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HOLDER REGULARITY
FOR HYPOELLIPTIC KINETIC EQUATIONS
WITH ROUGH DIFFUSION COEFFICIENTS

FRANCOIS GOLSE AND ALEXIS VASSEUR

ABSTRACT. This paper is dedicated to the application of the DeGiorgi-Nash-
Moser regularity theory to the kinetic Fokker-Planck equation. This equation
is hypoelliptic. It is parabolic only in the velocity variable, while the Liouville
transport operator has a mixing effect in the position/velocity phase space.
The mixing effect is incorporated in the classical DeGiorgi method via the
averaging lemmas. The result can be seen as a Holder regularity version of the
classical averaging lemmas.

1. THE FOKKER-PLANCK EQUATION

This paper is dedicated to the application of the DeGiorgi method to hypoelliptic
equations, with rough coefficients. DeGiorgi introduced his technique [6] in 1957 to
solve Hilbert’s 19th problem. In this work, he proved the regularity of variational
solutions to nonlinear elliptic problems. Independently, Nash introduced a similar
technique [22] in 1958. Subsequently, Moser provided a new formulation of the proof
in [21]. Those methods are now usually called DeGiorgi-Nash-Moser techniques.
The method has been extended to degenerate cases, like the p-Laplacian, first in the
elliptic case by Ladyzhenskaya and Uralt’seva [19]. The degenerate parabolic cases
were covered later by DiBenedetto [7] (see also DiBenedetto, Gianazza and Vespri
[10, 8, 9]). More recently, the method has been extended to integral operators,
such as fractional diffusion, in [4, 3] — see also the work of Kassmann [18] and of
Kassmann and Felsinger [12]. Further application to fluid mechanics can be found
in [23, 15, 5].

Let A = A(t,x,v) be an My (R)-valued measurable map on R x R x R¥ such
that

1
(1) XI < A(t,z,v) = A(t,z,v)" < AT

for some A > 1. Given T > 0, consider the Fokker-Planck equation with unknown
f=ftzv)eR

(2) (Or +v-Vo)f(t,x,v) = div, (A(t, z,v)V, f(t, z,v)) + g(t, z,v)
for z,v € RY and t > —T, where g = g(t,z,v) is given.
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2 F. GOLSE AND A. VASSEUR

Assuming that g € L? ([-T,00); L2 (RN x RY)), it is natural to seek f so that

loc
(3) feC((~T,00); L* (RN xRY) and V, f € L? ([-T,0); L*(RY x RY)),

in view of the following energy inequality:

(4)
t
1 2 1 2
2l Mzamucrny = 3 [ IVe (0 )L ) ds
0

t
< %Hf(to, K ')H%Z(RNXRN) + / ||g(s, ) ')||L2(RN><RN)Hf(Sv K ')||L2(RN><RN)dS
to

< 31 (tos s M2 xrvy + 3190172700 xR xRN
t
+% Hf(sa"')||2L2(RN><RN)dS'
to
Applying Gronwall’s inequality shows that leads therefore to the following bound
on the solution of the Cauchy problem for the Fokker-Planck equation with initial
data f}t:to € L2 (RN x RM):

2 T
Moy + 5 [ 1705 My

< (1o, M3 xr) + 1913y ) €77
for each 7 > 0 and each t € (=T, 7). This bound involves only the L? bounds on
the data f|t:t0 and g.

This paper is organized as follows. Section 2 establishes a local L*° bound for
a certain class of weak solutions of the Fokker-Planck equation. The local Holder
regularity of these solutions is proved in section 3. As in the application of the
DeGiorgi method to parabolic equations, these two steps involve rather different
arguments. The main result in the present paper is Theorem 3.1, at the beginning of
section 3. Yet, the local L> bound obtained in section 2 is of independent interest
and is a important ingredient in the proof of local Holder regularity in section 3.
For that reason, we have stated this local L* bound separately as Theorem 2.1 at
the beginning of section 2.

The arguments used in this paper follow the general strategy used by DeGiorgi,
with significant differences, due to the hypoelliptic nature of the Fokker-Planck
equation.

Shortly after completing our proof of local Holder regularity (Theorem 3.1), we
learned of an independent approach of this problem by Imbert and Mouhot [17].
The main difference between [17] and our own work is that Imbert and Mouhot
follow Moser’s approach, while we follow DeGiorgi’s argument.

2. THE LOoCAL L°° ESTIMATE

Assume henceforth that T' > % All solutions f of the Fokker-Planck equation
considered here are assumed to satisfy (3) and are renormalized in the sense that,
for each y € C?(R) satisfying x(z) = O(z?) as |z| — oo, one has

(5) (0 +v - Va)x(f) = divy (AVux(£) = X" (F)A: (Vo f) + 9/ (f)

in the sense of distributions on (—7,00) x R x RY.
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Notation: for each r > 0, we set
Q[r] := (=r,0) x B(0,r) x B(0,r).

The goal of this section is to prove the following local L> bound. This is the
first important step in the DeGiorgi method.

Theorem 2.1. For each A > 1, each v > 0, and each ¢ > 12N + 6, there exists
Kk =K[N,M,A,~,q] € (0,1) satisfying the following property.

For each My (R)-valued measurable map A on R x RN x RN satisfying (1),
each g € L1(Q[3]) such that

<
IIQHLQ(Q[%]) <7,
and each f € Cy((—2,0); L2(B(0,2)?)), solution of the Fokker-Planck equation

(O v+ Vo) f = divo(AVuf) +9  on Q[

the following implication is true:

o f(t,z,v)idtd:cdv <k=f< % a.e. on Q[%]
2

The proof of Theorem 2.1 involves several steps, following more or less closely
DeGiorgi’s original strategy. We shall insist on those steps which significantly differ
from DeGiorgi’s classical argument.

2.1. The Local Energy Inequality. Since the solution f of the Fokker-Planck
equation considered here is renormalized, for each ¢ € C°((—T,00) x RN x RY),
one has

/ i / / A (Vox(f) @ Vo + X" (/)(Vo f)2?)dodvdr
RN xRN

/ // )0 + v - Vy)dedvdr Jr/ // fivdxdudr .
RNXRN RN ><RN

Since f € Cy((—=T,0); L2(RY x RY), one can pick a sequence of smooth test
functions v converging to a test function of the form ¥ (7, x,v) = lscr<id(z,v).
For each ¢ € C°(RY x R”) one finds in this way that

t
/ /[RN RN A (Vox(f) @ Voo + ox"(f) (Vo [)®?)dadvdr

© =[] oo [[ o
/ //szxRN Jo- v ¢dmd“d7+/ //RNxRN 9xX'(f)ddzdvdr .

Let x(f) = (f ) for some ¢ € R and pick n € C2°(RY). Choosing the test
function ¢ of the form ¢(x,v) = n(x)n(v)?, we observe that
A (Vox(f) ® Voo + ox" (f) (Vo f)®?)
=n(@)A: 2n)(f — )+ Vof @ Vun(v) +n(v)*1s5o(Vo f)¥?)

since

X'(f)=(f—c)+ and x"(f) =1psc.
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Hence

A (Vox(f) @ Voo + ox" (f) (Vo f)®?)
=n(@)A: 2W)Vu(f = )4) @ ((f = )+ Von(v)) + n(v)* (Vo (f — ¢)1)¥?)
=n(z)A: (Vo(n)(f —¢)4)®* = n(@)A: ((f — )7 Vn(v)®?,

since A = AT. Inserting this identity in (6) shows that

[ @ o s

/ //RNXRN 2)[Vo (o) (f = ¢)4)[*dwdvdr

2 //RNxRN n(@)n(v)*(f — ) (s, ,v)dzdy

+A/ //RNXRN (f = )% |Vn(v)|*dedvdr
S o 0
+/S //RNxRN 9(f = ¢)4n(z)n(v)*dzdvdr .

Remark. The function x(z) = 4(z—c)2 is not C2, but only C' with Lipschitz con-

tinuous derivative. Instead of arguing directly with x as above, one should replace
x by a smooth approximation x. and passes to the limit as the small parameter
e— 0.

2(f — ¢)%v - Vn(x)dzdvdr

L\.’)I»—l

2.2. The Dyadic Truncation Procedure. This step closely follows DeGiorgi’s
classical method. For each integer k > —1, we define

Th=-31+27%), Re=301+27"
and we set
By := B(0, Ry), Qr == (Tx,0) x Bi(= Q[Rx)).
Pick n, € C*°(RY) such that 0 < i, < 1, satisfying
m=1lonBy, nmx=0o0nB{ ,, and|Vnlr-~ <282,

Finally, set

Cr:=3(1-2"%,  and f = (f — Ch)+
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Write inequality (7) with = ni, and ¢ = Cy, for each s € (Ti—1,T%): one has

2 //RNXRN e () (0)* F (¢, 2, v)dard
A/Tk ] @I ) Pdadude

// e () (0)? f7 (s, 2, v)dadv
RN xRN
+A/ // fk|V77k( )|2dxdvd7'
Ti-1 RN><RN
Jr/ // Lk (v)? fRv - Vg (z)dadvodr
Tr—1 RN xRN
t
+/ // g fxne(x)ne (v)? dedodr .
Ti-1 RN xRN

Averaging both sides of the inequality above in s € (Tx—_1,T)) shows that

%// k() (0)2 f2(t, 2, v)dzdy
RN xRN
/ // )|V (i (v) fr) P dadvdT
T RN><RN
: Qk/ // ()2 £2(5, 2, v)dadvds
-1 RN><RN
+A/ // z) £ |V (v) |*dedvdr
Ti_1 RN><RN
+/ // 37 (0)? fRv - Vg (x)dadvdr
Tr—1 RN xRN
t
+/ // g i () (v) 2 dazdvdr .
Tr—1 RN xRN

Set

Uei= s 4[] e e o) dads

T, <t<0

/Tk //RNXRN )|V (e (v) fr)|*dadvdr .

By construction

(8) 0<U, <Up1<...<UL <y
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2’“/ // nk(x)nk(v)2f,§(s,x,v)dmdvds
Th_1 RN xRN
+A/ // fk|V7]k( )|2dxdvd7
Th_1 RN xRN
/ // v)? fEv - V() dedvudr
T, JJRY xRN 2

< (284 A2 LR, 282 / fRdxdudt
k—1

Now

< 2%F3(1 4 20) / [, sodzdudt
Qr—1

so that

(9) U, <2231 +2A)/ flflfk>0dacdvdt+/ |91 f&|1 £, >odzdvdt .

k—1 Qr—1

2.3. The Nonlinearization Procedure. This step starts as in DeGiorgi’s classi-
cal argument. By Hélder’s inequality, for each p > 2,

2
/ [, sodzdvdt < / fPdedvdt | |{fr >0} N Qr—1]" "7,
Qr-1 Qr-1

1_1

while, assuming that p > 2 is such that % <3y

/ 1911 fx|1 e >0dzdvdt < ||g||La </ f,fdxdvdt) {fx >0}N Qk71|1—;_%
Qr-1 Qr—1
Now, for each k& > 0,

{fe >0} ={fro1>Cx — C—1} = {fr—1 > 2771}

so that, by Bienaymé-Chebyshev’s inequality

{fi > 0} N Q1] < 22’”2/ F2_ dadvdt < 22KF2| Ty 1 |Up—y < 3- 22510, .

k—1
Hence
Uy < 22543(1 4 24) </ ,fdzdvdt> (3- 22k+1Uk71)1—%
k—1
+1lgllza (/ f,fdzdvdt) (3- 22k+1Uk71)1_%_%
Q-1
(10) ¢

SIS

B =

Q=

s
P

_2
3(1+ 2A)24’“+4U,171" ( fPdadudt )
322 )

fPdxdvdt
Qk 1
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If one had an inequality of the form

(11) (/ f,fdl‘dvdﬁ) < CpUgk_1,

the right-hand side of the inequality above would be the sum of two powers of U_1

with exponents

2 1 1 1
1+1—->1 andl+-—-—— >1.

p 2 p g
In other words, the bound obtained in the present step would result in a nonlinear
estimate for the linear Fokker-Planck equation. Obtaining a nonlinear estimate for
the solution of a linear equation is the key of DeGiorgi’s local L*° bound. The
wanted inequality will be obtained by a variant of the velocity averaging method,
to be explained in detail below.

2.4. A Barrier Function. In fact, the velocity averaging method will not be
applied to fy itself, but to a barrier function dominating fr. Constructing this
barrier function is precisely the purpose of the present section. Set Fj(t,x,v) :=
fr(t, 2, v)ne(x)nk (v)2. Then, one has
(O + v - Vo) Fy, — divy (AV, Fy) = g1 psc i (@)mk (0)% + frnw(v)?o - Vi (2)
=2 divy (i (2)n (0) AV (v) — dne ()0 (V) A = Vo fir. @ Vg (v) —
where (i, is a positive Radon measure because the function z — (z—C}) 4 is convex.
Set
Sk = glyscym(@)me(v)? + fum(v)?v - Vi (x)
=2 divy, (i (2)1k (0) fr AV (V) = 20k (2)0K (V) A 2 Vo fire @ Vi (v)
and let G} be the solution of the initial boundary value problem
(O +v-V,)Gy — div,(AV,Gi) = S on Qp—1,
(12) Gr(t,z,v) =0if |v| = Rg—q or || = Rp—1 and v-z < 0,
Gg(Tg—1,z,v) =0.
Hence
(Or +v-Vu) (G — Fy) — div, (AV, (G, — Fi)) = pi > 0 on Qg1
(Gr — Fy)(t,z,v) =0if |[v| = Rg—q or || = Rp—1 and v-z <0,
(Gk — F)(T—1,z,v) =0,
so that, by the maximum principle,

(13) 0< F, <Gy ae. on Qp_1.

2.5. Using Velocity Averaging. In DeGiorgi original method, the inequality (11)
follows from the elliptic regularity estimate in the Sobolev space H' implied by the
energy inequality. Together with Sobolev embedding, this leads to an exponent
p>2in (11).

In the case of the Fokker-Planck equation considered here, the energy inequality
(4) gives H' regularity in the v variables only, and not in (¢,x). A natural idea is to
use the hypoelliptic nature of the Fokker-Planck equation in order to obtain some
amount of regularity in (¢,2). The lack of regularity of the diffusion coefficients, i.e.
of the entries of the matrix A forbids using the classical methods in Hérmander’s
theorem [16].
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There is another strategy for obtaining regularity in hypoelliptic equations of
Fokker-Planck type, which is based on the velocity averaging method for kinetic
equations. Velocity averaging designates a special type of smoothing effect for
solutions of the free transport equation

observed for the first time in [1, 14] independently, later improved and generalized
in [13, 11]. This smoothing effect bears on averages of f in the velocity variable v,
i.e. on expressions of the form

f(t,z,v)¢(v)dv,
RN
say for C° test functions ¢. Of course, no smoothing on f itself can be observed,
since the transport operator is hyperbolic and propagates the singularities of the
source term S. However, when S is of the form

S = din(A(t, xz, ’U)va) +g

where ¢ is a given source term in L?, the smoothing effect of velocity averaging
can be combined with the H' regularity in the v variable implied by the energy
inequality (4), in order to obtain some amount of smoothing on the solution f itself.
A first observation of this type (at the level of a compactness argument) can be
found in [20]. More recently, Bouchut has obtained more quantitative results, in
the form of Sobolev regularity estimates [2]. These estimates are one key ingredient
in our proof.
By construction

supp(Gr) C Qr—1 and supp(Sk) C Qr—1,
and one has
(at +v-Vy)Gi — diVU(AVUGk) =S on R x RY xRN

By definition
Sk = Sk,1 + divy Sk2

with
Sk =gl (@)ne(v)? + frmk(v)?o - V()
—2n(z)nk (V)A = Vy fr @ Vi (v)
Sk2 = — 2ne(@)e (v) fr AV (V) -
Moreover

1Sk1ll2(Qi-1) < 9L s>0rll2(Qumn)
+ 22 R 1 fillLa@eoy) + 2P ANV fill 22
||Sk72||L2(Qk—l) < 2k+3A||fk||L2(Qk71) :
Writing the energy inequality for (12), we find that
1 2 Lt 2
§||Gk(t’ g ')||L2(Bﬁ71) + X |VUG7€| dxdvds
Thk—1

<8k 1llz2@un)GrllL2(@i_r) + 1Sk.2ll22(@r) VoGl L2 (1) »
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so that
1 0
S s (Gt M )ty [ (VuGhPdaduds
Ty—1<t<0 - Tr—1
< |Tk*1|1/2||Sk,1||L2(Qk,1) sup  ||Gr(t, - )22 )
Ty-1<t<0
+|Sk,2lL2 (@i ) IVoGrll L2(Qi 1)
<|T-1ll1Sk 101720 1) + 1 Su<pt Gk, )22 )
k 1
ISk al By + 25 1VoCell sy
Hence
1 /0
i sup ||Gk(t’.’.)||%2(Bi—1)+K/ |V, G |*dzdvds
Tr—1<t<0 Ti-1

< 2|Tk—1|||Sk,1||2L2(Qk,1) + A||Sk72||2L2(Qk,1) .
In particular
1GkIZ2(0x 1y < AT 1lISkal72(0s 1y + 20| Th-1 Sk 211720,y
IVoGrllZaig,_sy < AlTk-1lllSk1llZ2(q,_y) + A2MSk2llZ2q, ) -
The Fokker-Planck equation in (12) is recast as
(0 +v-Vg)Gr = Sk,1 + divy (Sk2 + AV, Gy),

and we recall that G, Si,1 and Sk o are supported in Qp—1.
By velocity averaging, applying Theorem 1.3 of 2] withp =2, k=Q=1,r=0
and m = 1, one finds that

1D} Gillz + || DY G| 2
< OnlGrllz2 + On (1 + Bi)? | DuGil| 75 (ISk.2]l 15 + A3 DGl %)
+ON (1 + Ri)Y2 | DuGrll 2 (ISkall s + 1Szl 15 + A2 DGl 1)
On the other hand
IDY3Grll2 < 1GR3 DGR S -

2.6. Using the Sobolev Embedding Inequality. With these inequalities, one
can estimate

| D Gillp= + IIDY Gl = + 1Y G 12
in terms of Uj_1, as follows. Indeed,
I fellZ2(q,) < 2|T|Uk <3Uk,  and |[VyfilZzg,) < AUk
Moreover, by definition of fi := (f — Ck)+, one has

I fellZ2n_y) < I fa-1l72(001)
and
Vo fel =10 Vo fl < Lpso Vo fl = Vo frl,
so that
1fel 221y < 3Uk—1, and |V fill72iq, ) < AUk-1-
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Thus
ISk1llze < llglrscnllie(@u ) + 28 (3VB +4A%2 U |

ISk2llz2u) < 24V
Besides, for 2 < r < g, one has

1

l91f>cillrz@ioy) < Ngllnr@un)H{f > Cr} N Qr—1|277

and we recall that

{fe > 0} N Qs < 2%*2/ F2_ dedvdt < 2252 Ty |Uj_y < 3- 225410, .

k—1

Therefore, for 2 < r < gq,
1Sk,111z2 < 9l Lr@u_n) (3 22K k1) 277 + 251 (3VB + 4032 U3
so that
1Sk111Z2(0,_,) < 6”9”%T(Qk,1)2(2k+1)(1_%)U;:l% + 2227 + 16A°) U -
1Sk,20172(0, ) < 3072200, 4 .
Inserting these bounds in the energy estimate (14), we find that
IGkZ 20y < MSkalZ2(q, ) + 3MISk 2l 220, )
< 54)lgll 1, 2ZHVA=DULE 4 9(27 + 24A%) 22,
while
IVoGilT2(0n_r) < SAISK 11720001y + A2 Sk2lZ2(0x_,))
< OAIgI3 (022U 4 3(27A + 240422530,

In the inequalities above, one can use Holder’s inequality to estimate |g||z o, ,)
as follows:

11
9112 @u-1) < l9llza@u_n) Q1177 < QSN2
Summarizing, we have found that

1—2
IGklZ2 + [VoGrlZz + SkallEs + 1Sk2]Z2 < a®2** (U2} + Us-1)

where a = a[A,7] > 0. With the velocity averaging estimate from the previous
section, this implies that

IDY2GHl13 + DY Gl + DGl < B2 (UL + Uiy
where b = b[N, A, v] is given by
b? ==a*(1+ (6 +5A)Cy).
By Sobolev’s embedding inequality, one has
G2 < K322 (U, + Vi),
where Kg is the Sobolev constant for the embedding

1 1 1
H7BRxRY xRY)c (R xRN xRN), —=-—
p 2 G6N+3
By (13), this implies that
_2 1 1 1
Full3, < K222 (U, "7 +Upy), —==—
|| kHL = N9 ( k—1 + Uk 1)’ P 2 6N + 3
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Using (8), we further simplify the inequality above to obtain

2 2 2,952kl 2 1 1 1
(15) 1Pl < KSQ+ U200 =5 - 35
for each k > 1.

2.7. The Induction Argument. This last step closely follows DeGiorgi’s classical
argument. We return to (10), and observe that

/ frdzdudt S/ fr_ dxdvdt :/ F?  dzdvodt
k—1 Qr—1 k—1

< / FP_ dadvdt = | For |2, -
k—2

Therefore )
1+20)(1+ Uy b2 - 2%+20, 7 U} 75

K5( )

2 3 3k 1—1_1 1_

+3Ks(1+Ug ) 4bllgllne - 2250, ¢ UL
( )

< BKZ(1+20)(1+ Ug)b* - 26k+2U§:§_

23 3k v
+3Ks(1+ U bllgllpa - 29U E T

where the second inequality above follows from (8)
With p > 2 being the Sobolev exponent given by

1 1 1

p 2 G6N+3’
we choose r = g > 12N + 6 so that

9 2_2_, 1+ 2 2—1+ 2 >1
p T 6N +3 gq 6N +3 ¢ ’
1 1 1 1 1

=14 -
2 p q r * 6N + 3
Besides, in view of (9), one has
Up < 8(1+2A)k +1/KIQIZ]IZ77 < 8(1+24) +7|QI3][M? =: c[A, 7]
Thus, setting

a::1+#—2>1
6N +3 ¢ ’
we obtain
U, <C- 20U ,, k>2,
with

CIN, A, 7, q] = 12K2(1 + 2A)co%75 (1 + ¢4 )b* + 3Kg(1 + ¢1)2 by .

With Vi = Us, and p = 2'2(1 + C) — notice that p > 1 — we recast this
inequality as
Vi <pPVE L, kE>1.
Tterating, we find that

Vi < pkvka_l < pk+a(k71)vka_22 < pk+a(k71)+a2(k72)vka_33

< S pk+a(k—1)+a2(k—2)+...+ozk71Voozk )
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Elementary computations show that
E4+ak—1)+a?(k—2)+...+ !
=k(l4+a+...+a* Y —al+2a+...+(k—1)a*?)
akb —1 d o -1 akf —1 kak—1 akb —1
—a— =k -« -
a—1 doo o —1 a—1 a—-1 (a—1)2
a(ak—l)—k(a—1)< « &

== «

(@ —1)? T (a—1)?

so that
Vi < (pﬁ‘/o)ak , for each k > 1
since p > 1. Choosing N
Vo <p (=07
implies that Vi, — 0 as k — 400. By dominated convergence, this implies that

/ (f = D)3t z,v)dtdzdv =0,
Ql3]

i.e. that
f(t,z,v) < 3 for ae. (t,z,v) € Q[1].
Because of (9),
Vo < 8(1+2A)k +4VAIQIEN'? < (8(1+28) +71QI3)' )V,

so that one can choose

_ 2a
K := min %, [ e |
(8(1+2A) ++(Q[5]['/?)
3. THE LocAL HOLDER CONTINUITY

Our main result in this paper, i.e. the local smoothing effect at the level of
Holder continuity for the Fokker-Planck operator with rough diffusion matrix, is
the following statement.

Theorem 3.1. Let A be an My(R)-valued measurable function defined a.e. on
R x RN x RY satisfying (1). Let I be an open interval of R and 0 be an open
subset of RN x RN, Let f € C(I; L3()) and g € L°°(I x Q) satisfy the Fokker-
Planck equation (2) on I x Q. Then there exists o > 0 such that, for each compact
K CIxQ, one has f € C%(K).

Notice that, by Theorem 2.1, we already know that f € L{S (I x Q).
As in the previous section, the proof of this result follows the general strategy

of DeGiorgi’s original argument, with significant differences.

3.1. The Isoperimetric Argument. An important step in the proof of regularity
in DeGiorgi’s method for elliptic equations is based on some kind of isoperimetric
inequality (see the proof of Lemma II in [6]). This isoperimetric inequality is a
quantitative variant of the well-known fact that no H' function can have a jump
discontinuity. More precisely, given an H! function 0 < u < 1 which takes the values
0 and 1 on sets of positive measure, DeGiorgi’s isoperimetric inequality provides a
lower bound on the measure of the set defined by the double inequality 0 < u < 1. In
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the present section, we establish an analogue of DeGiorgi’s isoperimetric inequality
adapted to the free transport operator.

Set Q := (—2,-1] x B(0,1)2.

Lemma 3.2. Letn > 0 be given, and let w € (0,1—27YN). There exists 0 € (0, 3)
and o > 0 satisfying the following property. R
Let f and g be measurable functions on Q U Q[1] such that
(O +v- Vo) f =divy(AV,f) +g  on QUQ[L],

together with
f<1land|g <1 ae onQUQ[]

and
{f <0}nQl > 3|Q].
Then
{f>1-0}NnQw/2]| <n,
or

{o<f<1-01n(QuUQN]|=a.

While DeGiorgi’s isoperimetric inequality is based on an explicit computation
leading to a precise estimate with effective constants, the proof of Lemma 3.2 is
obtained by a compactness argument, so that the values of # and « are not known
explicitly.

Proof. If the statement in Lemma 3.2 was wrong, there would exist equences f,
and g,, of measurable functions on @ U Q[1] satisfying

(O +v-Va)fn =divy(AVy fr) + gn ODQUQ[l]a
together with

fo<land |g, <1 ae. onQUQ[l], |{fn§0}ﬂQ| > %|Q|,

and

Hfn>1-2""}NQ[w/4]|>n, and yet [{0< f, <1—2""}N(QUQ])|>27".

We shall see that this leads to a contradiction.
First, arguing as in (9), wee see that, for each p € (0,1), there exists C, > 0
such that

||V'Ufn||L2( n22

By the Banach-Alaoglu theorem, one can assume that
fo ™ f and g, =g in L¥(QUQ[L]).

By the variant of hypoelliptic smoothing based on velocity averaging (Theorem 1.3
in [2]), one has

<
~20,0)xB(0,0)? = Co

fn— fin LP

loc

(QUQI]) foralll<p< oco.

Hence

(O +v-Vu)f =divy(AV,f)+g on QUQI[],
together with

f<land|g| <1 ae. onQUQ[l], |{f§0}mQ|Z%|Q|;
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and
{f =1} NQw/4]| > n, while [{0< f<1}n(QUQ])|=0.
One has also

IVufll

< .
L2(=2p,0)xB(0,p)? = Co
But .
(fn)e = frin LP (QUQI1]) foralll<p< oo,

loc
and, since f, <1 a.e. on QU Q[1], we conclude that f is an indicator function as
it takes the values 0 or 1 a.e. on Q U Q[1]. Besides

||V’Uf+||L2(7%p,0)><B(0,p)2 = H1f20vvf”L2(7%p,0)XB(O,p)2 S Cp :

Therefore f is a.e. constant in the v variable.
On the other hand,
(0 + v+ Va) fr < divy(AVufy) +gl  on QUQI],

by convexity of z — z.

Eventually, one finds that fi = 1p(t,z) for some measurable @ C (—2,0) x
B(0,1), with

(@ +v-Va)fs <1 onQUQ],

with
(16) IPNQI<31QI and [PNQw/4] > 7.

Since fy is an indicator function, for a.e. (to,zo,v0) € (Q U Q[1]), the function
s+ f(to + s,z + svg,vo) has jump discontinuities. Since

d
Ef(toJrs,:co + svo,v0) = (Ocf +vo - Vaf)(to + 8, z0 + svg,v0) < 1,

one has in fact

d
Ef(to + 8,20 + svo,v0) = (Oef +v - Vo f)(to + s, 20 + sv,0) <0.

On the other hand, if
3 <ty <1, |w|<l-w, and —lw<t<0, |z|<iw,

then there exists s > 0 and v € B(0,1) such that (¢,z,v) = (o + s, 2o + Svo,v0).
Indeed,

| — o] < || + |zo] < fw+l-w

t—to — t—to — 1-1iw

t—to > —%w—(—l) = 1—%w, and |v| = -1.

Therefore
].p(t,m)g].p(to,l'o) for a.e. (to,,@o,t,l‘)é(—%, —1] XB(O,l—w)X (—%,0) XB(O,%).
Since (1 —w)™ > 1, one has
(=5, -1] x B(0,1 - w)| > 3|0,
so that
|((_%’_1] X B(Oal_w))\Pl >0.
Otherwise,
1Ol < |(=2,-1] x B(0,1 —w)| = (-3, -1] x B(0,1 —w)NP| < |QNP|,
which would contradict the first inequality in (16).
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Choosing (to, o) € (—3,—1] x B(0,1 —w)) \ P we conclude that
1p(t,z,v) =0 for ae. (t,z,v) € Q[%].
In other words, one has
PNQ5]=0,
which is the desired contradiction with (16). O

3.2. Zooming in the Fokker-Planck Equation. As in the DeGiorgi original
proof, the local Holder regularity is obtained by controling the oscillation of so-
lutions of the Fokker-Planck equation on a sequence of domains with shrinking
diameter. This suggests of course using a zooming procedure based on the scaling
properties of the Fokker-Planck equation. This step follows the classical DeGiorgi
argument rather closely.

For each tg € R, 79, v9 € R? and € > 0, we define the transformation 7¢[to, zo, vo]
by the following prescription:

Telto, w0, vl F(s,y,€) := F(to + €75, 20 + €y + €500, vo + €§) .
An elementary computation shows that, if
(O +v-Vu)F =div,(AV,F) + G
then f(s,y,&) = Tclto, o, vo] F(s,y, &) satisfies
(0s +&-Vy) f =dive(aVef) +g
with
a(s,y,€) == Te[to, zo, vol A(s,y, &) and g(s,y, &) = €Tc[to, To, vo] G(s, 4, €) .

Observe that a satisfies the same assumption as A, with the same constant A > 1.

Here is a first application of the zooming transformation defined above. With
w chosen as in the previous section, i.e. 0 < w < 1 — 27N get ¢ = w/3 in the
zooming transformation defined above, together with ¢t = 0 and z¢y = vy = 0.
Assuming that I satisfies

(0 +v- Vo) F = divy(AV,F) + G on (—=,0) x B(0, %) x B(0,%),
then f(s,y,&) = Toy3[0,0,0]F(s,y, ) satisfies
(05 + &+ Vy) f = dive(aVef) + g on Q[2]
with
a(s,,€) = To3[0,0,01A(s,5,€) and g(s,y,€) = %7T,/5[0,0,01G(s,y,€) .

By Theorem 2.1, assuming that |g| < %2 a.e. on Q[%], one has the implication
/ fidsdydé < k[N, A, %2,00] = f<1ae onQ[i].
Q[3/2]

In terms of F' and G, we arrive at the following statement: assuming that |G| <1
a.e. on Q[%],

/Q[ o Fldtdzdv < (£)*NT2K[N, A, %2, o] = F < 1 ae on Q[4uw.
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3.3. Reduction of Oscillation. The second key idea in DeGiorgi’s method for
proving local regularity is the following important observation, which mixes the
scaling transformation and the isoperimetric argument.

Lemma 3.3. There exist 5, € (0,1) satisfying the following property. For each
pair f,g of measurable functions defined a.e. on Q U Q[1] such that

(O +v - Vo) f = divy(AV, f) + g on QU Q1]
with .
fl<landlgl <8 onQUQI,
one has

08CQws/54) J < HOSCQUy2) [ -
Proof. Pick w € (0,1 —27%/N) and set
0= (§)" RN, A, 4, o0]
Lemma 3.2 provides us with 6 € (0, %) and a > 0. Choose then 3 small enough so

that A
Z(g@IHQUH+2>m1_
@ 0

, one can assume without loss of generality that

{f<0}nQ|>1Q].

In

|~

Since |f| <1 on QUQ[1

(If
{f <0}nQl < slel,
we shall argue instead with —f and —g instead of f and g respectively.)
Consider the sequence of functions defined by induction as follows:

1
szg(fk—l—l)-i-l, fo=1.
One easily check by induction that
fefimi < S fisfo=f<lae onQUQ],

and that f is a solution of the Fokker-Planck equation on Q U Q[1] with source
term

—k
gL :=0""g.
We shall consider only finitely many terms in this sequence, viz. those for which
te 1
0<EkE<SEK = 72|Q|+|Q[ I +1< lnp .
a Inf

(Notice that the third inequality above follows from the constraint on 8 imposed
at the begining of this proof.)
First, one has
{f<sotc{fi<ot<...<{fic1 <0} <{fi <0},
so that R R R
{fe <0}nQI>|[{f <0}nQ[> 3|Q].
On the other hand

{fo <0} ={fic1 <0}U{0 < fr—1 <106}
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so that the sequence
my = [{fr < 0} N (QUQ))
satisfies
my, =mp_1 + {0 < fie1 <1-0}N(QU QL)

k
=mo+ Y H0<fiia <1-0}n(QUQ]).

=1

It is obviously impossible that
{0< fii1 101N (QUQ])| > a for each I =1,...,k",
Indeed, this would imply that
LI+ ko < mo + ko < my- < Q|+ QM

which is impossible by our choice of k*.
Notice that, by our choice of 3, one has

07" 5 <1, sothat|0*g|<1ae onQUQ]fork=0,... k*.
Applying Lemma 3.2 shows that there exists k € {0,...,k* — 1} such that

{fi 21 -0} nQw/2][ <.

Then
(fi.,)ddtdzdy = / f2, 14 51 pdtdrdv
/Q[w/2] mH QLo L
S/ 1fk21,9dtd:cdv <mn,
Qlw/2]
so that

Jip1 < 1 <1-0ae onQ[FHw.
By definition
fo—1=07"(f-1)
so that
F=14+0M1(f,, —1) <102 ae on Q4w
In particular
oscqpus /s < (1= 305+) oseqruya) f < poscqruz) f

with

0<(1—20F2) <pi=1-0F+3 <1,
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3.4. Implications on Hélder Continuity. With the estimates gathered above,
we conclude the proof of local Holder continuity as follows.
Observe that, for » > 0 and € € (0, 1),

oscq(r] Te[0,0,0]f = oscg () f < oscqper] f

where
Qc[r] == (—r€e%,0] x B(0,7¢*) x B(0, 7€) .
Assume that f and g satisfy the assumptions of Lemma 3.3; then

(5) 122272r10.0.000] 1oy < 5
for each n > 0. Therefore, Lemma 3.3 implies that
08CQu3/54] Toy2 /7[00, 01 f < proscqruya) Tijz j27(0, 0,01 f
< HOSCQL3 /54] TJ}Q_/;[O, 0,0]f
< proscqus sy f < 2u"

pour tout n > 0.
In particular

(5,5,€) € Q[] = [F((£)*"s, (42)%"y, (42)"€) — £(0,0,0)] < 21"

for each n > 0. Therefore
on+3 6n+3
- <0, |z|, v <
2~273n+1<t— » BT =

In other words

n( 2% max(sl, |y,
| (s,9,€) — f(0,0,0)| §2eXp<[1 (7 max(ls) Iy |§|))] lnu>

d n
5 o = W (t@v) = £(0,0,0)] < 24"

ln‘g—;
2 In(Z max(Js|, |y, [£]))
= _QGXP w2 IH/L
In /lni
2 2\ "M o2
=2 (2) T e

If f and g belong to LOO(Q U Q1]) and satisfy the Fokker-Planck equation with-
out satisfying the assumptions of Lemma 3.3 on HfHLw(QuQ[l]) and ”gHL“’(QUQ[l])’

replacing f and g respectively with f/L and g/L with

1
L=(1+ ||f||Loo(QuQ[1])) (1 + E|g“L°"(QUQ[1])) '
we conclude that

|f(say7§) - f(05070>| S Cmax(|s|, |y|7 |§|)U

with
2

o= 1n,u/lnw—

28
and

2 2\’ 1
0= 2 (2) 0+ 1 lmauon) (1+ Flolliauom ) -
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Assume finally that F' is a solution of the Fokker-Planck equation with source
term G' on some open neighborhood € in R x RY x R of the point (to, o, vo).
Assume further that F, G € L>°(Q). Then T [to, To, vo] F' is a solution of the Fokker-
Planck equation with diffusion matrix i [to, o, vo] A and source term 71 [to, Zo, vo]G.
Arguing as above with f := Ti[to, zo,vo|F, and setting

s=t—ty, E&=v—vy, andy=x—1x0— SV0,
we conclude that
[F(t,z,v) = F(to, o, v0)| < C((1+ [vo|)|t = to] + [v = vo| + [z — x0l)”

provided that

w3 w3 w3
mtrwen P < mmrmey vl <wg
Since tg, o and vy are arbitrary, this proves that F' is locally Holder continuous
with exponent o.

0<tyg—
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