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ABSTRACT
In this paper we introduce a novel information propagation
method in Twitter, while maintaining a low computational
complexity. It exploits the power of Compressive Sensing
in conjunction with a Kalman filter to update the states of a
dynamical system. The proposed method first employs Joint
Complexity, which is defined as the cardinality of a set of all
distinct factors of a given string represented by suffix trees,
to perform topic detection. Then based on the inherent spa-
tial sparsity of the data, we apply the theory of Compressive
Sensing to perform sparsity-based topic classification by re-
covering an indicator vector, while reducing significantly the
amount of information from tweets, possessing limited power,
storage, and processing capabilities, to a central server. We
exploit datasets in various languages collected by using the
Twitter streaming API and achieve better classification accu-
racy when compared with state-of-the-art methods.

Index Terms— Big Data, Text Classification, Joint Com-
plexity, Combinatorics, Compressive Sensing, Kalman Filter

1. INTRODUCTION

Social Networks have undergone a dramatic growth in recent
years and have changed the way we communicate with others,
entertain and actually live. The communication between users
has formed a new era with several research challenges, e.g.
(a) real time search has to balance between quality, authority,
relevance and timeliness of the content, (b) the relationship
analysis between members of a social community can reveal
the important teams which can be used for specific plans, (c)
spam and advertisement detection to avoid the growth of ir-
relevant content. By extracting the relevant information from
social networks in real time, we can address these challenges.

In this paper we use the theory of Joint Complexity (JC)
to perform topic detection. The evaluation of the proposed
method is based on the detection of real world topics like the
categories of a mainstream news portal. We use large datasets,
which are tweets from politics, economics, sport, technology
and lifestyle. Then we classify new tweets into these cate-
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gories with the power of Compressive Sensing (CS) by tak-
ing advantage of the inherent sparsity of the data, combined
with a Kalman filter, as a refinement step for the update of the
user’s estimated class. The method is simple, context-free,
with no grammar and no language assumptions, and does not
use semantics. The sequence of text is decomposed in linear
time into a memory efficient structure called Suffix Tree [1]
(frequently used in DNA sequence analysis) and by overlap-
ping two trees, in linear or sublinear average time, we obtain
the JC defined as the cardinality of factors (subsequences) that
are common in both trees. The method has been extensively
tested for Markov sources of any order for a finite alphabet
and gave good approximation for text generation and lan-
guage discrimination, while being language-agnostic. There-
fore there is no need to build any specific dictionary or stem-
ming process.

The paper is organised as follows: Section 2 introduces
the JC method, while Section 3 describes the classification
via CS. Section 4 discusses the Kalman filter, while Section 5
evaluates the performance with real data obtained from Twit-
ter. Finally, Section 6 summarises our main results and pro-
vides directions for future work.

2. JOINT COMPLEXITY

Several attempts have been made to capture mathematically
the concept of complexity of a sequence, i.e., the number of
distinct factors contained in a sequence. If X is a sequence
and I(X) its set of factors, then |I(X)| is the complexity of
the sequence. For example ifX = “sunny′′ then I(X) = {s,
u, n, y, su, un, nn, ny, sun, unn, nny, sunn, unny, sunny, v}
and |I(X)| = 15 (v denotes the empty string). The complex-
ity of a string is called the I−complexity, and is connected
with deep mathematical properties, including the rather elu-
sive concept of randomness in a string [2], [3].

In general, a reference string is required to measure the
information contained in a second string. In [4] the concept
of JC of two strings was introduced as the number of com-
mon distinct factors of two sequences, i.e. the JC of sequence
X and Y is equal to J(X,Y ) = |I(X) ∩ I(Y )|. Our pre-
vious experiments [5] showed that the mentioned complexity
estimate for memoryless sources converges very slowly. Fur-
thermore, memoryless sources are not appropriate for mod-



elling text generation. In a prior work, we extend JC estimate
to Markov sources of any order on a finite alphabet. Markov
models are more realistic and have a better approximation for
text generation than memoryless sources [5], [6]. We derived
a second order asymptotics for JC of the following form

γ
nκ√

α log n+ β
, (1)

for some β > 0, κ < 1 and γ, α > 0 which depend on the
parameters of the two sources. This new estimate has a faster
convergence, and is preferred for texts of order n ≈ 102; For
some Markov sources our analysis indicates that JC oscillates
with n. This is outlined by the introduction of a periodic func-
tionQ(log n) in the leading term of our asymptotics. This ad-
ditional term even further improves the convergence for small
values of n and therefore JC is an efficient method to capture
the similarity degree of short texts, e.g. tweets.

Up to now, the main methods used for text classifica-
tion are based on keywords detection and Machine Learning
techniques, described extensively in [7]. Using keywords in
tweets will often fail because of the distorted usage of the
words – which also need lists of keywords for every lan-
guage to be built – or because of implicit references to pre-
vious texts or messages. Machine Learning techniques are
generally heavy and complex and therefore are not good can-
didates for real time text classification, especially in the case
of Twitter where we have natural language and thousands of
tweets per second to process. Furthermore Machine Learning
processes have to be manually initiated by tuning parameters,
and it is one of the main drawbacks for that kind of applica-
tion. Some other methods are using information extracted by
visiting the specific URLs on the text, which makes them a
heavy procedure, since one may have limited or no access to
the information, e.g. because of access rights, or data size.

In this work, we construct the training databases (DBs)
by using Twitter’s Streaming API while filtering for specific
keywords. For example, we build a class about politics by
sending a request to Twitter API for tweets that contain the
word “politics”. Using these requests we build C classes on
different topics. Assume that each class contains N tweets
(eg. C = 5, i.e. Classes: politics, economics, sports, technol-
ogy, lifestyle of N = 12, 000 tweets). We allocate a number
of keywords to each class (e.g. the keywords used to populate
the class). The tweets come in the basic .json format delivered
by the Twitter API.

Then, assume that we have a dataset of S timeslots with
s = 1 . . . S, and each timeslot is a 15 minutes request in Twit-
ter API. For every tweet xi, where i = 1 . . . N , with N be-
ing the total number of tweets, in the s-th timeslot, i.e xsi ,
we build a Suffix Tree, ST (xsi ), as described in Section 2.
Building an ST costs O(m logm) and takes O(m) space in
memory, where m is the length of the tweet, in comparison of
m3 needed by algorithms based on semantic analysis.

Then we compute the JC metric, JC(xsi , x
s
j) of the tweet

xsi with every other tweet xsj of the s-th timeslot, where j =
1 . . . N , and j 6= i (by convention we choose JC(xsi , x

s
i ) =

0). The JC between two tweets can be computed efficiently in
O(m) operations (sublinear on average) by ST superposition.
For the S timeslots we store the JC scores in the matrices
S1, S2, . . . , SS of N ×N dimensions.

We represent timeslots by fully-connected edge weighted
graphs, where each tweet is a node in the graph and Sn holds
the weight of each edge [8]. Then, we calculate the score
for each node by summing weights of all the edges that are
connected to that node. The node that gives the highest score
is the most representative and central tweet of the timeslot.
Most of the timeslots have N = 12, 000 tweets, so matrices
S1, S2, . . . , SS have approximately 144×106 entries for each
timeslot. Since the score matrices are symmetric, only half of
these entries could be used, i.e the upper/lower triangular, in
order to reduce the complexity to N2

2 .
We then assign a new tweet to the class that maximises

the JC metric inside that class. In order to limit the size of
each reference class we delete the oldest tweets or the least
significant ones (e.g. the ones which obtained the lowest JC
score). This ensures the low cost and efficiency of the method.

3. COMPRESSIVE SENSING

Let us first describe the main theoretical concepts of CS [9]
as applied in the context of classification. Let x ∈ RN denote
the signal of interest. Such signal can be represented as a
linear combination of a set of basis {ψi}Ni=1. By constructing
a N × N basis matrix Ψ = [ψ1, ψ2, . . . , ψN ], the signal x
can be expressed as x =

∑N
i=1 siψi = Ψs. In fact the signal

is represented as x = Ψs + θ, with θ ∈ RN being the noise,
where E(θ) = 0 and var(θ) = O(|Ψs|).

The efficiency of a CS method for signal approximation
or reconstruction depends highly on the sparsity structure of
the signal in a suitable transform domain associated with an
appropriate sparsifying basis Ψ. The measurement model in
the original space-domain is expressed as g = Φx , where
g ∈ RM is the measurement vector and Φ ∈ RM×N denotes
the measurement matrix. The measurement model has the
following equivalent transform-domain representation

g = ΦΨs + Φθ . (2)

In fact when the length of the sequence n → ∞ and N →
∞, E(Ψs) = O(nN), with var(θ) = O(nN), std(θ) =
O(
√
|Φ|n) and E(Φθ) = 0. The second part of (2), Φθ is

of relative order O( 1√
nN

), and is negligible compare to ΦΨs

due to the law of large numbers.
Examples of measurement matrices Φ, which are inco-

herent with any fixed transform basis Ψ with high proba-
bility (universality property [11]), are random matrices with
independent and identically distributed (i.i.d.) Gaussian or
Bernoulli entries.



In the framework of CS, the problem of classifying a tweet
is reduced to a problem of recovering the one-sparse vector
s. Of course in practice we do not expect an exact sparsity,
thus, the estimated class corresponds simply to the largest-
amplitude component of s. According to [10, 11], s can be
recovered perfectly with high probability by solving the fol-
lowing optimization problem

ŝ = arg min
s

(
‖s‖1 + τ‖g − (ΦΨs)‖2

)
, (3)

where τ is a regularization factor that controls the trade-off
between the achieved sparsity and the reconstruction error.

3.1. Preprocessing phase

During the Preprocessing phase, we built our classes as de-
scribed in Section 2 and for each class we extract the most
representative tweet(s) (CTs) based on the Joint Complexity
method. The vector Ψi

T consists of the highest JC scores of
the i-th CT. The matrix ΨT is used as the appropriate spar-
sifying dictionary for the training phase. Moreover, a mea-
surement matrix Φi

T is associated with each transform matrix
Ψi
T , while T denotes the preprocessing phase.

The matrix Ψi
T ∈ RNi×C is used as the appropriate

sparsifying dictionary for the i-th CT, since in the ideal case
the vector of tweets at a given class j received from CT i
should be closer to the corresponding vectors of its neigh-
boring classes, and thus it could be expressed as a linear
combination of a small subset of the columns of Ψi

T . More-
over, a measurement matrix Φi

T ∈ RMi×Ni is associated
with each transform matrix Ψi

T , where Mi is the number
of CS measurements. In the proposed algorithm, a standard
Gaussian measurement matrix is employed, with its columns
being normalized to unit `2 norm. A random matrix or a PCA
matrix could be also used.

3.2. Run phase

A similar process is followed during the runtime phase. More
specifically, we denote xc,R as the Joint Complexity score
of the incoming tweet with the CTi classified at the current
class c, where R denotes the runtime phase. The runtime CS
measurement model is written as

gc = ΦRxc,R , (4)

where Φi
R ∈ RMc,i×Nc,i denotes the corresponding measure-

ment matrix during the runtime phase. In order to overcome
the problem of the difference in dimensionality between the
preprocessing and run phase, while maintaining the robust-
ness of the reconstruction procedure, we select Φi

R to be a
subset of Φi

T with an appropriate number of rows such as to
maintain equal measurement ratios.

The measurement vector gc,i is formed for each CT i ac-
cording to (4) and transmitted to the server, where the recon-
struction takes place via the solution of (3), with the training

matrix Ψi
T being used as the appropriate sparsifying dictio-

nary. We emphasize at this point the significant conservation
of the processing and bandwidth resources of the wireless de-
vice by computing only low-dimensional matrix-vector prod-
ucts to form gc,i (i = 1, . . . , P ) and then transmitting a highly
reduced amount of data (Mc,i � Nc,i). Then, the CS recon-
struction can be performed remotely (e.g., at a server) for each
CT independently.

In this work, we are based on the assumption that the CS-
based classification method involves the mobile device that
collects the tweets from the Twitter API and a server that per-
forms the core CS algorithm.

4. TRACKING VIA KALMAN FILTER

Focusing on the problem of classification, the user tweets pe-
riodically, and we check that information with the CTs at a
specific time interval ∆t.

Then, the classification system estimates the user’s class
at time t, which is denoted by p∗(t) = [x∗(t)]T . Following
a Kalman filtering approach [12], we assume that the pro-
cess and observation noises are Gaussian, and also that the
motion dynamics model is linear. The process and observa-
tion equations of a Kalman filter-based model are given by
x(t) = Fx(t − 1) + θ(t) and z(t) = Hx(t) + v(t), where
x(t) = [x(t), vx(t)]T is the state vector, with x being the
correct class in the space (user’s tweets) and vx(t) the tweet-
ing frequency, z(t) is the observation vector, while matrices
F and H define the linear motion model. The process noise
θ(t) ∼ N(0,S) and the observation noise v(t) ∼ N(0,U)
are assumed to be independent zero-mean Gaussian vectors
with covariance matrices S and U, respectively. The current
class of the user is assumed to be the previous one plus the
information provided by the JC metric, which is computed
as the time interval ∆t multiplied by the current tweeting
speed/frequency.

The steps to update the current estimate of the state vector
x∗(t), as well as its error covariance P(t), during the predic-
tion and update phase are given by the following equations

x∗−(t) = Fx∗(t− 1) (5)
P−(t) = FP(t− 1)FT + S (6)
K(t) = P−(t)HT (HP−(t)HT + U)−1 (7)
x∗(t) = x∗−(t) + K(t)(z(t)−Hx∗−(t)) (8)
P(t) = (I−K(t)H)P−(t) (9)

where the superscript “−” denotes the prediction at time t,
and K(t) is the optimal Kalman gain at time t.

The proposed Kalman system exploits not only the highly
reduced set of compressed measurements, but also the previ-
ous user’s class to restrict the classification set. The Kalman
filter is applied on the CS-based classification, described
briefly in Section 3, to improve the estimation accuracy of



the mobile user’s path. More specifically, let s∗ be the recon-
structed position-indicator vector. Of course in practice s∗

will be not truly sparse, thus the current estimated position
[xCS ], or equivalently, cell cCS , corresponds to the highest-
amplitude index of s∗. Then, this estimate is given as an input
to the Kalman filter by assuming that it corresponds to the
previous time t − 1, that is, x∗(t − 1) = [xCS , vx(t − 1)]T ,
and the current position is updated using (5). At this point,
we would like to emphasize the computational efficiency of
the proposed approach, since it is solely based on the use of
the very low-dimensional set of compressed measurements
given by (2), which are obtained via a simple matrix-vector
multiplication with the original high-dimensional vector. Fi-
nally, Figure 1 presents the flowchart of the classification
and tracking model based on Joint Complexity, Compressive
Sensing and Kalman filter.

Fig. 1. Flowchart of the proposed topic detection and classifi-
cation method.

5. EXPERIMENTAL RESULTS

The efficiency of the proposed classification method is eval-
uated on sets of tweets acquired from the Twitter API. The
classification accuracy of the tested methods was measured
with the standard Precision, Recall, and balanced F-score
metrics, using a Ground Truth (GT) on more than 1, 041, 000
tweets [13]. Then we kept track of which tweet was classified
in which class in order to compare this with four classification
methods along with many different optimisation techniques
for the signal reconstruction mentioned in Section 3.

We selected the Document-Pivot (DP) method to compare
with our method, since it outperformed the other state-of-the-
art techniques in a Twitter context as shown in [7]. The most
important difference of DP method is that instead of build-

ing suffix trees, this time the method constructs a tf-idf bag
of words), and then classifies each tweet of the Run phase
by selecting the category containing the tweet closest to our
test tweet. The notion of closest is because we used Locality
Sensitive Hashing based on the Cosine Similarity in a vector
space where each possible word is a dimension and its tf-idf
score is the coordinate in that dimension. In such a space
when the cosine between the two vectors is close to one, it
means that the vectors are pointing in the roughly same direc-
tion, in other words the two tweets represented by the vectors
should share a lot of words and thus should probably speak
about or refer to the same subject.
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Fig. 2. Classification accuracy measured by F-Score for the
DP, DPurl and JC+CS, JCurl+CS method as a function of the
number of measurements (%) by using the `1-norm min.

5.1. Classification performance based on Ground Truth

The classification performance is compared for: (a) Doc-
ument Pivot (DP), (b) Joint Complexity with Compressive
Sensing (JC+CS), (c) Document Pivot with URL (DPurl),
(d) Joint Complexity and Compressive Sensing with URL
(JCurl+CS), where (c) and (d) include the information of the
compressed URL of a tweet concatenated with the original
tweet’s text (extracted from the .json file).

Fig. 2 compares the classification accuracy (increased
by 27%) of the DP, DPurl and JC+CS, JCurl+CS method
as a function of the number of measurements by using the
`1-norm minimization. Fig. 3 compares the reconstruction
performance between several widely-used norm-based tech-
niques and Bayesian CS algorithms. More specifically, the
following methods are employed1: 1) `1-norm minimization
using the primal-dual interior point method (L1EQ-PD), 2)
Orthogonal Matching Pursuit (OMP), 3) Stagewise Orthog-
onal Matching Pursuit (StOMP), 4) LASSO, 5) BCS, and 6)

1For the implementation of methods 1)-5) the MATLAB codes can
be found in: http://sparselab.stanford.edu/, http://www.
acm.caltech.edu/l1magic, http://people.ee.duke.edu/

˜lcarin/BCS.html



BCS-GSM [14, 15]. Fig. 3 shows that BCS and BCS-GSM
outperform the introduced reconstruction techniques, while
Fig. 4 shows that we a achieve better performance of 11%
when using the Kalman filter.
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Fig. 3. Classification accuracy measured by F-Score as a func-
tion of the number of measurements (%) by using several re-
construction techniques, for the JCurl+CS method.
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Fig. 4. Classification accuracy measured by F-Score as a func-
tion of the number of measurements (%) by using Kalman, for
the JCurl+CS method.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we performed topic detection based on Joint
Complexity and low dimensional classification based on
Compressive Sensing with the accuracy of a Kalman filter
as a refinement step. The experimental evaluation revealed
better performance, while maintaining a low computational
complexity. As a future work, we intend to exploit the joint
sparsity structure of the indicator vector among the several
representative tweets, improving the reconstruction accuracy,

while investigating the inherent encryption properties of CS
for potential employment in classification on cloud services.
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