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HÖLDER REGULARITY

FOR HYPOELLIPTIC KINETIC EQUATIONS

WITH ROUGH DIFFUSION COEFFICIENTS

FRANÇOIS GOLSE AND ALEXIS VASSEUR

Abstract. This paper is dedicated to the application of the DeGiorgi-Nash-
Moser regularity theory to the kinetic Fokker-Planck equation. This equation
is hypoelliptic. It is parabolic only in the velocity variable, while the Liouville
transport operator has a mixing effect in the position/velocity phase space.
The mixing effect is incorporated in the classical DeGiorgi method via the
averaging lemmas. The result can be seen as a Hölder regularity version of the
classical averaging lemmas.

1. The Fokker-Planck equation

This paper is dedicated to the application of the DeGiorgi method to hypoelliptic
equations, with rough coefficients. DeGiorgi introduced his technique [7] in 1957 to
solve Hilbert’s 19th problem. In this work, he proved the regularity of variational
solutions to nonlinear elliptic problems. Independently, Nash introduced a similar
technique [23] in 1958. Subsequently, Moser provided a new formulation of the proof
in [22]. Those methods are now usually called DeGiorgi-Nash-Moser techniques.
The method has been extended to degenerate cases, like the p-Laplacian, first in the
elliptic case by Ladyzhenskaya and Uralt’seva [20]. The degenerate parabolic cases
were covered later by DiBenedetto [8] (see also DiBenedetto, Gianazza and Vespri
[11, 9, 10]). More recently, the method has been extended to integral operators,
such as fractional diffusion, in [4, 3] — see also the work of Kassmann [19] and of
Kassmann and Felsinger [13]. Further application to fluid mechanics can be found
in [25, 16, 6].

Let A ≡ A(t, x, v) be an MN (R)-valued measurable map on R×RN ×RN such
that

(1)
1

Λ
I ≤ A(t, x, v) = A(t, x, v)T ≤ ΛI

for some Λ > 1. Given T ≥ 0, consider the Fokker-Planck equation with unknown
f ≡ f(t, x, v) ∈ R

(2) (∂t + v · ∇x)f(t, x, v) = divv(A(t, x, v)∇vf(t, x, v)) + g(t, x, v)

for x, v ∈ RN and t > −T , where g ≡ g(t, x, v) is given.
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2 F. GOLSE AND A. VASSEUR

Assuming that g ∈ L2
loc([−T,∞);L2(RN ×RN )), it is natural to seek f so that

(3) f ∈ C((−T,∞);L2(RN ×RN ) and ∇vf ∈ L2
loc([−T,∞);L2(RN ×RN)) ,

in view of the following energy inequality:
(4)

1
2‖f(t, ·, ·)‖2L2(RN×RN ) +

1

Λ

∫ t

t0

‖∇vf(s, ·, ·)‖2L2(RN×RN )ds

≤ 1
2‖f(t0, ·, ·)‖

2
L2(RN×RN ) +

∫ t

t0

‖g(s, ·, ·)‖L2(RN×RN )‖f(s, ·, ·)‖L2(RN×RN )ds

≤ 1
2‖f(t0, ·, ·)‖

2
L2(RN×RN ) +

1
2‖g‖

2
L2((−T,∞)×RN×RN )

+ 1
2

∫ t

t0

‖f(s, ·, ·)‖2L2(RN×RN )ds .

Applying Gronwall’s inequality shows that leads therefore to the following bound
on the solution of the Cauchy problem for the Fokker-Planck equation with initial
data f

∣

∣

t=t0
∈ L2(RN ×RN ):

‖f(t, ·, ·)‖2L2(RN×RN ) +
2

Λ

∫ τ

−T

‖∇vf(s, ·, ·)‖2L2(RN×RN )ds

≤
(

‖f(t0, ·, ·)‖2L2(RN×RN ) + ‖g‖2L2((−T,τ)×RN×RN )

)

eT+τ

for each τ > 0 and each t ∈ (−T, τ). This bound involves only the L2 bounds on
the data f

∣

∣

t=t0
and g.

This paper is organized as follows. Section 2 establishes a local L∞ bound for
a certain class of weak solutions of the Fokker-Planck equation. The local Hölder
regularity of these solutions is proved in section 3. As in the application of the
DeGiorgi method to parabolic equations, these two steps involve rather different
arguments. The main result in the present paper is Theorem 3.1, at the beginning of
section 3. Yet, the local L∞ bound obtained in section 2 is of independent interest
and is a important ingredient in the proof of local Hölder regularity in section 3.
For that reason, we have stated this local L∞ bound separately as Theorem 2.1 at
the beginning of section 2.

The arguments used in this paper follow the general strategy used by DeGiorgi,
with significant differences, due to the hypoelliptic nature of the Fokker-Planck
equation. Earlier results based on Moser’s method are reported in the literature:
see [24, 26]. The method used in the present paper is especially adapted to kinetic
models.

Shortly after completing our proof of local Hölder regularity (Theorem 3.1), we
learned of an independent approach of this problem by Imbert and Mouhot [18].
The main difference between [18] and our own work is that Imbert and Mouhot
follow Moser’s approach, while we follow DeGiorgi’s argument.

2. The Local L∞ Estimate

Assume henceforth that T > 3
2 . All solutions f of the Fokker-Planck equation

considered here are assumed to satisfy (3) and are renormalized in the sense that,
for each χ ∈ C2(R) satisfying χ(z) = O(z2) as |z| → ∞, one has

(5) (∂t + v · ∇x)χ(f) = divv(A∇vχ(f))− χ′′(f)A : (∇vf)
⊗2 + gχ′(f)
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in the sense of distributions on (−T,∞)×RN ×RN .

Notation: for each r > 0, we set

Q[r] := (−r, 0)×B(0, r)×B(0, r) .

The goal of this section is to prove the following local L∞ bound. This is the
first important step in the DeGiorgi method.

Theorem 2.1. For each Λ > 1, each γ > 0, and each q > 12N + 6, there exists
κ ≡ κ[N,M,Λ, γ, q] ∈ (0, 1) satisfying the following property.

For each MN (R)-valued measurable map A on R × RN × RN satisfying (1),
each g ∈ Lq(Q[ 32 ]) such that

‖g‖
Lq(Q[

3
2 ])

≤ γ ,

and each f ∈ Cb((− 3
2 , 0);L

2(B(0, 32 )
2)), solution of the Fokker-Planck equation

(∂t + v · ∇x)f = divv(A∇vf) + g on Q[ 32 ] ,

the following implication is true:
∫

Q[
3
2 ]

f(t, x, v)2+dtdxdv < κ⇒ f ≤ 1
2 a.e. on Q[ 12 ] .

The proof of Theorem 2.1 involves several steps, following more or less closely
DeGiorgi’s original strategy. We shall insist on those steps which significantly differ
from DeGiorgi’s classical argument.

2.1. The Local Energy Inequality. Since the solution f of the Fokker-Planck
equation considered here is renormalized, for each ψ ∈ C∞

c ((−T,∞)×RN ×RN ),
one has

∫ ∞

−T

∫∫

RN×RN

A : (∇vχ(f)⊗∇vψ + ψχ′′(f)(∇vf)
⊗2)dxdvdτ

=

∫ ∞

−T

∫∫

RN×RN

χ(f)(∂t + v · ∇x)ψdxdvdτ +

∫ ∞

−T

∫∫

RN×RN

gχ′(f)ψdxdvdτ .

Since f ∈ Cb((−T,∞);L2(RN × RN ), one can pick a sequence of smooth test
functions ψ converging to a test function of the form ψ(τ, x, v) = 1s<τ<tφ(x, v).
For each φ ∈ C∞

c (RN ×RN ) one finds in this way that

(6)

∫ t

s

∫∫

RN×RN

A : (∇vχ(f)⊗∇vφ+ φχ′′(f)(∇vf)
⊗2)dxdvdτ

=

∫∫

RN×RN

φχ(f)(s, x, v)dxdv −
∫∫

RN×RN

φχ(f)(t, x, v)dxdv

+

∫ t

s

∫∫

RN×RN

χ(f)v · ∇xφdxdvdτ +

∫ s

t

∫∫

RN×RN

gχ′(f)φdxdvdτ .

Let χ(f) = 1
2 (f − c)2+ for some c ∈ R and pick η ∈ C∞

c (RN ). Choosing the test

function φ of the form φ(x, v) = η(x)η(v)2, we observe that

A : (∇vχ(f)⊗∇vφ+ φχ′′(f)(∇vf)
⊗2)

= η(x)A : (2η(v)(f − c)+∇vf ⊗∇vη(v) + η(v)21f>c(∇vf)
⊗2)

since

χ′(f) = (f − c)+ and χ′′(f) = 1f>c .
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Hence

A : (∇vχ(f)⊗∇vφ+ φχ′′(f)(∇vf)
⊗2)

= η(x)A : (2(η(v)∇v(f − c)+)⊗ ((f − c)+∇vη(v)) + η(v)2(∇v(f − c)+)
⊗2)

= η(x)A : (∇v(η(v)(f − c)+))
⊗2 − η(x)A : ((f − c)2+∇η(v))⊗2 ,

since A = AT . Inserting this identity in (6) shows that

(7)

1
2

∫∫

RN×RN

η(x)η(v)2(f − c)2+(t, x, v)dxdv

+
1

Λ

∫ t

s

∫∫

RN×RN

η(x)|∇v(η(v)(f − c)+)|2dxdvdτ

≤ 1
2

∫∫

RN×RN

η(x)η(v)2(f − c)2+(s, x, v)dxdv

+Λ

∫ t

s

∫∫

RN×RN

η(x)(f − c)2+|∇η(v)|2dxdvdτ

+

∫ t

s

∫∫

RN×RN

1
2η(v)

2(f − c)2+v · ∇η(x)dxdvdτ

+

∫ t

s

∫∫

RN×RN

g(f − c)+η(x)η(v)
2dxdvdτ .

Remark. The function χ(z) = 1
2 (z−c)2+ is not C2, but only C1 with Lipschitz con-

tinuous derivative. Instead of arguing directly with χ as above, one should replace
χ by a smooth approximation χǫ and passes to the limit as the small parameter
ǫ→ 0.

2.2. The Dyadic Truncation Procedure. This step closely follows DeGiorgi’s
classical method. For each integer k ≥ −1, we define

Tk := − 1
2 (1 + 2−k) , Rk := 1

2 (1 + 2−k)

and we set

Bk := B(0, Rk) , Qk := (Tk, 0)×B2
k(= Q[Rk]) .

Pick ηk ∈ C∞(RN ) such that 0 ≤ ηk ≤ 1, satisfying

ηk ≡ 1 on Bk , ηk ≡ 0 on Bc
k−1 , and ‖∇ηk‖L∞ ≤ 2k+2 .

Finally, set

Ck := 1
2 (1− 2−k) , and fk = (f − Ck)+ .
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Write inequality (7) with η = ηk and c = Ck, for each s ∈ (Tk−1, Tk): one has

1
2

∫∫

RN×RN

ηk(x)ηk(v)
2f2

k (t, x, v)dxdv

+
1

Λ

∫ t

Tk

∫∫

RN×RN

ηk(x)|∇v(ηk(v)fk)|2dxdvdτ

≤ 1
2

∫∫

RN×RN

ηk(x)ηk(v)
2f2

k (s, x, v)dxdv

+Λ

∫ t

Tk−1

∫∫

RN×RN

ηk(x)f
2
k |∇ηk(v)|2dxdvdτ

+

∫ t

Tk−1

∫∫

RN×RN

1
2ηk(v)

2f2
kv · ∇ηk(x)dxdvdτ

+

∫ t

Tk−1

∫∫

RN×RN

gfkηk(x)ηk(v)
2dxdvdτ .

Averaging both sides of the inequality above in s ∈ (Tk−1, Tk) shows that

1
2

∫∫

RN×RN

ηk(x)ηk(v)
2f2

k (t, x, v)dxdv

+
1

Λ

∫ t

Tk

∫∫

RN×RN

ηk(x)|∇v(ηk(v)fk)|2dxdvdτ

≤ 2k
∫ Tk

Tk−1

∫∫

RN×RN

ηk(x)ηk(v)
2f2

k (s, x, v)dxdvds

+Λ

∫ t

Tk−1

∫∫

RN×RN

ηk(x)f
2
k |∇ηk(v)|2dxdvdτ

+

∫ t

Tk−1

∫∫

RN×RN

1
2ηk(v)

2f2
kv · ∇ηk(x)dxdvdτ

+

∫ t

Tk−1

∫∫

RN×RN

gfkηk(x)ηk(v)
2dxdvdτ .

Set

Uk := sup
Tk≤t≤0

1
2

∫∫

RN×RN

ηk(x)ηk(v)
2f2

k (t, x, v)dxdv

+
1

Λ

∫ 0

Tk

∫∫

RN×RN

ηk(x)|∇v(ηk(v)fk)|2dxdvdτ .

By construction

(8) 0 ≤ Uk ≤ Uk−1 ≤ . . . ≤ U1 ≤ U0 .
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Now

2k
∫ Tk

Tk−1

∫∫

RN×RN

ηk(x)ηk(v)
2f2

k (s, x, v)dxdvds

+Λ

∫ t

Tk−1

∫∫

RN×RN

ηk(x)f
2
k |∇ηk(v)|2dxdvdτ

+

∫ t

Tk−1

∫∫

RN×RN

1
2ηk(v)

2f2
kv · ∇ηk(x)dxdvdτ

≤ (2k + Λ22k+4 + 1
2 ·Rk−1 · 2k+2)

∫

Qk−1

f2
kdxdvdt

≤ 22k+3(1 + 2Λ)

∫

Qk−1

f2
k1fk>0dxdvdt ,

so that

(9) Uk ≤ 22k+3(1 + 2Λ)

∫

Qk−1

f2
k1fk>0dxdvdt +

∫

Qk−1

|g||fk|1fk>0dxdvdt .

2.3. The Nonlinearization Procedure. This step starts as in DeGiorgi’s classi-
cal argument. By Hölder’s inequality, for each p > 2,

∫

Qk−1

f2
k1fk>0dxdvdt ≤

(

∫

Qk−1

fp
kdxdvdt

)
2
p

|{fk > 0} ∩Qk−1|1−
2
p ,

while, assuming that p > 2 is such that 1
p <

1
2 − 1

q ,

∫

Qk−1

|g||fk|1fk>0dxdvdt ≤ ‖g‖Lq

(

∫

Qk−1

fp
kdxdvdt

)
1
p

|{fk > 0} ∩Qk−1|1−
1
p
− 1

q .

Now, for each k ≥ 0,

{fk > 0} = {fk−1 > Ck − Ck−1} = {fk−1 > 2−k−1}
so that, by Bienaymé-Chebyshev’s inequality

|{fk > 0} ∩Qk−1| ≤ 22k+2

∫

Qk−1

f2
k−1dxdvdt ≤ 22k+2|Tk−1|Uk−1 ≤ 3 · 22k+1Uk−1 .

Hence

(10)

Uk ≤ 22k+3(1 + 2Λ)

(

∫

Qk−1

fp
kdxdvdt

)
2
p

(3 · 22k+1Uk−1)
1− 2

p

+‖g‖Lq

(

∫

Qk−1

fp
kdxdvdt

)
1
p

(3 · 22k+1Uk−1)
1− 1

p
− 1

q

≤ 3(1 + 2Λ)24k+4U
1− 2

p

k−1

(

∫

Qk−1

fp
kdxdvdt

)
2
p

+3γ22k+1 · U1− 1
p
− 1

q

k−1

(

∫

Qk−1

fp
kdxdvdt

)
1
p

.
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If one had an inequality of the form

(11)

(

∫

Qk−1

fp
kdxdvdt

)
2
p

≤ CkUk−1 ,

the right-hand side of the inequality above would be the sum of two powers of Uk−1

with exponents

1 + 1− 2

p
> 1 and 1 +

1

2
− 1

p
− 1

q
> 1 .

In other words, the bound obtained in the present step would result in a nonlinear
estimate for the linear Fokker-Planck equation. Obtaining a nonlinear estimate for
the solution of a linear equation is the key of DeGiorgi’s local L∞ bound. The
wanted inequality will be obtained by a variant of the velocity averaging method,
to be explained in detail below.

2.4. A Barrier Function. In fact, the velocity averaging method will not be
applied to fk itself, but to a barrier function dominating fk. Constructing this
barrier function is precisely the purpose of the present section. Set Fk(t, x, v) :=
fk(t, x, v)ηk(x)ηk(v)

2. Then, one has

(∂t + v · ∇x)Fk − divv(A∇vFk) = g1f>Ck
ηk(x)ηk(v)

2 + fkηk(v)
2v · ∇ηk(x)

−2fk divv(ηk(x)ηk(v)A∇ηk(v))− 4ηk(x)ηk(v)A : ∇vfk ⊗∇ηk(v)− µk

where µk is a positive Radon measure because the function z 7→ (z−Ck)+ is convex.
Set

Sk := g1f>Ck
ηk(x)ηk(v)

2 + fkηk(v)
2v · ∇ηk(x)

−2 divv(ηk(x)ηk(v)fkA∇ηk(v))− 2ηk(x)ηk(v)A : ∇vfk ⊗∇ηk(v)
and let Gk be the solution of the initial boundary value problem

(12)











(∂t + v · ∇x)Gk − divv(A∇vGk) = Sk on Qk−1 ,

Gk(t, x, v) = 0 if |v| = Rk−1 or |x| = Rk−1 and v · x < 0 ,

Gk(Tk−1, x, v) = 0 .

Hence










(∂t + v · ∇x)(Gk − Fk)− divv(A∇v(Gk − Fk)) = µk ≥ 0 on Qk−1 ,

(Gk − Fk)(t, x, v) = 0 if |v| = Rk−1 or |x| = Rk−1 and v · x < 0 ,

(Gk − Fk)(Tk−1, x, v) = 0 ,

so that, by the maximum principle,

(13) 0 ≤ Fk ≤ Gk a.e. on Qk−1 .

2.5. Using Velocity Averaging. In DeGiorgi original method, the inequality (11)
follows from the elliptic regularity estimate in the Sobolev space H1 implied by the
energy inequality. Together with Sobolev embedding, this leads to an exponent
p > 2 in (11).

In the case of the Fokker-Planck equation considered here, the energy inequality
(4) gives H1 regularity in the v variables only, and not in (t, x). A natural idea is to
use the hypoelliptic nature of the Fokker-Planck equation in order to obtain some
amount of regularity in (t, x). The lack of regularity of the diffusion coefficients, i.e.
of the entries of the matrix A forbids using the classical methods in Hörmander’s
theorem [17].
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There is another strategy for obtaining regularity in hypoelliptic equations of
Fokker-Planck type, which is based on the velocity averaging method for kinetic
equations. Velocity averaging designates a special type of smoothing effect for
solutions of the free transport equation

(∂t + v · ∇x)f = S

observed for the first time in [1, 15] independently, later improved and generalized
in [14, 12]. This smoothing effect bears on averages of f in the velocity variable v,
i.e. on expressions of the form

∫

RN

f(t, x, v)φ(v)dv ,

say for C∞
c test functions φ. Of course, no smoothing on f itself can be observed,

since the transport operator is hyperbolic and propagates the singularities of the
source term S. However, when S is of the form

S = divv(A(t, x, v)∇vf) + g

where g is a given source term in L2, the smoothing effect of velocity averaging
can be combined with the H1 regularity in the v variable implied by the energy
inequality (4), in order to obtain some amount of smoothing on the solution f itself.
A first observation of this type (at the level of a compactness argument) can be
found in [21]. More recently, Bouchut has obtained more quantitative results, in
the form of Sobolev regularity estimates [2]. These estimates are one key ingredient
in our proof.

By construction

supp(Gk) ⊂ Qk−1 and supp(Sk) ⊂ Qk−1 ,

and one has

(∂t + v · ∇x)Gk − divv(A∇vGk) = Sk on R×RN ×RN .

By definition

Sk = Sk,1 + divv Sk,2

with
Sk,1 :=g1f>Ck

ηk(x)ηk(v)
2 + fkηk(v)

2v · ∇ηk(x)
− 2ηk(x)ηk(v)A : ∇vfk ⊗∇ηk(v) ,

Sk,2 := − 2ηk(x)ηk(v)fkA∇ηk(v) .
Moreover

‖Sk,1‖L2(Qk−1) ≤ ‖g1f>Ck
‖L2(Qk−1)

+ 2k+2Rk−1‖fk‖L2(Qk−1) + 2k+3Λ‖∇vfk‖L2(Qk−1) ,

‖Sk,2‖L2(Qk−1) ≤ 2k+3Λ‖fk‖L2(Qk−1) .

Writing the energy inequality for (12), we find that

1
2‖Gk(t, ·, ·)‖2L2(B2

k−1)
+

1

Λ

∫ t

Tk−1

|∇vGk|2dxdvds

≤ ‖Sk,1‖L2(Qk−1)‖Gk‖L2(Qk−1) + ‖Sk,2‖L2(Qk−1)‖∇vGk‖L2(Qk−1) ,
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so that

1
2 sup
Tk−1≤t≤0

‖Gk(t, ·, ·)‖2L2(B2
k−1)

+
1

Λ

∫ 0

Tk−1

|∇vGk|2dxdvds

≤ |Tk−1|1/2‖Sk,1‖L2(Qk−1) sup
Tk−1≤t≤0

‖Gk(t, ·, ·)‖L2(B2
k−1)

+‖Sk,2‖L2(Qk−1)‖∇vGk‖L2(Qk−1)

≤ |Tk−1|‖Sk,1‖2L2(Qk−1)
+ 1

4 sup
Tk−1≤t≤0

‖Gk(t, ·, ·)‖L2(B2
k−1

)

+ 1
2Λ‖Sk,2‖2L2(Qk−1)

+
1

2Λ
‖∇vGk‖L2(Qk−1) .

Hence

1
2 sup
Tk−1≤t≤0

‖Gk(t, ·, ·)‖2L2(B2
k−1)

+
1

Λ

∫ 0

Tk−1

|∇vGk|2dxdvds

≤ 2|Tk−1|‖Sk,1‖2L2(Qk−1)
+ Λ‖Sk,2‖2L2(Qk−1)

.

In particular

(14)
‖Gk‖2L2(Qk−1)

≤ 4T 2
k−1|‖Sk,1‖2L2(Qk−1)

+ 2Λ|Tk−1|‖Sk,2‖2L2(Qk−1)
,

‖∇vGk‖2L2(Qk−1)
≤ Λ|Tk−1|‖Sk,1‖2L2(Qk−1)

+ Λ2‖Sk,2‖2L2(Qk−1)
.

The Fokker-Planck equation in (12) is recast as

(∂t + v · ∇x)Gk = Sk,1 + divv(Sk,2 +A∇vGk) ,

and we recall that Gk, Sk,1 and Sk,2 are supported in Qk−1.
By velocity averaging, applying Theorem 1.3 of [2] with p = 2, κ = Ω = 1, r = 0

and m = 1, one finds that

‖D1/3
t Gk‖L2 + ‖D1/3

x Gk‖L2

≤ CN‖Gk‖L2 + CN (1 +Rk)
2/3‖DvGk‖2/3L2 (‖Sk,2‖1/3L2 + Λ1/3‖DvGk‖1/3L2 )

+CN (1 +Rk)
1/2‖DvGk‖1/2L2 (‖Sk,1‖1/2L2 + ‖Sk,2‖1/2L2 + Λ1/2‖DvGk‖1/2L2 ) .

On the other hand

‖D1/3
v Gk‖L2 ≤ ‖Gk‖2/3L2 ‖DvGk‖1/3L2 .

2.6. Using the Sobolev Embedding Inequality. With these inequalities, one
can estimate

‖D1/3
t Gk‖L2 + ‖D1/3

x Gk‖L2 + ‖D1/3
v Gk‖L2

in terms of Uk−1, as follows. Indeed,

‖fk‖2L2(Qk)
≤ 2|Tk|Uk ≤ 3Uk , and ‖∇vfk‖2L2(Qk)

≤ ΛUk .

Moreover, by definition of fk := (f − Ck)+, one has

‖fk‖2L2(Qk−1)
≤ ‖fk−1‖2L2(Qk−1)

and

|∇vfk| = 1f>Ck
|∇vf | ≤ 1f>Ck−1

|∇vf | = |∇vfk−1| ,
so that

‖fk‖2L2(Qk−1)
≤ 3Uk−1 , and ‖∇vfk‖2L2(Qk−1)

≤ ΛUk−1 .
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Thus
‖Sk,1‖L2 ≤ ‖g1f>Ck

‖L2(Qk−1) + 2k+1(3
√
3 + 4Λ3/2)U

1/2
k−1 ,

‖Sk,2‖L2(Qk−1) ≤ 2k+3
√
3ΛU

1/2
k−1 .

Besides, for 2 < r ≤ q, one has

‖g1f>Ck
‖L2(Qk−1) ≤ ‖g‖Lr(Qk−1)|{f > Ck} ∩Qk−1|

1
2−

1
r

and we recall that

|{fk > 0} ∩Qk−1| ≤ 22k+2

∫

Qk−1

f2
k−1dxdvdt ≤ 22k+2|Tk−1|Uk−1 ≤ 3 · 22k+1Uk−1 .

Therefore, for 2 < r ≤ q,

‖Sk,1‖L2 ≤ ‖g‖Lr(Qk−1)(3 · 22k+1Uk−1)
1
2−

1
r + 2k+1(3

√
3 + 4Λ3/2)U

1/2
k−1 ,

so that

‖Sk,1‖2L2(Qk−1)
≤ 6‖g‖2Lr(Qk−1)

2(2k+1)(1− 2
r
)U

1− 2
r

k−1 + 22k+4(27 + 16Λ3)Uk−1 .

‖Sk,2‖2L2(Qk−1)
≤ 3Λ222k+6Uk−1 .

Inserting these bounds in the energy estimate (14), we find that

‖Gk‖2L2(Qk−1)
≤ 9‖Sk,1‖2L2(Qk−1)

+ 3Λ‖Sk,2‖2L2(Qk−1)
)

≤ 54‖g‖Lr(Qk−1)2
(2k+1)(1− 2

r
)U

1− 2
r

k−1 + 9(27 + 24Λ3)22k+4Uk−1 ,

while

‖∇vGk‖2L2(Qk−1)
≤ 3

2Λ‖Sk,1‖2L2(Qk−1)
+ Λ2‖Sk,2‖2L2(Qk−1)

)

≤ 9Λ‖g‖2Lr(Qk−1)
2(2k+1)(1− 2

r
)U

1− 2
r

k−1 + 3(27Λ + 24Λ4)22k+3Uk−1 .

In the inequalities above, one can use Hölder’s inequality to estimate ‖g‖Lr(Qk−1)

as follows:
‖g‖Lr(Qk−1) ≤ ‖g‖Lq(Qk−1)|Qk−1|

1
r
− 1

q ≤ |Q[ 32 ]|
1/2γ .

Summarizing, we have found that

‖Gk‖2L2 + ‖∇vGk‖2L2 + ‖Sk,1‖2L2 + ‖Sk,2‖2L2 ≤ a222k(U
1− 2

r

k−1 + Uk−1)

where a ≡ a[Λ, γ] > 0. With the velocity averaging estimate from the previous
section, this implies that

‖D1/3
t Gk‖2L2 + ‖D1/3

x Gk‖2L2 + ‖D1/3
v Gk‖2L2 ≤ b222k(U

1− 2
r

k−1 + Uk−1)

where b = b[N,Λ, γ] is given by

b2 := a2(1 + (6 + 5Λ)CN) .

By Sobolev’s embedding inequality, one has

‖Gk‖2Lp ≤ K2
Sb

222k(U
1− 2

r

k−1 + Uk−1) ,

where KS is the Sobolev constant for the embedding

H1/3(R×RN ×RN ) ⊂ Lp(R×RN ×RN ) ,
1

p
=

1

2
− 1

6N + 3
.

By (13), this implies that

‖Fk‖2Lp ≤ K2
Sb

222k(U
1− 2

r

k−1 + Uk−1) ,
1

p
=

1

2
− 1

6N + 3
.
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Using (8), we further simplify the inequality above to obtain

(15) ‖Fk‖2Lp ≤ K2
S(1 + U

2
r

0 )b222kU
1− 2

r

k−1 ,
1

p
=

1

2
− 1

3N

for each k ≥ 1.

2.7. The Induction Argument. This last step closely follows DeGiorgi’s classical
argument. We return to (10), and observe that

∫

Qk−1

fp
kdxdvdt ≤

∫

Qk−1

fp
k−1dxdvdt =

∫

Qk−1

F p
k−1dxdvdt

≤
∫

Qk−2

F p
k−1dxdvdt = ‖Fk−1‖pLp .

Therefore

Uk ≤ 3K2
S(1 + 2Λ)(1 + U

2
r

0 )b2 · 26k+2U
1− 2

p

k−1 U
1− 2

r

k−2

+ 3KS(1 + U
2
r

0 )
1
2 b‖g‖Lq · 23kU1− 1

p
− 1

q

k−1 U
1
2−

1
r

k−2

≤ 3K2
S(1 + 2Λ)(1 + U

2
r

0 )b2 · 26k+2U
2− 2

p
− 2

r

k−2

+ 3KS(1 + U
2
r

0 )
1
2 b‖g‖Lq · 23kU1+ 1

2−
1
p
− 1

q
− 1

r

k−2

where the second inequality above follows from (8).
With p > 2 being the Sobolev exponent given by

1

p
=

1

2
− 1

6N + 3
,

we choose r = q > 12N + 6 so that

2− 2

p
− 2

r
= 2− 1 +

2

6N + 3
− 2

q
= 1 +

2

6N + 3
− 2

q
> 1 ,

1 +
1

2
− 1

p
− 1

q
− 1

r
= 1 +

1

6N + 3
− 2

q
> 1 .

Besides, in view of (9), one has

U0 ≤ 8(1 + 2Λ)κ+ γ
√
κ|Q[ 32 ]|

1
2−

1
q ≤ 8(1 + 2Λ) + γ|Q[ 32 ]|

1/2 =: c[Λ, γ] .

Thus, setting

α := 1 +
1

6N + 3
− 2

q
> 1 ,

we obtain

Uk ≤ C · 26kUα
k−2 , k ≥ 2 ,

with

C[N,Λ, γ, q] := 12K2
S(1 + 2Λ)c

1
6N+3 (1 + c

2
q )b2 + 3KS(1 + c

2
q )

1
2 bγ .

With Vk = U2k and ρ = 212(1 + C) — notice that ρ > 1 — we recast this
inequality as

Vk ≤ ρkV α
k−1 , k ≥ 1 .

Iterating, we find that

Vk ≤ ρkV α
k−1 ≤ ρk+α(k−1)V α2

k−2 ≤ ρk+α(k−1)+α2(k−2)V α3

k−3

≤ . . . ≤ ρk+α(k−1)+α2(k−2)+...+αk−1

V αk

0 .
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Elementary computations show that

k + α(k − 1) + α2(k − 2) + . . .+ αk−1

= k(1 + α+ . . .+ αk−1)− α(1 + 2α+ . . .+ (k − 1)αk−2)

= k
αk − 1

α− 1
− α

d

dα

αk − 1

α− 1
= k

αk − 1

α− 1
− α

(

kαk−1

α− 1
− αk − 1

(α− 1)2

)

=
α(αk − 1)− k(α− 1)

(α− 1)2
≤ α

(α− 1)2
αk

so that

Vk ≤ (ρ
α

(α−1)2 V0)
αk

, for each k ≥ 1

since ρ > 1. Choosing

V0 < ρ
− α

(α−1)2

implies that Vk → 0 as k → +∞. By dominated convergence, this implies that
∫

Q[ 12 ]

(f − 1
2 )

2
+(t, x, v)dtdxdv = 0 ,

i.e. that

f(t, x, v) ≤ 1
2 for a.e. (t, x, v) ∈ Q[ 12 ] .

Because of (9),

V0 ≤ 8(1 + 2Λ)κ+ γ
√
κ|Q[ 32 ]|

1/2 ≤ (8(1 + 2Λ) + γ|Q[ 32 ]|
1/2)

√
κ ,

so that one can choose

κ := min

(

1
2 ,

ρ
− 2α

(α−1)2

(8(1 + 2Λ) + γ|Q[ 32 ]|1/2)2

)

.

3. The Local Hölder Continuity

Our main result in this paper, i.e. the local smoothing effect at the level of
Hölder continuity for the Fokker-Planck operator with rough diffusion matrix, is
the following statement.

Theorem 3.1. Let A be an MN(R)-valued measurable function defined a.e. on
R × RN × RN satisfying (1). Let I be an open interval of R and Ω be an open
subset of RN ×RN . Let f ∈ C(I;L2(Ω)) and g ∈ L∞(I × Ω) satisfy the Fokker-
Planck equation (2) on I ×Ω. Then there exists σ > 0 such that, for each compact
K ⊂ I × Ω, one has f ∈ C0,σ(K).

Notice that, by Theorem 2.1, we already know that f ∈ L∞
loc(I × Ω).

As in the previous section, the proof of this result follows the general strategy
of DeGiorgi’s original argument, with significant differences.

3.1. The Isoperimetric Argument. An important step in the proof of regularity
in DeGiorgi’s method for elliptic equations is based on some kind of isoperimetric
inequality (see the proof of Lemma II in [7]). This isoperimetric inequality is a
quantitative variant of the well-known fact that no H1 function can have a jump
discontinuity. More precisely, given anH1 function 0 ≤ u ≤ 1 which takes the values
0 and 1 on sets of positive measure, DeGiorgi’s isoperimetric inequality provides a
lower bound on the measure of the set defined by the double inequality 0 < u < 1. In
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the present section, we establish an analogue of DeGiorgi’s isoperimetric inequality
adapted to the free transport operator.

Set Q̂ := (− 3
2 ,−1]×B(0, 1)2.

Lemma 3.2. Let Λ > 1 and η > 0 be given, and let ω ∈ (0, 1 − 2−1/N ). There
exists θ ∈ (0, 12 ) and α > 0 satisfying the following property.

Let A ≡ A(t, x, v) be an MN(R)-valued measurable map on R × RN × RN

satisfying (1), and let f, g be measurable functions on Q̂ ∪Q[1] such that

(∂t + v · ∇x)f = divv(A∇vf) + g on Q̂ ∪Q[1] ,

together with

f ≤ 1 and |g| ≤ 1 a.e. on Q̂ ∪Q[1]

and

|{f ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂| .

Then

|{f ≥ 1− θ} ∩Q[ω/2]| < η ,

or

|{0 < f < 1− θ} ∩ (Q̂ ∪Q[1])| ≥ α .

While DeGiorgi’s isoperimetric inequality is based on an explicit computation
leading to a precise estimate with effective constants, the proof of Lemma 3.2 is
obtained by a compactness argument, so that the values of θ and α are not known
explicitly.

Proof. If the statement in Lemma 3.2 was wrong, there would exist sequences An,
fn and gn of measurable functions on Q̂ ∪Q[1] satisfying (1) and

(16) (∂t + v · ∇x)fn = divv(A∇vfn) + gn on Q̂ ∪Q[1] ,

together with

fn ≤ 1 and |gn| ≤ 1 a.e. on Q̂ ∪Q[1] , |{fn ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂| ,

and yet

|{fn ≥ 1− 2−n} ∩Q[ω/2]| ≥ η , while |{0 < fn < 1− 2−n} ∩ (Q̂ ∪Q[1])| < 2−n .

We shall see that this leads to a contradiction.
First, arguing as in (9), wee see that, for each ρ ∈ (0, 1), there exists Cρ > 0

such that

‖∇vfn‖
L2((−

3
2ρ,0)×B(0,ρ)2)

≤ Cρ , n ≥ 2 .

By the Banach-Alaoglu theorem, one can assume that

fn
∗
⇀f and gn

∗
⇀g in L∞(Q̂ ∪Q[1]) ,

while

An∇vfn⇀h in L2((− 3
2ρ, 0)×B(0, ρ)2)

for each ρ ∈ (0, 1).
By the variant of hypoelliptic smoothing based on velocity averaging (Theorem

1.3 in [2]), one has

fn → f in Lp
loc(Q̂ ∪Q[1]) for all 1 < p <∞ .
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Hence

(17) (∂t + v · ∇x)f = divv h+ g on Q̂ ∪Q[1] ,

together with

f ≤ 1 and |g| ≤ 1 a.e. on Q̂ ∪Q[1] , |{f ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂| ,

and
|{f = 1} ∩Q[ω/2]| ≥ η , while |{0 < f < 1} ∩ (Q̂ ∪Q[1])| = 0 .

One has also
‖∇vf‖L2(−

3
2ρ,0)×B(0,ρ)2

≤ Cρ .

But
(fn)+ → f+ in Lp

loc(Q̂ ∪Q[1]) for all 1 < p <∞ ,

and, since fn ≤ 1 a.e. on Q̂∪Q[1], we conclude that f+ is an indicator function as

it takes the values 0 or 1 a.e. on Q̂ ∪Q[1]. Besides, for each ρ ∈ (0, 1),

‖∇vf+‖L2(−
3
2ρ,0)×B(0,ρ)2

= ‖1f≥0∇vf‖L2(−
3
2ρ,0)×B(0,ρ)2

≤ Cρ .

Thus, for a.e. (t, x) ∈ (− 3
2ρ, 0) × B(0, ρ), the function v 7→ f+(t, x, v) is a.e equal

0 or 1 and v 7→ ∇vf+(t, x, v) defines an element of L2(B(0, ρ)). Hence, for a.e.
(t, x) ∈ (− 3

2ρ, 0)× B(0, ρ), the function v 7→ f+(t, x, v) is either a.e. equal to 0 or
a.e. equal to 1: see Sublemma on p. 8 in [5]. Therefore, f+ is a.e. constant in the
v variable.

Likewise, for each ρ ∈ (0, 1), one has

‖∇v(fn)+‖
L2(−

3
2ρ,0)×B(0,ρ)2

= ‖1fn≥0∇vfn‖
L2(−

3
2ρ,0)×B(0,ρ)2

≤ Cρ ,

so that
An∇v(fn)+⇀k in L2((− 3

2ρ, 0)×B(0, ρ)2)

for each ρ ∈ (0, 1). On the other hand,

(18) (∂t + v · ∇x)f+ ≤ divv k + 1 on Q̂ ∪Q[1] ,

by convexity of z 7→ z+.

Let us prove that k = 0. For each φ ∈ C∞
c (Q̂ ∪Q[1]), multiplying both sides of

(16) by φ(fn)+ and integrating in all variables, one finds that
∫

φAn∇vfn · ∇v(fn)+dtdxdv =

∫

1
2 (fn)

2
+(∂t + v · ∇x)φdtdxdv

−
∫

(fn)+An∇vfn · ∇vφdtdxdv +

∫

gn(fn)+φdtdxdv

→
∫

1
2f

2
+(∂t + v · ∇x)φdtdxdv −

∫

f+h · ∇vφdtdxdv

+

∫

gf+φdtdxdv .

On the other hand, multiplying both sides of (17) by f+φ and integrating in all
variables, one find that

∫

φh · ∇vf+dtdxdv =

∫

1
2f

2
+(∂t + v · ∇x)φdtdxdv −

∫

f+h · ∇vφdtdxdv

+

∫

gf+φdtdxdv .
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Therefore

An∇v(fn)+ · ∇v(fn)+ = An∇vfn · ∇v(fn)+ → h · ∇vf+ in D′(Q̂ ∪Q[1]) .

Observe that condition (1) implies that, for each 0 ≤ φ ∈ C∞
c (Q̂ ∪Q[1]),

∫

φ|An∇v(fn)+|2dtdxdv ≤ Λ

∫

φAn∇v(fn)+ · ∇v(fn)+dtdxdv .

Therefore, by convexity and weak convergence
∫

φ|k|2dtdxdv ≤ Λ

∫

φh · ∇vf+dtdxdv .

Since f+ is a.e. constant in the variable v, one has

∇vf+ = 0 a.e. on Q̂ ∪Q[1] ,

so that

k = 0 a.e. on Q̂ ∪Q[1] .

Eventually, f+ = 1P (t, x) for some measurable P ⊂ (− 3
2 , 0)×B(0, 1), with

(19) (∂t + v · ∇x)f+ ≤ 1 in D′(Q̂ ∪Q[1]) ,

with

(20) |(P ×B(0, 1)) ∩ Q̂| < 1
2 |Q̂| and |(P ×B(0, 1)) ∩Q[ω/2]| ≥ η .

Since f is independent of v, the inequality (19) holds in D′((− 3
2 , 0) × B(0, 1)) for

each v ∈ B(0, 1).

Since f+ is an indicator function, for a.e. (t0, x0, v0) ∈ (Q̂ ∪ Q[1]), the function
s 7→ f(t0 + s, x0 + sv0, v0) has jump discontinuities. Since

d

ds
f(t0 + s, x0 + sv0, v0) = (∂tf + v0 · ∇xf)(t0 + s, x0 + sv0, v0) ≤ 1 ,

one has in fact

d

ds
f(t0 + s, x0 + sv0, v0) = (∂tf + v0 · ∇xf)(t0 + s, x0 + sv0, v0) ≤ 0 .

On the other hand, if

− 3
2 < t0 ≤ −1 , |x0| < 1− ω , and − 1

2ω < t < 0 , |x| < 1
2ω ,

then there exists s > 0 and v0 ∈ B(0, 1) such that (t, x, v) = (t0 + s, x0 + sv0, v0).
Indeed,

t−t0 > − 1
2ω−(−1) = 1− 1

2ω , and |v| = |x− x0|
t− t0

≤ |x|+ |x0|
t− t0

<
1
2ω + 1− ω

1− 1
2ω

= 1 .

Therefore
(21)
1P (t, x)≤1P (t0, x0) for a.e. (t0, x0, t, x)∈(− 3

2 ,−1]×B(0,1−ω)×(−ω
2 , 0)×B(0,ω2 ).

Since (1 − ω)N > 1
2 , one has

|(− 3
2 ,−1]×B(0, 1− ω)×B(0, 1)| > 1

2 |Q̂| ,
so that

|((− 3
2 ,−1]×B(0, 1− ω)) \ P | > 0 .
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Otherwise,

1
2 |Q̂| < |(− 3

2 ,−1]×B(0, 1− ω)×B(0, 1)|
= |((− 3

2 ,−1]×B(0, 1− ω)×B(0, 1)) ∩ (P ×B(0, 1))| ≤ |Q̂ ∩ (P ×B(0, 1))| ,
which would contradict the first inequality in (20).

Choosing (t0, x0) ∈ (− 3
2 ,−1]×B(0, 1− ω)) \ P in (21), we conclude that

1P (t, x) = 0 for a.e. (t, x) ∈ (−ω
2 , 0)×B(0, ω2 ) .

In other words, one has

|(P ×B(0, 1)) ∩Q[ω2 ]| = 0 ,

which is the desired contradiction with (20). �

3.2. Zooming in the Fokker-Planck Equation. As in the DeGiorgi original
proof, the local Hölder regularity is obtained by controling the oscillation of so-
lutions of the Fokker-Planck equation on a sequence of domains with shrinking
diameter. This suggests of course using a zooming procedure based on the scaling
properties of the Fokker-Planck equation. This step follows the classical DeGiorgi
argument rather closely.

For each t0 ∈ R, x0, v0 ∈ R3 and ǫ > 0, we define the transformation Tǫ[t0, x0, v0]
by the following prescription:

Tǫ[t0, x0, v0]F (s, y, ξ) := F (t0 + ǫ2s, x0 + ǫ3y + ǫ2sv0, v0 + ǫξ) .

An elementary computation shows that, if

(∂t + v · ∇x)F = divv(A∇vF ) +G

then f(s, y, ξ) = Tǫ[t0, x0, v0]F (s, y, ξ) satisfies
(∂s + ξ · ∇y)f = divξ(a∇ξf) + g

with

a(s, y, ξ) := Tǫ[t0, x0, v0]A(s, y, ξ) and g(s, y, ξ) = ǫ2Tǫ[t0, x0, v0]G(s, y, ξ) .
Observe that a satisfies the same assumption as A, with the same constant Λ > 1.

Here is a first application of the zooming transformation defined above. With
ω chosen as in the previous section, i.e. 0 < ω < 1 − 2−1/N , set ǫ = ω/3 in the
zooming transformation defined above, together with t0 = 0 and x0 = v0 = 0.
Assuming that F satisfies

(∂t + v · ∇x)F = divv(A∇vF ) +G on (−ω2

6 , 0)×B(0, ω
3

18 )×B(0, ω2 ) ,

then f(s, y, ξ) = Tω/3[0, 0, 0]F (s, y, ξ) satisfies

(∂s + ξ · ∇y)f = divξ(a∇ξf) + g on Q[ 32 ]

with

a(s, y, ξ) := Tω/3[0, 0, 0]A(s, y, ξ) and g(s, y, ξ) = ω2

9 Tω/3[0, 0, 0]G(s, y, ξ) .

By Theorem 2.1, assuming that |g| ≤ ω2

9 a.e. on Q[ 32 ], one has the implication
∫

Q[3/2]

f2
+dsdydξ < κ[N,Λ, ω

2

9 ,∞] ⇒ f ≤ 1
2 a.e. on Q[ 12 ] .
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In terms of F and G, we arrive at the following statement: assuming that |G| ≤ 1
a.e. on Q[ω2 ],

∫

Q[ω/2]

F 2
+dtdxdv < (ω3 )

4N+2κ[N,Λ, ω
2

9 ,∞] ⇒ F ≤ 1
2 a.e. on Q[ 1

54ω
3] .

3.3. Reduction of Oscillation. The second key idea in DeGiorgi’s method for
proving local regularity is the following important observation, which mixes the
scaling transformation and the isoperimetric argument.

Lemma 3.3. There exist β, µ ∈ (0, 1) satisfying the following property. For each

pair f, g of measurable functions defined a.e. on Q̂ ∪Q[1] such that

(∂t + v · ∇x)f = divv(A∇vf) + g on Q̂ ∪Q[1]

with
|f | ≤ 1 and |g| ≤ β on Q̂ ∪Q[1] ,

one has
oscQ[ω3/54] f ≤ µ oscQ[ω/2] f .

Proof. Pick ω ∈ (0, 1− 2−1/N ), and set

η := (ω3 )
4N+2κ[N,Λ, ω

2

9 ,∞] .

Lemma 3.2 provides us with θ ∈ (0, 12 ) and α > 0. Choose then β small enough so
that

ln
1

β
≥
(

1
2 |Q̂|+ |Q[1]|

α
+ 2

)

ln
1

θ
.

Since |f | ≤ 1 on Q̂ ∪Q[1], one can assume without loss of generality that

|{f ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂| .

(If

|{f ≤ 0} ∩ Q̂| < 1
2 |Q̂| ,

we shall argue instead with −f and −g instead of f and g respectively.)
Consider the sequence of functions defined by induction as follows:

fk =
1

θ
(fk−1 − 1) + 1 , f0 = f .

One easily check by induction that

fk ≤ fk−1 ≤ . . . ≤ f1 ≤ f0 = f ≤ 1 a.e. on Q̂ ∪Q[1] ,

and that fk is a solution of the Fokker-Planck equation on Q̂ ∪ Q[1] with source
term

gk := θ−kg .

We shall consider only finitely many terms in this sequence, viz. those for which

0 ≤ k ≤ k∗ :=

[

1
2 |Q̂|+ |Q[1]|

α

]

+ 1 ≤
[

lnβ

ln θ

]

.

(Notice that the third inequality above follows from the constraint on β imposed
at the begining of this proof.)

First, one has

{f ≤ 0} ⊂ {f1 ≤ 0} ≤ . . . ≤ {fk−1 ≤ 0} ≤ {fk ≤ 0} ,
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so that

|{fk ≤ 0} ∩ Q̂| ≥ |{f ≤ 0} ∩ Q̂| ≥ 1
2 |Q̂| .

On the other hand

{fk ≤ 0} = {fk−1 ≤ 0} ∪ {0 < fk−1 ≤ 1− θ}

so that the sequence

mk := |{fk ≤ 0} ∩ (Q̂ ∪Q[1])|
satisfies

mk = mk−1 + |{0 < fk−1 ≤ 1− θ} ∩ (Q̂ ∪Q[1])|

= m0 +

k
∑

l=1

|{0 < fl−1 ≤ 1− θ} ∩ (Q̂ ∪Q[1])| .

It is obviously impossible that

|{0 < fl−1 ≤ 1− θ} ∩ (Q̂ ∪Q[1])| ≥ α for each l = 1, . . . , k∗ ,

Indeed, this would imply that

1
2 |Q̂|+ k∗α ≤ m0 + k∗α ≤ mk∗ ≤ |Q̂|+ |Q[1]| ,

which is impossible by our choice of k∗.
Notice that, by our choice of β, one has

θ−k∗

β ≤ 1 , so that |θ−kg| ≤ 1 a.e. on Q̂ ∪Q[1] for k = 0, . . . , k∗ .

Applying Lemma 3.2 shows that there exists k̂ ∈ {0, . . . , k∗ − 1} such that

|{fk̂ ≥ 1− θ} ∩Q[ω/2]| < η .

Then
∫

Q[ω/2]

(fk̂+1)
2
+dtdxdv =

∫

Q[ω/2]

f2
k̂+1

1f
k̂
≥1−θdtdxdv

≤
∫

Q[ω/2]

1f
k̂
≥1−θdtdxdv < η ,

so that

fk̂+1 ≤ 1
2 < 1− θ a.e. on Q[ 1

54ω
3] .

By definition

fk − 1 = θ−k(f − 1)

so that

f = 1+ θk̂+1(fk̂+1 − 1) ≤ 1− θk̂+2 a.e. on Q[ 1
54ω

3] .

In particular

oscQ[ω3/54] f ≤ (1− 1
2θ

k̂+2) oscQ[ω/2] f ≤ µ oscQ[ω/2] f

with

0 ≤ (1− 1
2θ

k̂+2) ≤ µ := 1− θk
∗+3 < 1 .

�
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3.4. Implications on Hölder Continuity. With the estimates gathered above,
we conclude the proof of local Hölder continuity as follows.

Observe that, for r > 0 and ǫ ∈ (0, 1),

oscQ[r] Tǫ[0, 0, 0]f = oscQ̃ǫ[r]
f ≤ oscQ[ǫr] f ,

where

Q̃ǫ[r] := (−rǫ2, 0]×B(0, rǫ3)×B(0, rǫ) .

Assume that f and g satisfy the assumptions of Lemma 3.3; then
(

ω2

27

)n

‖T n
ω2/27[0, 0, 0]g‖L∞(Q̂∪Q[1]) ≤ β

for each n ≥ 0. Therefore, Lemma 3.3 implies that

oscQ[ω3/54] T
n
ω2/27[0, 0, 0]f ≤ µ oscQ[ω/2] T

n
ω2/27[0, 0, 0]f

≤ µ oscQ[ω3/54] T
n−1
ω2/27[0, 0, 0]f

≤ µn oscQ[ω3/54] f ≤ 2µn

pour tout n ≥ 0.
In particular

(s, y, ξ) ∈ Q[ω
3

54 ] ⇒ |f((ω2

27 )
2ns, (ω

2

27 )
3ny, (ω

2

27 )
nξ)− f(0, 0, 0)| ≤ 2µn

for each n ≥ 0. Therefore

− ω6n+3

2 · 273n+1
< t ≤ 0 , |x|, |v| ≤ ω6n+3

2 · 273n+1
⇒ |f(t, x, v)− f(0, 0, 0)| ≤ 2µn .

In other words

|f(s, y, ξ)− f(0, 0, 0)| ≤ 2 exp

([

ln( 54
ω3 max(|s|, |y|, |ξ|))

ln ω2

27

]

lnµ

)

≤ 2

µ2
exp

(

ln( 2
ω max(|s|, |y|, |ξ|))

ln ω2

27

lnµ

)

=
2

µ2

(

2

ω

)lnµ/ ln ω2

27

max(|s|, |y|, |ξ|)lnµ/ ln ω2

27 .

If f and g belong to L∞(Q̂∪Q[1]) and satisfy the Fokker-Planck equation with-
out satisfying the assumptions of Lemma 3.3 on ‖f‖L∞(Q̂∪Q[1])

and ‖g‖L∞(Q̂∪Q[1])
,

replacing f and g respectively with f/L and g/L with

L = (1 + ‖f‖L∞(Q̂∪Q[1])
)

(

1 +
1

β
‖g‖L∞(Q̂∪Q[1])

)

,

we conclude that

|f(s, y, ξ)− f(0, 0, 0)| ≤ Cmax(|s|, |y|, |ξ|)σ

with

σ := lnµ/ ln
ω2

28
and

C :=
2

µ2

(

2

ω

)σ

(1 + ‖f‖L∞(Q̂∪Q[1])
)

(

1 +
1

β
‖g‖L∞(Q̂∪Q[1])

)

.
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Assume finally that F is a solution of the Fokker-Planck equation with source
term G on some open neighborhood Ω in R ×RN ×RN of the point (t0, x0, v0).
Assume further that F,G ∈ L∞(Ω). Then T1[t0, x0, v0]F is a solution of the Fokker-
Planck equation with diffusion matrix T1[t0, x0, v0]A and source term T1[t0, x0, v0]G.
Arguing as above with f := T1[t0, x0, v0]F , and setting

s = t− t0 , ξ = v − v0 , and y = x− x0 − sv0 ,

we conclude that

|F (t, x, v)− F (t0, x0, v0)| ≤ C((1 + |v0|)|t− t0|+ |v − v0|+ |x− x0|)σ

provided that

0 < t0 − t <
ω3

54(1 + |v0|)
, |x− x0| <

ω3

54(1 + |v0|)
, |v − v0| <

ω3

54
.

Since t0, x0 and v0 are arbitrary, this proves that F is locally Hölder continuous
with exponent σ.
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