concrete quantities can be deduced from Equation (3.5), that
are not found in [8, 11, 28]. Let us mention here:

e The basal rate: it is the constant insulin infusion rate
that maintains glycemia at a constant value during
fasting.

e The insulin sensitivity factor (ISF): it corresponds to the
glycemic drop per unit of extra insulin when the basal
infusion rate is correctly set.

e Raise: it is the glycemic increase due to the digestion of
15g of carbohydrate (CHO) while a basal insulin rate is
infused. Note that insulinemia is then at equilibrium.

e U/P: additional insulin units, above the infused basal
rate, per portion of CHO required to steer glycemia
back to its initial level prior to digestion.

The parameters of the simulator are identified on the
model thanks to the data provided by the Centres hospitaliers
universitaires (CHU) de Nantes et Rennes® (see Table 2).
After the identification process there is still a modeling error
(including measurement fluctuations) between the model
output and the corresponding CGM data. This error signal
is computed for each subject and added to the model. In
this manner, the clinical CGM data are reconstructed for
each case to simulate the corresponding virtual patient.
Furthermore, it allows a better comparison with the open-
loop control as the CGM record of FIT controlled glycemia
can now be reconstructed by the simulator.

3Nantes and Rennes University-Hospital Centers.



Table 1: Definitions of the parameters.

Parameters Definition Units
M Patient weight kg
ksi Insulin sensitivity (mg/U)min*
T Time of i y ics min
V; 2.5 * M insulin distribution volume dl
K,/V; Static gain min/dl
T, Characteristic time constant min
Ve 0.65 *M Blood volume dl
k,/Vp Static gain min/dl
k; — 128 /M| The constant increase of glycemia resulting from liver and brain activity (mg/d)min
Table 2: Parameters' values of the virtual patients.
Parameters 1F2 IF3 BE
M 72 94 73.5
ksi 197 274 186
i 122 88 59
K,/V; 10/180=0.0556 15/235=0.0621 10/183.75=0.0541
i 183 49 38
k./Vg 0.11/46.8=0.0024 | 0.1248/61.1=0.002 | 0.13/47.775=0.0028
k,— 128/M | 1.94—1.778=0.1582 1.72 — 0.0136 = 0.358 | 1.91-1.7415=0.171

4 Constraints and limitations

For a non-diabetic subject during fasting/nocturnal period,
where r = 0, G is maintained steady with respect to liver
production and brain consumption of glucose (k; — %) in
normal range by a basal (equilibrium) level of u = u,, and
hence basal insulinemia . In the T1IDM case the main
challenge is that with a very low constant rate (4 < ueq)
during fasting/nocturnal conditions G diverges. It is due to
the continuous liver glucose production resulting in fasting
hyperglycemia [44]. It yields G > 0.

Thus, for an insulin-dependent diabetic, the control
objective is to maintain G within the interval [70, 120] mg/dL
relatively fast. Two main constraints are emphasized:

e hypoglycemic limit of 70 mg/dL,
e the input is nonnegative (z > 0).

Insulin infusion rate cannot be reversed once it is spread
out in the blood stream. If BG drops into hypoglycemia,
the only possible control is to shut off the insulin pump
temporarily and to have some carbohydrates to raise BG
back to euglycemia, i.e., to a normal level of sugar in the
blood. Therefore, the system is externally positive [15].

5 Control implementation

The first step in the design is to define the reference input to
the controller. The time-varying reference trajectory which
was introduced in [37] for the purpose of PID switching
control, is modified in order to be utilized here:

(G(t*) — G*)exp ™ +G* ifG(t) > G*
Gref(t) =
G, if G(r) < G*

e 1% is the switching time,

e T.ris a design parameter,

e G, is the constant set point, G* is the switching thresh-
old.

The following properties hold:

1. The time-varying trajectory starts decaying directly at
G(t).

2. The switching threshold G* is set to 140 mg/dL while
G, = 120 mg/dL to avoid hypoglycemia.

3. ¢’ is the switching/reset time: to re-start the trajectory if
(t —¢*) > 45 min and G > 0 (BG is still increasing).

When G is above the postprandial hyperglycemia level (G >
140mg/dL), the controller switches from a constant reference
G, = 120 mg/dL to an exponential-decay trajectory initiated
at Grer(t) = G(t,). It settles eventually at G,. The resulting
discontinuity produces an impulsive control due to ¢é that
appears in the iP control law. This bolus-shaped insulin
rate permits to have a fast response in order to regulate G
towards the normal level and to avoid extended postprandial
hyperglycemia.

The control will first be designed and tested on IF2
subject, the parameters are specified as follows:

o T = nT, where T is the sampling time, and n > 1 is an
integer,

e Ty, = 1 min, n = 30, T = 30 min for smooth estimation,
® T =35 min,

e since G responds inversely to the control variable, o is
negative and: o~ ! = —0.07.

e Kp is tuned individually aiming to have a minimum
number of hypoglycemic events.

Once they are designed, the parameters T, T.f, @ are kept
constant. Only Kp is adjusted per patient for an optimal
performance. The closed-loop design, with constant or
variable reference, will be compared to the open-loop FIT
therapy with the same meal protocol.

6 Simulation results

The proportional gain is set respectively to 0.023 and to
0.018 for the fixed set point and for the variable reference
trajectory (see Section 5). Figure 2 displays the difference
between the two strategies in the postprandial phase. Post-
prandial peaks are reduced by (25 £ 23) mg/dL. IF2 has a
one-day fasting phase, i.e., a non-glucidic regime, during
which our control algorithm has a much better performance
than the open-loop FIT control with a fasting hyperglycemia
time lapse greater than 11 hours (see Figure 2b). This de-
sign is tested on the two other virtual patients IF3 and BE



as shown in Figures 3 and 4. The simulator is considered as
a black box where the model parameters and meals are all
unknown. The proportional gain is scaled to Kp = 0.0065
and 0.01 for IF3 and BE respectively for variable-reference
control. These values represent the upper bound with min-
imum hypoglycemic episodes during the simulated period.
Tables 3, 4 and 5 present simulation statistics for open and
closed-loop control, including a conventional iP controller
with a constant reference trajectory. Hyperglycemia is then
reduced in time. Hypoglycemia remains small. The sud-
den one-minute drop in Figure 3b at t = 12.6 h of ABG =
29 mg/dL is too fast to be the response to a bolus or an
overdose. It might be a measurement issue. An unavoid-
able hypoglycemia episode follows. It happens for all three
controllers.

The frequent initialization of the exponential decay ref-
erence path appeared as a series of consecutive impulsive
insulin rates. These bolus-shaped rapid pulses are infused
only when a postprandial phase is detected, i.e., BG > 140
mg/dL, positive rate. It yields an Ersatz, i.e., a replacement,
for the missing pre-meal boluses. The postprandial peaks un-
der closed-loop insulin administration occur more often than
under FIT control. It might be due to the FIT injections an-
ticipatory character, i.e., the boluses are infused before meals
as shown in Figures 2, 3 and 4 (parts d and e). For the fully
automatic control, meals are unknown disturbances. As a
result, G grows until the retarded plasma insulin reaches its
peak (see Figures 2c, 3c, 4c). The insulin absorption rate
is slow. According to the American Diabetes Association
(ADA), the minimum insulin onset* is 15 minutes. It takes
about 60 minutes to reach its peak with a minimum overall
duration of 2-4 hours.

Our control design is tested on three different virtual pa-
tients: IF2, IF3, and BE. They are stable diabetics according
to the Mean Amplitude Glycemic Excursion (MAGE) index.
Unstable or brittle diabetics® are not included in this study.
Severe BG swings from hyper to hypoglycemia, as a matter
of fact, are hard to control and usually need extensive care.

The following two achievements summarize the benefits
of our approach:

1. When postprandial phase is detected, artificial rapid
insulin bolus are produced.

2. The overall BG mean value is improved and postpran-
dial peaks are lowered.

1t is the time lapse before insulin reaches the bloodstream and begins
lowering blood glucose.

STIDM is an intrinsically unstable condition. The terminology brittle
diabetes corresponds to an instability, causing life disruption, or prolonged

hospitalization [47].

Table 3: TF2 simulation statistics for FIT and iP: constant and variable references.

Parameters IF2
KR iP iP -Vref

Max (G) mg/dL 268.9 298 263.52

Min (G) mg/dL 75.11 60.37 54.34
Max (hyper.period(x; > 200)) h 11.35 6.77 4.32

Mean (G) mg/dL 169.25 163.28 144.19

Standard Deviation (G) mg/dL 51.56 63.24 51.05

Mean (1) Uh 2.85 2.66 2.52

Max (hypo. episede)h - 0.5 0.58

Table 4: IF3 simulation statistics for FIT and iP: constant and variable references.

Parameters 1¥3

FIT iP iP -Vref

Max (G) mg/dL 183.4 316.62 287.14
Min (G) mg/dL 42.25 48.02 47.85
Max (hyper.peried(x; = 200)) h - 5.08 3.03
Mean (G) mg/dL 91.26 169.63 150.11
Standard Deviation (G) mg/dL 30.52 56.13 53.3
Mean (u) U/h 2.6 2.56 2.44
Max (hypo. episode)h 5.33 0.33 0.33

Table 5: BE simulation statistics for FIT and iP: constant and variable references.

Parameters BE
FIT iP iP -Vref
Max (G) mg/dL 287.7 274.59 264.67
Min (G) mg/dL 66.05 71.16 76.69
Max (hyper.period(x; > 200)) h 3.33 2.57 2.3
Mean (6) mg/dL 156.4 155.81 150.41
Standard Deviation (G) mg/dL 46.2 52.86 47.9
Mean (u) U/h 22 2.76 2.64
Max (hypo. episode)h 0.5 i it

7 Conclusion
Let us emphasize once again the following features of our
intelligent proportional controller:

e a most promising in silico behavior,

o the few parameters which need to be calibrated are easy
to tune,

o the implementation on cheap programmable devices is
straightforward.

Some fault accommodations may also be easily handled via
this setting (see [16], and [29] for a concrete application).6
Some other future investigations should also be added:

e test the controller on UVa/Padova simulator [11],
e apply it on a large cohort of diabetics,
e compare it with other control schemes,

o relate Kp with a known characteristic of the patient like
the body mass.

Model-free control yields a quite elementary control syn-
thesis, whereas questions stemming from computer simu-
lations remain most complex. This fact, which was al-
ready mentioned in [16], where several other references

OThis important topic seems to have been neglected to some extent. See

however [48].



are provided, might be an “epistemological break” (rupture
épistémologique in French) in the sense of Bachelard [4].
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Figure 2: IF2 response for FIT, where K, = 0.023 or 0.018.
(a): Meal intake and the corresponding increase of BG. (b):
BG behavior. (c): Insulinemia. (d): The integral of the
control rate per hour. (e): Controlled insulin injection minute
rate.
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Figure 3: IF3 response for FIT, where K, = 0.021 or 0.0065.
(a): Meal intake and the consequent increase of BG. (b): BG
behavior. (c): Insulinemia. (d): The integral of the control
rate per hour. (e): Controlled insulin injection minute rate.

Figure 4: BE response for FIT, where K, = 0.029 or 0.01.
(a): Meal intake and the consequent increase of BG. (b): BG
behavior. (c): Insulinemia. (d): The integral of the control
rate per hour. (e): Controlled insulin injection minute rate.



