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This paper is dedicated to the application of the DeGiorgi-Nash-Moser regularity theory to the kinetic Fokker-Planck equation. This equation is hypoelliptic. It is parabolic only in the velocity variable, while the Liouville transport operator has a mixing effect in the position/velocity phase space. The mixing effect is incorporated in the classical DeGiorgi method via the averaging lemmas. The result can be seen as a Hölder regularity version of the classical averaging lemmas.

The Fokker-Planck equation

This paper is dedicated to the application of the DeGiorgi method to hypoelliptic equations, with rough coefficients. DeGiorgi introduced his technique [START_REF] Giorgi | Sulla differenziabilità e l'analiticità degli estremali degli integrali multipli regolari[END_REF] in 1957 to solve Hilbert's 19th problem. In this work, he proved the regularity of variational solutions to nonlinear elliptic problems. Independently, Nash introduced a similar technique [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF] in 1958. Subsequently, Moser provided a new formulation of the proof in [START_REF] Moser | A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations[END_REF]. Those methods are now usually called DeGiorgi-Nash-Moser techniques. The method has been extended to degenerate cases, like the p-Laplacian, first in the elliptic case by Ladyzhenskaya and Uralt'seva [START_REF] Ladyzhenskaya | Linear and quasilinear elliptic equations[END_REF]. The degenerate parabolic cases were covered later by DiBenedetto [START_REF] Dibenedetto | On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients[END_REF] (see also DiBenedetto, Gianazza and Vespri [START_REF] Dibenedetto | Harnack's inequality for degenerate and singular parabolic equations[END_REF][START_REF] Dibenedetto | Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations[END_REF][START_REF] Dibenedetto | Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial differential equations[END_REF]). More recently, the method has been extended to integral operators, such as fractional diffusion, in [START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasigeostrophic equation[END_REF][START_REF] Caffarelli | Regularity theory for parabolic nonlinear integral operators[END_REF] -see also the work of Kassmann [START_REF] Kassmann | A priori estimates for integro-differential operators with measurable kernels[END_REF] and of Kassmann and Felsinger [START_REF] Felsinger | Local regularity for parabolic nonlocal operators[END_REF]. Further application to fluid mechanics can be found in [START_REF] Vasseur | Higher derivatives estimate for the 3D Navier-Stokes equation[END_REF][START_REF] Goudon | Regularity analysis for systems of reaction-diffusion equations[END_REF][START_REF] Caputo | Global regularity of solutions to systems of reaction-diffusion with sub-quadratic growth in any dimension[END_REF].

Let A ≡ A(t, x, v) be an M N (R)-valued measurable map on R × R N × R N such that (1) 1 Λ I ≤ A(t, x, v) = A(t, x, v) T ≤ ΛI for some Λ > 1. Given T ≥ 0, consider the Fokker-Planck equation with unknown

f ≡ f (t, x, v) ∈ R (2) (∂ t + v • ∇ x )f (t, x, v) = div v (A(t, x, v)∇ v f (t, x, v)) + g(t, x, v)
for x, v ∈ R N and t > -T , where g ≡ g(t, x, v) is given.

in the sense of distributions on (-T, ∞) × R N × R N . Notation: for each r > 0, we set Q[r] := (-r, 0) × B(0, r) × B(0, r) .

The goal of this section is to prove the following local L ∞ bound. This is the first important step in the DeGiorgi method.

Theorem 2.1. For each Λ > 1, each γ > 0, and each q > 12N + 6, there exists κ ≡ κ[N, M, Λ, γ, q] ∈ (0, 1) satisfying the following property.

For each M N (R)-valued measurable map A on R × R N × R N satisfying [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF], each g ∈ L q (Q[ 3 2 ]) such that g L q (Q[ 3 2 ]) ≤ γ , and each f ∈ C b ((- 3 2 , 0); L 2 (B(0, 3 2 ) 2 )), solution of the Fokker-Planck equation

(∂ t + v • ∇ x )f = div v (A∇ v f ) + g on Q[ 3 2 ]
, the following implication is true:

Q[ 3 2 ] f (t, x, v) 2 + dtdxdv < κ ⇒ f ≤ 1 2 a.e. on Q[ 1 2 ] .
The proof of Theorem 2.1 involves several steps, following more or less closely DeGiorgi's original strategy. We shall insist on those steps which significantly differ from DeGiorgi's classical argument.

2.1. The Local Energy Inequality. Since the solution f of the Fokker-Planck equation considered here is renormalized, for each

ψ ∈ C ∞ c ((-T, ∞) × R N × R N ), one has ∞ -T R N ×R N A : (∇ v χ(f ) ⊗ ∇ v ψ + ψχ ′′ (f )(∇ v f ) ⊗2 )dxdvdτ = ∞ -T R N ×R N χ(f )(∂ t + v • ∇ x )ψdxdvdτ + ∞ -T R N ×R N gχ ′ (f )ψdxdvdτ . Since f ∈ C b ((-T, ∞); L 2 (R N × R N )
, one can pick a sequence of smooth test functions ψ converging to a test function of the form ψ(τ, x, v) = 1 s<τ <t φ(x, v).

For each φ ∈ C ∞ c (R N × R N ) one finds in this way that (6) t s R N ×R N A : (∇ v χ(f ) ⊗ ∇ v φ + φχ ′′ (f )(∇ v f ) ⊗2 )dxdvdτ = R N ×R N φχ(f )(s, x, v)dxdv - R N ×R N φχ(f )(t, x, v)dxdv + t s R N ×R N χ(f )v • ∇ x φdxdvdτ + s t R N ×R N gχ ′ (f )φdxdvdτ . Let χ(f ) = 1 2 (f -c) 2 + for some c ∈ R and pick η ∈ C ∞ c (R N ). Choosing the test function φ of the form φ(x, v) = η(x)η(v) 2 , we observe that A : (∇ v χ(f ) ⊗ ∇ v φ + φχ ′′ (f )(∇ v f ) ⊗2 ) = η(x)A : (2η(v)(f -c) + ∇ v f ⊗ ∇ v η(v) + η(v) 2 1 f >c (∇ v f ) ⊗2 ) since χ ′ (f ) = (f -c) + and χ ′′ (f ) = 1 f >c . Hence A : (∇ v χ(f ) ⊗ ∇ v φ + φχ ′′ (f )(∇ v f ) ⊗2 ) = η(x)A : (2(η(v)∇ v (f -c) + ) ⊗ ((f -c) + ∇ v η(v)) + η(v) 2 (∇ v (f -c) + ) ⊗2 ) = η(x)A : (∇ v (η(v)(f -c) + )) ⊗2 -η(x)A : ((f -c) 2 + ∇η(v)) ⊗2 , since A = A T .
Inserting this identity in [START_REF] Caputo | Global regularity of solutions to systems of reaction-diffusion with sub-quadratic growth in any dimension[END_REF] shows that ( 7)

1 2 R N ×R N η(x)η(v) 2 (f -c) 2 + (t, x, v)dxdv + 1 Λ t s R N ×R N η(x)|∇ v (η(v)(f -c) + )| 2 dxdvdτ ≤ 1 2 R N ×R N η(x)η(v) 2 (f -c) 2 + (s, x, v)dxdv +Λ t s R N ×R N η(x)(f -c) 2 + |∇η(v)| 2 dxdvdτ + t s R N ×R N 1 2 η(v) 2 (f -c) 2 + v • ∇η(x)dxdvdτ + t s R N ×R N g(f -c) + η(x)η(v) 2 dxdvdτ .
Remark. The function χ(z) = 1 2 (z -c) 2 + is not C 2 , but only C 1 with Lipschitz continuous derivative. Instead of arguing directly with χ as above, one should replace χ by a smooth approximation χ ǫ and passes to the limit as the small parameter ǫ → 0.

2.2.

The Dyadic Truncation Procedure. This step closely follows DeGiorgi's classical method. For each integer k ≥ -1, we define

T k := -1 2 (1 + 2 -k ) , R k := 1 2 (1 + 2 -k )
and we set

B k := B(0, R k ) , Q k := (T k , 0) × B 2 k (= Q[R k ]) . Pick η k ∈ C ∞ (R N ) such that 0 ≤ η k ≤ 1, satisfying η k ≡ 1 on B k , η k ≡ 0 on B c k-1 , and ∇η k L ∞ ≤ 2 k+2 .
Finally, set

C k := 1 2 (1 -2 -k ) , and 
f k = (f -C k ) + .
Write inequality [START_REF] Giorgi | Sulla differenziabilità e l'analiticità degli estremali degli integrali multipli regolari[END_REF] with η = η k and c = C k , for each s ∈ (T k-1 , T k ): one has

1 2 R N ×R N η k (x)η k (v) 2 f 2 k (t, x, v)dxdv + 1 Λ t T k R N ×R N η k (x)|∇ v (η k (v)f k )| 2 dxdvdτ ≤ 1 2 R N ×R N η k (x)η k (v) 2 f 2 k (s, x, v)dxdv +Λ t T k-1 R N ×R N η k (x)f 2 k |∇η k (v)| 2 dxdvdτ + t T k-1 R N ×R N 1 2 η k (v) 2 f 2 k v • ∇η k (x)dxdvdτ + t T k-1 R N ×R N gf k η k (x)η k (v) 2 dxdvdτ .
Averaging both sides of the inequality above in s ∈ (T k-1 , T k ) shows that

1 2 R N ×R N η k (x)η k (v) 2 f 2 k (t, x, v)dxdv + 1 Λ t T k R N ×R N η k (x)|∇ v (η k (v)f k )| 2 dxdvdτ ≤ 2 k T k T k-1 R N ×R N η k (x)η k (v) 2 f 2 k (s, x, v)dxdvds +Λ t T k-1 R N ×R N η k (x)f 2 k |∇η k (v)| 2 dxdvdτ + t T k-1 R N ×R N 1 2 η k (v) 2 f 2 k v • ∇η k (x)dxdvdτ + t T k-1 R N ×R N gf k η k (x)η k (v) 2 dxdvdτ .
Set

U k := sup T k ≤t≤0 1 2 R N ×R N η k (x)η k (v) 2 f 2 k (t, x, v)dxdv + 1 Λ 0 T k R N ×R N η k (x)|∇ v (η k (v)f k )| 2 dxdvdτ . By construction (8) 0 ≤ U k ≤ U k-1 ≤ . . . ≤ U 1 ≤ U 0 . Now 2 k T k T k-1 R N ×R N η k (x)η k (v) 2 f 2 k (s, x, v)dxdvds +Λ t T k-1 R N ×R N η k (x)f 2 k |∇η k (v)| 2 dxdvdτ + t T k-1 R N ×R N 1 2 η k (v) 2 f 2 k v • ∇η k (x)dxdvdτ ≤ (2 k + Λ2 2k+4 + 1 2 • R k-1 • 2 k+2 ) Q k-1 f 2 k dxdvdt ≤ 2 2k+3 (1 + 2Λ) Q k-1 f 2 k 1 f k >0 dxdvdt , so that (9) U k ≤ 2 2k+3 (1 + 2Λ) Q k-1 f 2 k 1 f k >0 dxdvdt + Q k-1 |g||f k |1 f k >0 dxdvdt .
2.3. The Nonlinearization Procedure. This step starts as in DeGiorgi's classical argument. By Hölder's inequality, for each p > 2,

Q k-1 f 2 k 1 f k >0 dxdvdt ≤ Q k-1 f p k dxdvdt 2 p |{f k > 0} ∩ Q k-1 | 1-2 p ,
while, assuming that p > 2 is such that

1 p < 1 2 -1 q , Q k-1 |g||f k |1 f k >0 dxdvdt ≤ g L q Q k-1 f p k dxdvdt 1 p |{f k > 0} ∩ Q k-1 | 1-1 p -1 q .
Now, for each k ≥ 0,

{f k > 0} = {f k-1 > C k -C k-1 } = {f k-1 > 2 -k-1 }
so that, by Bienaymé-Chebyshev's inequality

|{f k > 0} ∩ Q k-1 | ≤ 2 2k+2 Q k-1 f 2 k-1 dxdvdt ≤ 2 2k+2 |T k-1 |U k-1 ≤ 3 • 2 2k+1 U k-1 . Hence ( 10 
)
U k ≤ 2 2k+3 (1 + 2Λ) Q k-1 f p k dxdvdt 2 p (3 • 2 2k+1 U k-1 ) 1-2 p + g L q Q k-1 f p k dxdvdt 1 p (3 • 2 2k+1 U k-1 ) 1-1 p -1 q ≤ 3(1 + 2Λ)2 4k+4 U 1-2 p k-1 Q k-1 f p k dxdvdt 2 p +3γ2 2k+1 • U 1-1 p -1 q k-1 Q k-1 f p k dxdvdt 1 p
.

If one had an inequality of the form (11)

Q k-1 f p k dxdvdt 2 p ≤ C k U k-1 ,
the right-hand side of the inequality above would be the sum of two powers of U k-1 with exponents

1 + 1 - 2 p > 1 and 1 + 1 2 - 1 p - 1 q > 1 .
In other words, the bound obtained in the present step would result in a nonlinear estimate for the linear Fokker-Planck equation. Obtaining a nonlinear estimate for the solution of a linear equation is the key of DeGiorgi's local L ∞ bound. The wanted inequality will be obtained by a variant of the velocity averaging method, to be explained in detail below.

2.4.

A Barrier Function. In fact, the velocity averaging method will not be applied to f k itself, but to a barrier function dominating f k . Constructing this barrier function is precisely the purpose of the present section. Set

F k (t, x, v) := f k (t, x, v)η k (x)η k (v) 2 .
Then, one has

(∂ t + v • ∇ x )F k -div v (A∇ v F k ) = g1 f >C k η k (x)η k (v) 2 + f k η k (v) 2 v • ∇η k (x) -2f k div v (η k (x)η k (v)A∇η k (v)) -4η k (x)η k (v)A : ∇ v f k ⊗ ∇η k (v) -µ k where µ k is a positive Radon measure because the function z → (z -C k ) + is convex. Set S k := g1 f >C k η k (x)η k (v) 2 + f k η k (v) 2 v • ∇η k (x) -2 div v (η k (x)η k (v)f k A∇η k (v)) -2η k (x)η k (v)A : ∇ v f k ⊗ ∇η k (v)
and let G k be the solution of the initial boundary value problem ( 12)

     (∂ t + v • ∇ x )G k -div v (A∇ v G k ) = S k on Q k-1 , G k (t, x, v) = 0 if |v| = R k-1 or |x| = R k-1 and v • x < 0 , G k (T k-1 , x, v) = 0 . Hence      (∂ t + v • ∇ x )(G k -F k ) -div v (A∇ v (G k -F k )) = µ k ≥ 0 on Q k-1 , (G k -F k )(t, x, v) = 0 if |v| = R k-1 or |x| = R k-1 and v • x < 0 , (G k -F k )(T k-1 , x, v) = 0 ,
so that, by the maximum principle,

(13) 0 ≤ F k ≤ G k a.e. on Q k-1 .
2.5. Using Velocity Averaging. In DeGiorgi original method, the inequality [START_REF] Dibenedetto | Harnack's inequality for degenerate and singular parabolic equations[END_REF] follows from the elliptic regularity estimate in the Sobolev space H 1 implied by the energy inequality. Together with Sobolev embedding, this leads to an exponent p > 2 in [START_REF] Dibenedetto | Harnack's inequality for degenerate and singular parabolic equations[END_REF].

In the case of the Fokker-Planck equation considered here, the energy inequality (4) gives H 1 regularity in the v variables only, and not in (t, x). A natural idea is to use the hypoelliptic nature of the Fokker-Planck equation in order to obtain some amount of regularity in (t, x). The lack of regularity of the diffusion coefficients, i.e. of the entries of the matrix A forbids using the classical methods in Hörmander's theorem [START_REF] Hörmander | The analysis of linear partial differential operators. III[END_REF].

There is another strategy for obtaining regularity in hypoelliptic equations of Fokker-Planck type, which is based on the velocity averaging method for kinetic equations. Velocity averaging designates a special type of smoothing effect for solutions of the free transport equation

(∂ t + v • ∇ x )f = S
observed for the first time in [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF][START_REF] Golse | Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport[END_REF] independently, later improved and generalized in [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF][START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF]. This smoothing effect bears on averages of f in the velocity variable v, i.e. on expressions of the form

R N f (t, x, v)φ(v)dv , say for C ∞ c test functions φ.
Of course, no smoothing on f itself can be observed, since the transport operator is hyperbolic and propagates the singularities of the source term S. However, when S is of the form

S = div v (A(t, x, v)∇ v f ) + g
where g is a given source term in L 2 , the smoothing effect of velocity averaging can be combined with the H 1 regularity in the v variable implied by the energy inequality [START_REF] Caffarelli | Drift diffusion equations with fractional diffusion and the quasigeostrophic equation[END_REF], in order to obtain some amount of smoothing on the solution f itself. A first observation of this type (at the level of a compactness argument) can be found in [START_REF] Lions | On Boltzmann and Landau equations[END_REF]. More recently, Bouchut has obtained more quantitative results, in the form of Sobolev regularity estimates [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF]. These estimates are one key ingredient in our proof.

By construction

supp(G k ) ⊂ Q k-1 and supp(S k ) ⊂ Q k-1 ,
and one has

(∂ t + v • ∇ x )G k -div v (A∇ v G k ) = S k on R × R N × R N .

By definition

S k = S k,1 + div v S k,2 with S k,1 :=g1 f >C k η k (x)η k (v) 2 + f k η k (v) 2 v • ∇η k (x) -2η k (x)η k (v)A : ∇ v f k ⊗ ∇η k (v) , S k,2 := -2η k (x)η k (v)f k A∇η k (v) . Moreover S k,1 L 2 (Q k-1 ) ≤ g1 f >C k L 2 (Q k-1 ) + 2 k+2 R k-1 f k L 2 (Q k-1 ) + 2 k+3 Λ ∇ v f k L 2 (Q k-1 ) , S k,2 L 2 (Q k-1 ) ≤ 2 k+3 Λ f k L 2 (Q k-1 ) .
Writing the energy inequality for [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF], we find that

1 2 G k (t, •, •) 2 L 2 (B 2 k-1 ) + 1 Λ t T k-1 |∇ v G k | 2 dxdvds ≤ S k,1 L 2 (Q k-1 ) G k L 2 (Q k-1 ) + S k,2 L 2 (Q k-1 ) ∇ v G k L 2 (Q k-1 ) , so that 1 2 sup T k-1 ≤t≤0 G k (t, •, •) 2 L 2 (B 2 k-1 ) + 1 Λ 0 T k-1 |∇ v G k | 2 dxdvds ≤ |T k-1 | 1/2 S k,1 L 2 (Q k-1 ) sup T k-1 ≤t≤0 G k (t, •, •) L 2 (B 2 k-1 ) + S k,2 L 2 (Q k-1 ) ∇ v G k L 2 (Q k-1 ) ≤ |T k-1 | S k,1 2 
L 2 (Q k-1 ) + 1 4 sup T k-1 ≤t≤0 G k (t, •, •) L 2 (B 2 k-1 ) + 1 2 Λ S k,2 2 
L 2 (Q k-1 ) + 1 2Λ ∇ v G k L 2 (Q k-1 )
.

Hence

1 2 sup T k-1 ≤t≤0 G k (t, •, •) 2 L 2 (B 2 k-1 ) + 1 Λ 0 T k-1 |∇ v G k | 2 dxdvds ≤ 2|T k-1 | S k,1 2 
L 2 (Q k-1 ) + Λ S k,2 2 
L 2 (Q k-1 ) . In particular (14) G k 2 L 2 (Q k-1 ) ≤ 4T 2 k-1 | S k,1 2 
L 2 (Q k-1 ) + 2Λ|T k-1 | S k,2 2 
L 2 (Q k-1 ) , ∇ v G k 2 L 2 (Q k-1 ) ≤ Λ|T k-1 | S k,1 2 L 2 (Q k-1 ) + Λ 2 S k,2 2 L 2 (Q k-1 ) .
The Fokker-Planck equation in ( 12) is recast as

(∂ t + v • ∇ x )G k = S k,1 + div v (S k,2 + A∇ v G k ) ,
and we recall that G k , S k,1 and S k,2 are supported in Q k-1 .

By velocity averaging, applying Theorem 1.3 of [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF] with p = 2, κ = Ω = 1, r = 0 and m = 1, one finds that

D 1/3 t G k L 2 + D 1/3 x G k L 2 ≤ C N G k L 2 + C N (1 + R k ) 2/3 D v G k 2/3 L 2 ( S k,2 1/3 L 2 + Λ 1/3 D v G k 1/3 L 2 ) +C N (1 + R k ) 1/2 D v G k 1/2 L 2 ( S k,1 1/2 L 2 + S k,2 1/2 L 2 + Λ 1/2 D v G k 1/2 L 2 ) .
On the other hand

D 1/3 v G k L 2 ≤ G k 2/3 L 2 D v G k 1/3 L 2 .
2.6. Using the Sobolev Embedding Inequality. With these inequalities, one can estimate

D 1/3 t G k L 2 + D 1/3 x G k L 2 + D 1/3 v G k L 2 in terms of U k-1 , as follows. Indeed, f k 2 L 2 (Q k ) ≤ 2|T k |U k ≤ 3U k ,
and

∇ v f k 2 L 2 (Q k ) ≤ ΛU k . Moreover, by definition of f k := (f -C k ) + , one has f k 2 L 2 (Q k-1 ) ≤ f k-1 2 L 2 (Q k-1 )
and

|∇ v f k | = 1 f >C k |∇ v f | ≤ 1 f >C k-1 |∇ v f | = |∇ v f k-1 | , so that f k 2 L 2 (Q k-1 ) ≤ 3U k-1 , and ∇ v f k 2 L 2 (Q k-1 ) ≤ ΛU k-1 . Thus S k,1 L 2 ≤ g1 f >C k L 2 (Q k-1 ) + 2 k+1 (3 √ 3 + 4Λ 3/2 )U 1/2 k-1 , S k,2 L 2 (Q k-1 ) ≤ 2 k+3 √ 3ΛU 1/2 k-1 .
Besides, for 2 < r ≤ q, one has

g1 f >C k L 2 (Q k-1 ) ≤ g L r (Q k-1 ) |{f > C k } ∩ Q k-1 | 1 2 -1 r
and we recall that

|{f k > 0} ∩ Q k-1 | ≤ 2 2k+2 Q k-1 f 2 k-1 dxdvdt ≤ 2 2k+2 |T k-1 |U k-1 ≤ 3 • 2 2k+1 U k-1 . Therefore, for 2 < r ≤ q, S k,1 L 2 ≤ g L r (Q k-1 ) (3 • 2 2k+1 U k-1 ) 1 2 -1 r + 2 k+1 (3 √ 3 + 4Λ 3/2 )U 1/2 k-1 , so that S k,1 2 L 2 (Q k-1 ) ≤ 6 g 2 L r (Q k-1 ) 2 (2k+1)(1-2 r ) U 1-2 r k-1 + 2 2k+4 (27 + 16Λ 3 )U k-1 . S k,2 2 L 2 (Q k-1 ) ≤ 3Λ 2 2 2k+6 U k-1 .
Inserting these bounds in the energy estimate [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF], we find that

G k 2 L 2 (Q k-1 ) ≤ 9 S k,1 2 L 2 (Q k-1 ) + 3Λ S k,2 2 L 2 (Q k-1 ) ) ≤ 54 g L r (Q k-1 ) 2 (2k+1)(1-2 r ) U 1-2 r k-1 + 9(27 + 24Λ 3 )2 2k+4 U k-1 , while ∇ v G k 2 L 2 (Q k-1 ) ≤ 3 2 Λ S k,1 2 
L 2 (Q k-1 ) + Λ 2 S k,2 2 
L 2 (Q k-1 ) ) ≤ 9Λ g 2 L r (Q k-1 ) 2 (2k+1)(1-2 r ) U 1-2 r k-1 + 3(27Λ + 24Λ 4 )2 2k+3 U k-1 .
In the inequalities above, one can use Hölder's inequality to estimate g L r (Q k-1 ) as follows:

g L r (Q k-1 ) ≤ g L q (Q k-1 ) |Q k-1 | 1 r -1 q ≤ |Q[ 3 2 ]| 1/2 γ . Summarizing, we have found that G k 2 L 2 + ∇ v G k 2 L 2 + S k,1 2 L 2 + S k,2 2 L 2 ≤ a 2 2 2k (U 1-2 r k-1 + U k-1 )
where a ≡ a[Λ, γ] > 0. With the velocity averaging estimate from the previous section, this implies that

D 1/3 t G k 2 L 2 + D 1/3 x G k 2 L 2 + D 1/3 v G k 2 L 2 ≤ b 2 2 2k (U 1-2 r k-1 + U k-1 ) where b = b[N, Λ, γ] is given by b 2 := a 2 (1 + (6 + 5Λ)C N ) .

By Sobolev's embedding inequality, one has

G k 2 L p ≤ K 2 S b 2 2 2k (U 1-2 r k-1 + U k-1 )
, where K S is the Sobolev constant for the embedding

H 1/3 (R × R N × R N ) ⊂ L p (R × R N × R N ) , 1 p = 1 2 - 1 6N + 3 .
(13), this implies that

F k 2 L p ≤ K 2 S b 2 2 2k (U 1-2 r k-1 + U k-1 ) , 1 p = 1 2 - 1 6N + 3 .
Using (8), we further simplify the inequality above to obtain

(15) F k 2 L p ≤ K 2 S (1 + U 2 r 0 )b 2 2 2k U 1-2 r k-1 , 1 p = 1 2 - 1 3N for each k ≥ 1.
2.7. The Induction Argument. This last step closely follows DeGiorgi's classical argument. We return to [START_REF] Dibenedetto | Harnack type estimates and Hölder continuity for non-negative solutions to certain sub-critically singular parabolic partial differential equations[END_REF], and observe that

Q k-1 f p k dxdvdt ≤ Q k-1 f p k-1 dxdvdt = Q k-1 F p k-1 dxdvdt ≤ Q k-2 F p k-1 dxdvdt = F k-1 p L p . Therefore U k ≤ 3K 2 S (1 + 2Λ)(1 + U 2 r 0 )b 2 • 2 6k+2 U 1-2 p k-1 U 1-2 r k-2 + 3K S (1 + U 2 r 0 ) 1 2 b g L q • 2 3k U 1-1 p -1 q k-1 U 1 2 -1 r k-2 ≤ 3K 2 S (1 + 2Λ)(1 + U 2 r 0 )b 2 • 2 6k+2 U 2-2 p -2 r k-2 + 3K S (1 + U 2 r 0 ) 1 2 b g L q • 2 3k U 1+ 1 2 -1 p -1 q -1 r k-2
where the second inequality above follows from [START_REF] Dibenedetto | On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients[END_REF]. With p > 2 being the Sobolev exponent given by

1 p = 1 2 - 1 6N + 3 , we choose r = q > 12N + 6 so that 2 - 2 p - 2 r = 2 -1 + 2 6N + 3 - 2 q = 1 + 2 6N + 3 - 2 q > 1 , 1 + 1 2 - 1 p - 1 q - 1 r = 1 + 1 6N + 3 - 2 q > 1 .
Besides, in view of ( 9), one has

U 0 ≤ 8(1 + 2Λ)κ + γ √ κ|Q[ 3 2 ]| 1 2 -1 q ≤ 8(1 + 2Λ) + γ|Q[ 3 2 ]| 1/2 =: c[Λ, γ] . Thus, setting α := 1 + 1 6N + 3 - 2 q > 1 , we obtain U k ≤ C • 2 6k U α k-2 , k ≥ 2 , with C[N, Λ, γ, q] := 12K 2 S (1 + 2Λ)c 1 6N +3 (1 + c 2 q )b 2 + 3K S (1 + c 2 q ) 1 2 bγ . With V k = U 2k and ρ = 2 12 (1 + C) -notice that ρ > 1 -we recast this inequality as V k ≤ ρ k V α k-1 , k ≥ 1 . Iterating, we find that V k ≤ ρ k V α k-1 ≤ ρ k+α(k-1) V α 2 k-2 ≤ ρ k+α(k-1)+α 2 (k-2) V α 3 k-3 ≤ . . . ≤ ρ k+α(k-1)+α 2 (k-2)+...+α k-1 V α k 0 .
Elementary computations show that

k + α(k -1) + α 2 (k -2) + . . . + α k-1 = k(1 + α + . . . + α k-1 ) -α(1 + 2α + . . . + (k -1)α k-2 ) = k α k -1 α -1 -α d dα α k -1 α -1 = k α k -1 α -1 -α kα k-1 α -1 - α k -1 (α -1) 2 = α(α k -1) -k(α -1) (α -1) 2 ≤ α (α -1) 2 α k so that V k ≤ (ρ α (α-1) 2 V 0 ) α k , for each k ≥ 1 since ρ > 1. Choosing V 0 < ρ -α (α-1) 2
implies that V k → 0 as k → +∞. By dominated convergence, this implies that

Q[ 1 2 ] (f -1 2 ) 2 + (t, x, v)dtdxdv = 0 , i.e. that f (t, x, v) ≤ 1 2 for a.e. (t, x, v) ∈ Q[ 1 2 ] . Because of (9), V 0 ≤ 8(1 + 2Λ)κ + γ √ κ|Q[ 3 2 ]| 1/2 ≤ (8(1 + 2Λ) + γ|Q[ 3 2 ]| 1/2 ) √ κ ,
so that one can choose

κ := min 1 2 , ρ -2α (α-1) 2 (8(1 + 2Λ) + γ|Q[ 3 2 ]| 1/2 ) 2 .

The Local Hölder Continuity

Our main result in this paper, i.e. the local smoothing effect at the level of Hölder continuity for the Fokker-Planck operator with rough diffusion matrix, is the following statement. 2) on I × Ω. Then there exists σ > 0 such that, for each compact

K ⊂ I × Ω, one has f ∈ C 0,σ (K).
Notice that, by Theorem 2.1, we already know that f ∈ L ∞ loc (I × Ω). As in the previous section, the proof of this result follows the general strategy of DeGiorgi's original argument, with significant differences.

3.1. The Isoperimetric Argument. An important step in the proof of regularity in DeGiorgi's method for elliptic equations is based on some kind of isoperimetric inequality (see the proof of Lemma II in [START_REF] Giorgi | Sulla differenziabilità e l'analiticità degli estremali degli integrali multipli regolari[END_REF]). This isoperimetric inequality is a quantitative variant of the well-known fact that no H 1 function can have a jump discontinuity. More precisely, given an H 1 function 0 ≤ u ≤ 1 which takes the values 0 and 1 on sets of positive measure, DeGiorgi's isoperimetric inequality provides a lower bound on the measure of the set defined by the double inequality 0 < u < 1. In the present section, we establish an analogue of DeGiorgi's isoperimetric inequality adapted to the free transport operator.

Set Q := (-3 2 , -1] × B(0, 1) 2 . Lemma 3.2. Let Λ > 1 and η > 0 be given, and let ω ∈ (0, 1 -2 -1/N ). There exists θ ∈ (0, 1 2 ) and α > 0 satisfying the following property. Let A ≡ A(t, x, v) be an M N (R)-valued measurable map on R × R N × R N satisfying [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF], and let f, g be measurable functions on Q ∪ Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF] such that

(∂ t + v • ∇ x )f = div v (A∇ v f ) + g on Q ∪ Q[1] , together with f ≤ 1 and |g| ≤ 1 a.e. on Q ∪ Q[1] and |{f ≤ 0} ∩ Q| ≥ 1 2 | Q| . Then |{f ≥ 1 -θ} ∩ Q[ω/2]| < η , or |{0 < f < 1 -θ} ∩ ( Q ∪ Q[1])| ≥ α .
While DeGiorgi's isoperimetric inequality is based on an explicit computation leading to a precise estimate with effective constants, the proof of Lemma 3.2 is obtained by a compactness argument, so that the values of θ and α are not known explicitly.

Proof. If the statement in Lemma 3.2 was wrong, there would exist sequences A n , f n and g n of measurable functions on Q ∪ Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF] satisfying (1) and ( 16)

(∂ t + v • ∇ x )f n = div v (A∇ v f n ) + g n on Q ∪ Q[1] ,
together with

f n ≤ 1 and |g n | ≤ 1 a.e. on Q ∪ Q[1] , |{f n ≤ 0} ∩ Q| ≥ 1 2 | Q| , and yet |{f n ≥ 1 -2 -n } ∩ Q[ω/2]| ≥ η , while |{0 < f n < 1 -2 -n } ∩ ( Q ∪ Q[1])| < 2 -n .
We shall see that this leads to a contradiction.

First, arguing as in [START_REF] Dibenedetto | Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations[END_REF], wee see that, for each ρ ∈ (0, 1), there exists

C ρ > 0 such that ∇ v f n L 2 ((-3 2 ρ,0)×B(0,ρ) 2 ) ≤ C ρ , n ≥ 2 .
By the Banach-Alaoglu theorem, one can assume that

f n * ⇀ f and g n * ⇀ g in L ∞ ( Q ∪ Q[1]) , while A n ∇ v f n ⇀h in L 2 ((-3 2 ρ, 0) × B(0, ρ) 2 ) for each ρ ∈ (0, 1).
By the variant of hypoelliptic smoothing based on velocity averaging (Theorem 1.3 in [START_REF] Bouchut | Hypoelliptic regularity in kinetic equations[END_REF]), one has

f n → f in L p loc ( Q ∪ Q[1]) for all 1 < p < ∞ . Hence (17) (∂ t + v • ∇ x )f = div v h + g on Q ∪ Q[1] ,
together with

f ≤ 1 and |g| ≤ 1 a.e. on Q ∪ Q[1] , |{f ≤ 0} ∩ Q| ≥ 1 2 | Q| , and |{f = 1} ∩ Q[ω/2]| ≥ η , while |{0 < f < 1} ∩ ( Q ∪ Q[1])| = 0 . One has also ∇ v f L 2 (-3 2 ρ,0)×B(0,ρ) 2 ≤ C ρ . But (f n ) + → f + in L p loc ( Q ∪ Q[1]
) for all 1 < p < ∞ , and, since f n ≤ 1 a.e. on Q ∪ Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF], we conclude that f + is an indicator function as it takes the values 0 or 1 a.e. on Q ∪ Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF]. Besides, for each ρ ∈ (0, 1),

∇ v f + L 2 (-3 2 ρ,0)×B(0,ρ) 2 = 1 f ≥0 ∇ v f L 2 (-3 2 ρ,0)×B(0,ρ) 2 ≤ C ρ . Thus, for a.e. (t, x) ∈ (-3 2 ρ, 0) × B(0, ρ), the function v → f + (t, x, v) is a.e equal 0 or 1 and v → ∇ v f + (t, x, v) defines an element of L 2 (B(0, ρ)). Hence, for a.e. (t, x) ∈ (-3 2 ρ, 0) × B(0, ρ), the function v → f + (t, x, v
) is either a.e. equal to 0 or a.e. equal to 1: see Sublemma on p. 8 in [START_REF] Caffarelli | Nonlinear Partial Differential Equations[END_REF]. Therefore, f + is a.e. constant in the v variable.

Likewise, for each ρ ∈ (0, 1), one has

∇ v (f n ) + L 2 (-3 2 ρ,0)×B(0,ρ) 2 = 1 fn≥0 ∇ v f n L 2 (-3 2 ρ,0)×B(0,ρ) 2 ≤ C ρ , so that A n ∇ v (f n ) + ⇀k in L 2 ((-3 2 ρ, 0) × B(0, ρ) 2
) for each ρ ∈ (0, 1). On the other hand, [START_REF] Imbert | Hölder continuity of solutions to quasilinear hypoelliptic equations[END_REF] (

∂ t + v • ∇ x )f + ≤ div v k + 1 on Q ∪ Q[1] , by convexity of z → z + . Let us prove that k = 0. For each φ ∈ C ∞ c ( Q ∪ Q[1]
), multiplying both sides of (16) by φ(f n ) + and integrating in all variables, one finds that

φA n ∇ v f n • ∇ v (f n ) + dtdxdv = 1 2 (f n ) 2 + (∂ t + v • ∇ x )φdtdxdv -(f n ) + A n ∇ v f n • ∇ v φdtdxdv + g n (f n ) + φdtdxdv → 1 2 f 2 + (∂ t + v • ∇ x )φdtdxdv -f + h • ∇ v φdtdxdv + gf + φdtdxdv .
On the other hand, multiplying both sides of ( 17) by f + φ and integrating in all variables, one find that

φh • ∇ v f + dtdxdv = 1 2 f 2 + (∂ t + v • ∇ x )φdtdxdv -f + h • ∇ v φdtdxdv + gf + φdtdxdv . Therefore A n ∇ v (f n ) + • ∇ v (f n ) + = A n ∇ v f n • ∇ v (f n ) + → h • ∇ v f + in D ′ ( Q ∪ Q[1]) .
Observe that condition (1) implies that, for each 0

≤ φ ∈ C ∞ c ( Q ∪ Q[1]), φ|A n ∇ v (f n ) + | 2 dtdxdv ≤ Λ φA n ∇ v (f n ) + • ∇ v (f n ) + dtdxdv .
Therefore, by convexity and weak convergence

φ|k| 2 dtdxdv ≤ Λ φh • ∇ v f + dtdxdv .
Since f + is a.e. constant in the variable v, one has

∇ v f + = 0 a.e. on Q ∪ Q[1] ,
so that k = 0 a.e. on Q ∪ Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF] .

Eventually, f + = 1 P (t, x) for some measurable P ⊂ (-3 2 , 0) × B(0, 1), with [START_REF] Kassmann | A priori estimates for integro-differential operators with measurable kernels[END_REF] (

∂ t + v • ∇ x )f + ≤ 1 in D ′ ( Q ∪ Q[1]) , with (20) 
|(P × B(0, 1)) ∩ Q| < 1 2 | Q| and |(P × B(0, 1)) ∩ Q[ω/2]| ≥ η . Since f is independent of v, the inequality (19) holds in D ′ ((-3 2 , 0) × B(0, 1)) for each v ∈ B(0, 1). Since f + is an indicator function, for a.e. (t 0 , x 0 , v 0 ) ∈ ( Q ∪ Q[1]
), the function s → f (t 0 + s, x 0 + sv 0 , v 0 ) has jump discontinuities. Since

d ds f (t 0 + s, x 0 + sv 0 , v 0 ) = (∂ t f + v 0 • ∇ x f )(t 0 + s, x 0 + sv 0 , v 0 ) ≤ 1 , one has in fact d ds f (t 0 + s, x 0 + sv 0 , v 0 ) = (∂ t f + v 0 • ∇ x f )(t 0 + s, x 0 + sv 0 , v 0 ) ≤ 0 .
On the other hand, if

-3 2 < t 0 ≤ -1 , |x 0 | < 1 -ω ,
and -1 2 ω < t < 0 , |x| < 1 2 ω , then there exists s > 0 and v 0 ∈ B(0, 1) such that (t, x, v) = (t 0 + s, x 0 + sv 0 , v 0 ). Indeed,

t-t 0 > -1 2 ω-(-1) = 1-1 2 ω , and |v| = |x -x 0 | t -t 0 ≤ |x| + |x 0 | t -t 0 < 1 2 ω + 1 -ω 1 -1 2 ω = 1 . Therefore (21) 1 P (t, x) ≤ 1 P (t 0 , x 0 ) for a.e. (t 0 , x 0 , t, x) ∈ (-3 2 , -1]×B(0,1-ω)×(-ω 2 , 0)×B(0, ω 2 ). Since (1 -ω) N > 1 2 , one has |(-3 2 , -1] × B(0, 1 -ω) × B(0, 1)| > 1 2 | Q| , so that |((-3 2 , -1] × B(0, 1 -ω)) \ P | > 0 .
In terms of F and G, we arrive at the following statement: assuming that |G| ≤ 1 a.e. on Q[ ω 2 ],

Q[ω/2] F 2 + dtdxdv < ( ω 3 ) 4N +2 κ[N, Λ, ω 2 9 , ∞] ⇒ F ≤ 1 2 a.e. on Q[ 1 54 ω 3 ] .
3.3. Reduction of Oscillation. The second key idea in DeGiorgi's method for proving local regularity is the following important observation, which mixes the scaling transformation and the isoperimetric argument.

Lemma 3.3. There exist β, µ ∈ (0, 1) satisfying the following property. For each pair f, g of measurable functions defined a.e. on Q ∪ Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF] such that

(∂ t + v • ∇ x )f = div v (A∇ v f ) + g on Q ∪ Q[1] with |f | ≤ 1 and |g| ≤ β on Q ∪ Q[1] , one has osc Q[ω 3 /54] f ≤ µ osc Q[ω/2] f .
Proof. Pick ω ∈ (0, 1 -2 -1/N ), and set

η := ( ω 3 ) 4N +2 κ[N, Λ, ω 2 9 , ∞] . Lemma 3.2 provides us with θ ∈ (0, 1 
2 ) and α > 0. Choose then β small enough so that

ln 1 β ≥ 1 2 | Q| + |Q[1]| α + 2 ln 1 θ . Since |f | ≤ 1 on Q ∪ Q[1]
, one can assume without loss of generality that

|{f ≤ 0} ∩ Q| ≥ 1 2 | Q| . (If |{f ≤ 0} ∩ Q| < 1 2
| Q| , we shall argue instead with -f and -g instead of f and g respectively.)

Consider the sequence of functions defined by induction as follows:

f k = 1 θ (f k-1 -1) + 1 , f 0 = f .
One easily check by induction that

f k ≤ f k-1 ≤ . . . ≤ f 1 ≤ f 0 = f ≤ 1 a.e. on Q ∪ Q[1] ,
and that f k is a solution of the Fokker-Planck equation on Q ∪ Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF] with source term g k := θ -k g . We shall consider only finitely many terms in this sequence, viz. those for which

0 ≤ k ≤ k * := 1 2 | Q| + |Q[1]| α + 1 ≤ ln β ln θ .
(Notice that the third inequality above follows from the constraint on β imposed at the begining of this proof.) First, one has

{f ≤ 0} ⊂ {f 1 ≤ 0} ≤ . . . ≤ {f k-1 ≤ 0} ≤ {f k ≤ 0} , so that |{f k ≤ 0} ∩ Q| ≥ |{f ≤ 0} ∩ Q| ≥ 1 2 | Q| . On the other hand {f k ≤ 0} = {f k-1 ≤ 0} ∪ {0 < f k-1 ≤ 1 -θ} so that the sequence m k := |{f k ≤ 0} ∩ ( Q ∪ Q[1])| satisfies m k = m k-1 + |{0 < f k-1 ≤ 1 -θ} ∩ ( Q ∪ Q[1])| = m 0 + k l=1 |{0 < f l-1 ≤ 1 -θ} ∩ ( Q ∪ Q[1])| .
It is obviously impossible that

|{0 < f l-1 ≤ 1 -θ} ∩ ( Q ∪ Q[1])| ≥ α for each l = 1, . . . , k * ,
Indeed, this would imply that

1 2 | Q| + k * α ≤ m 0 + k * α ≤ m k * ≤ | Q| + |Q[1]| , which is impossible by our choice of k * .
Notice that, by our choice of β, one has

θ -k * β ≤ 1 , so that |θ -k g| ≤ 1 a.e. on Q ∪ Q[1] for k = 0, . . . , k * .
Applying Lemma 3.2 shows that there exists k ∈ {0, . . . , k * -1} such that If f and g belong to

|{f k ≥ 1 -θ} ∩ Q[ω/2]| < η . Then Q[ω/2] (f k+1 ) 2 + dtdxdv = Q[ω/2] f 2 k+1 1 f k ≥1-θ dtdxdv ≤ Q[ω/2] 1 f k ≥1-θ dtdxdv < η , so that f k+1 ≤ 1 2 < 1 -θ a.e. on Q[ 1 54 ω 3 ] . By definition f k -1 = θ -k (f -1) so that f = 1 + θ k+1 (f k+1 -1) ≤ 1 -θ k+2 a.e. on Q[ 1 54 ω 3 ] . In particular osc Q[ω 3 /54] f ≤ (1 -1 2 θ k+2 ) osc Q[ω/2] f ≤ µ osc Q[ω/2] f with 0 ≤ (1 -1 2 θ k+2 ) ≤ µ := 1 -θ k * +3 < 1 .
L ∞ ( Q ∪ Q [ 1]
) and satisfy the Fokker-Planck equation without satisfying the assumptions of Lemma 3.3 on f L ∞ ( Q∪Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF]) and g L ∞ ( Q∪Q [START_REF] Agoshkov | Spaces of functions with differential-difference characteristics and the smoothness of solutions of the transport equation[END_REF]) , replacing f and g respectively with f /L and g/L with 

L = (1 + f L ∞ ( Q∪Q [ 1]) ) 1 + 1 β g L ∞ ( Q∪Q [ 1]) ,
C := 2 µ 2 2 ω σ (1 + f L ∞ ( Q∪Q [ 1]) ) 1 + 1 β g L ∞ ( Q∪Q [ 1]) .
Assume finally that F is a solution of the Fokker-Planck equation with source term G on some open neighborhood Ω in R × R N × R N of the point (t 0 , x 0 , v 0 ). Assume further that F, G ∈ L ∞ (Ω). Then T 1 [t 0 , x 0 , v 0 ]F is a solution of the Fokker-Planck equation with diffusion matrix T 1 [t 0 , x 0 , v 0 ]A and source term T 1 [t 0 , x 0 , v 0 ]G. Arguing as above with f := T 1 [t 0 , x 0 , v 0 ]F , and setting s = t -t 0 , ξ = v -v 0 , and y = x -x 0 -sv 0 , we conclude that

|F (t, x, v) -F (t 0 , x 0 , v 0 )| ≤ C((1 + |v 0 |)|t -t 0 | + |v -v 0 | + |x -x 0 |) σ provided that 0 < t 0 -t < ω 3 54(1 + |v 0 |) , |x -x 0 | < ω 3 54(1 + |v 0 |) , |v -v 0 | < ω 3 54 .
Since t 0 , x 0 and v 0 are arbitrary, this proves that F is locally Hölder continuous with exponent σ.

Theorem 3 . 1 .

 31 Let A be an M N (R)-valued measurable function defined a.e. on R × R N × R N satisfying (1). Let I be an open interval of R and Ω be an open subset of R N × R N . Let f ∈ C(I; L 2 (Ω)) and g ∈ L ∞ (I × Ω) satisfy the Fokker-Planck equation (

3. 4 .ω 6n+3 2 •ln µ/ ln ω 2 27

 422 Implications on Hölder Continuity. With the estimates gathered above, we conclude the proof of local Hölder continuity as follows.Observe that, for r > 0 and ǫ ∈ (0, 1),osc Q[r] T ǫ [0, 0, 0]f = osc Qǫ[r] f ≤ osc Q[ǫr] f ,where Qǫ [r] := (-rǫ 2 , 0] × B(0, rǫ 3 ) × B(0, rǫ) .Assume that f and g satisfy the assumptions of Lemma 3.3; thenω 2 27 n T n ω 2 /27 [0, 0, 0]g L ∞ ( Q∪Q[1]) ≤ β for each n ≥ 0. Therefore, Lemma 3.3 implies that osc Q[ω 3 /54] T n ω 2 /27 [0, 0, 0]f ≤ µ osc Q[ω/2] T n ω 2 /27 [0, 0, 0]f ≤ µ osc Q[ω 3 /54] T n-1 ω 2 /27 [0, 0, 0]f ≤ µ n osc Q[ω 3 /54] f ≤ 2µ n pour tout n ≥ 0.In particular(s, y, ξ) ∈ Q[ ω 3 54 ] ⇒ |f (( ω 2 27 ) 2n s, ( ω 2 27 ) 3n y, ( ω 2 27 ) n ξ) -f (0, 0, 0)| ≤ 2µ n for each n ≥ 0. Therefore -27 3n+1 < t ≤ 0 , |x|, |v| ≤ ω 6n+3 2 • 27 3n+1 ⇒ |f (t, x, v) -f (0, 0, 0)| ≤ 2µ n .In other words |f (s, y, ξ) -f (0, 0, 0)| ≤ 2 exp ln( 54 ω 3 max(|s|, |y|, |ξ|)) max(|s|, |y|, |ξ|) ln µ/ ln ω 2 27 .

  we conclude that |f (s, y, ξ) -f (0, 0, 0)| ≤ C max(|s|, |y|, |ξ|) σ with σ := ln µ/ ln ω 2 28 and
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Otherwise, 3 2 , -1] × B(0, 1 -ω) × B(0, 1)) ∩ (P × B(0, 1))| ≤ | Q ∩ (P × B(0, 1))| , which would contradict the first inequality in [START_REF] Ladyzhenskaya | Linear and quasilinear elliptic equations[END_REF].

Choosing (t 0 , x 0 ) ∈ (-3 2 , -1] × B(0, 1 -ω)) \ P in (21), we conclude that 1 P (t, x) = 0 for a.e. (t, x) ∈ (-ω 2 , 0) × B(0, ω 2 ) . In other words, one has

, which is the desired contradiction with (20).

3.2.

Zooming in the Fokker-Planck Equation. As in the DeGiorgi original proof, the local Hölder regularity is obtained by controling the oscillation of solutions of the Fokker-Planck equation on a sequence of domains with shrinking diameter. This suggests of course using a zooming procedure based on the scaling properties of the Fokker-Planck equation. This step follows the classical DeGiorgi argument rather closely.

For each t 0 ∈ R, x 0 , v 0 ∈ R 3 and ǫ > 0, we define the transformation T ǫ [t 0 , x 0 , v 0 ] by the following prescription:

An elementary computation shows that, if

Observe that a satisfies the same assumption as A, with the same constant Λ > 1.

Here is a first application of the zooming transformation defined above. With ω chosen as in the previous section, i.e. 0 < ω < 1 -2 -1/N , set ǫ = ω/3 in the zooming transformation defined above, together with t 0 = 0 and x 0 = v 0 = 0. Assuming that F satisfies

] with a(s, y, ξ) := T ω/3 [0, 0, 0]A(s, y, ξ) and g(s, y, ξ) = ω 2 9 T ω/3 [0, 0, 0]G(s, y, ξ) . By Theorem 2.1, assuming that |g| ≤ ω 2 9 a.e. on Q[ 3 2 ], one has the implication

, ∞] ⇒ f ≤ 1 2 a.e. on Q[ 1 2 ] .