N
N

N

HAL

open science

Stratified regression Monte-Carlo scheme for semilinear
PDEs and BSDEs with large scale parallelization on
GPUs

Emmanuel Gobet, Jose Lopez-Salas, Plamen Turkedjiev, C. Vazquez

» To cite this version:

Emmanuel Gobet, Jose Lopez-Salas, Plamen Turkedjiev, C. Vazquez. Stratified regression Monte-
Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs. STAM Journal

on Scientific Computing, 2016, 38 (6), pp.C652-C677. 10.1137/16M106371X . hal-01186000

HAL Id: hal-01186000
https://polytechnique.hal.science/hal-01186000
Submitted on 27 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://polytechnique.hal.science/hal-01186000
https://hal.archives-ouvertes.fr

STRATIFIED REGRESSION MONTE-CARLO SCHEME FOR
SEMILINEAR PDES AND BSDES WITH LARGE SCALE
PARALLELIZATION ON GPUS

E. GOBET*, J. G. LOPEZ-SALAS', P. TURKEDJIEV!, AND C. VAZQUEZ$

Abstract. In this paper, we design a novel algorithm based on Least-Squares Monte Carlo
(LSMC) in order to approximate the solution of discrete time Backward Stochastic Differential
Equations (BSDEs). Our algorithm allows massive parallelization of the computations on multicore
devices such as graphics processing units (GPUs). Our approach consists of a novel method of
stratification which appears to be crucial for large scale parallelization.

Key words. Backward stochastic differential equations, dynamic programming equation, em-
pirical regressions, parallel computing, GPUs, CUDA.

AMS subject classifications. 49120, 62Jxx, 65C30, 93E24, 68W10.

1. Introduction.

The problem. The aim of the algorithm in this paper is to approximate the (Y, Z)
components of the solution to the decoupled forward-backward stochastic differential
equation (BSDE)

T T
(1.1) Yt:g(XT)+/ f(s,XS,YS,Zs)ds—/ Z.4W.,
t t

¢ ¢
(1.2) Xi==x —|—/ b(s, Xs)ds —|—/ o(s, Xs)dWs,
0 0

where W is a ¢ > 1 dimensional Brownian motion. The algorithm will also approx-
imate the solution u to the related semilinear, parabolic partial differential equation
(PDE) of the form
(1.3)

Ou(t,) + Au(t,z) + f(t, z,u(t,z), Veuo(t,xz)) =0 for t <T and u(T,.) = g(.),

where A is the infinitesimal generator of X, through the Feynman-Kac relation
Yy, Ze) = (u(t, Xt), (Vguo)(t, X¢)). In recent times, there has been an increasing
interest to have algorithms which work efficiently when the dimension d of the space
occupied by the process X is large. This interest has been principally driven by
the mathematical finance community, where nonlinear valuation rules are becoming
increasingly important.

In general, currently available algorithms [6, 3, 4, 14, 5, 10, 11, 9] rarely handle
the case of dimension greater than 8. The main constraint is not only due to the
computational time, but mainly due to memory consumption requirements by the
algorithms. For example, the recent work [11] uses a Regression Monte Carlo approach
(a.k.a. Least Squares MC), in which the solutions (u, V,uo) of the semi-linear PDE

*Centre de Mathématiques Appliquées, Ecole Polytechnique and CNRS, route de Saclay, 91128
Palaiseau cedex, France. Email: emmanuel.gobet@polytechnique.edu

TDepartment of Mathematics, Faculty of Informatics, Universidade da Corufia, Campus de Elvifia
s/n, 15071 - A Coruifia, Spain. Email: jose.lsalas@udc.es

fCentre de Mathématiques Appliquées, Ecole Polytechnique and CNRS, route de Saclay, 91128
Palaiseau cedex, France. Email: turkedjiev@cmap.polytechnique.fr

$Department of Mathematics, Faculty of Informatics, Universidade da Corufia, Campus de Elvifia
s/n, 15071 - A Coruila, Spain. Email: carlosv@udc.es

1

2 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

are approximated on a K-dimensional basis of functions at each point of a time grid of
cardinality N. The coefficients of the basis functions are computed at every time point
t; with the aid of M simulations of a discrete time Markov chain (which approximates
X) in the interval [t;, T]. The main memory constraints of this scheme are (a) to store
the K x N coefficients of the basis functions, and (b) to store the M x N simulations
used to compute the coefficients. To illustrate the problem of high dimension, the
dimension of the basis is typically K = const x N*¢, for some a > 0 (which decreases
with the regularity of the solution), so K increases geometrically with d. Moreover,
the error analysis of these algorithms demonstrates that the local statistical error is
proportional to N /M, so that one must choose M = const x KN? to ensure a
convergence O(N 1) of the scheme. This implies that the simulations pose by far the
most significant constraint on the memory.

Objectives. The purpose of this paper is to drastically rework the algorithm of [11]
to first minimize the exposure to the memory due to the storage of simulations. This
will allow computation in larger dimension d. Secondly, in this way the algorithm can
be implemented in parallel on GPU processors to optimize the computational time.

New Regression Monte Carlo paradigm. We develop a novel algorithm called the
Stratified Regression MDP (SRMDP) algorithm; the name is aimed to distinguish
from the related LSMDP algorithm [11]. The key technique is to use stratified sim-
ulation of the paths of X. In order to estimate the solution at ¢;, we first define
a set of hypercubes (Hr C R? : 1 < k < K). Then, for each hypercube Hj, we
simulate M paths of the process X in the interval [t;,T] starting from i.i.d. random
variables valued in Hp; these random variables are distributed according to the con-
ditional logistic distribution, see (A,) later. By using only the paths starting in Hy,
we approximate the solution to the BSDE restricted to X;, € H on linear functions
spaces Ly and Lz (both of small dimension), see (Asgtrat.) later. This allows us
to minimize the amount of memory consumed by the simulations, since we only need
to generate samples on one hypercube at a time. In Theorem 3.5, we demonstrate
that the error of our scheme is proportional to N max(dim(Ly), dim(Lzx))/M and,
since max(dim(Ly,x),dim(Lz)) = const, we require only M = const x N? to en-
sure the convergence O(N ~1). Therefore, the memory consumption of the algorithm
will be dominated by the storage of the coefficients, which equals const x N~2? (the
theoretical minimum). Moreover, the computations are performed in parallel across
the hypercubes, which allows for massive parallelization. The speed-up compared to
sequential programming increases as the dimension d increases, because of the ge-
ometric growth of the number of hypercubes with respect to d. In the subsequent
tests (§5), for instance we can solve problems in dimension d = 11 within a couple of
seconds using 100 simulations per hypercube.

This regression Monte Carlo approach is very different from the algorithm pro-
posed in [11]. Although local approximations were already proposed in that work,
the paths of the process X were simulated from a fixed point at time 0 rather than
directly in the hypercubes. This implies that one must store all the simulated paths
at any given time, rather than only those for the specific hypercubes. This is because
the trajectories are random, and one is not certain which paths will end up in which
hypercubes a priori. Therefore, our scheme essentially removes the main constraint
on the memory consumption of LSMC algorithms for BSDEs.

The choice of the logistic distribution for the stratification procedure is crucial.
Firstly, it is easy to simulate from the conditional distribution. Secondly, it possesses
the important USES property (see later (A,)), which enables us to recover equivalent

Stratified regression Monte-Carlo scheme for BSDEs 3

Lo-norms (up to constant) for the marginal of the forward process initialized with the
logistic distribution (Proposition 2.1).

Literature review. Parallelization of Monte-Carlo methods for solving non-linear
probabilistic equations has been shortly investigated. Due to the non-linearity, this
is a challenging issue. For optimal stopping problems, we can refer to the works [1]
and [2] with numerical results in dimension 4. To the best of our knowledge, the only
work related to BSDEs in parallel version is [14]. It is based on a Picard iteration
for finding the solution, coupled with iterative control variates. The iterative solution
is computed through an approximation on sparse polynomial basis. Although the
authors report efficient numerical experiments up to dimension 8, this study is not
supported by a theoretical error analysis. Due to the stratification, our proposed
approach is quite different from [14] and additionally, we provide an error analysis
(Theorem 3.5).

Notation.

(i) |z| stands for the Euclidean norm of the vector x.
(ii) log(z) stands for the natural logarithm of z € R.

(ii) For a multidimensional process U = (U;)o<i<n, its I-th component is de-
noted by U; = (Uy,i)o<i<n-

(iv) For any finite L > 0 and = = (z1,...,2,) € R”, define the truncation
function

(1.4) To(x):=(-LVay AL,...,—LVa, AL).

(v) For a probability measure v on a domain D, and function h : D — R in

Ly(D,v), denote the Ly norm of h by |k, := /[, |h]?(z)v(dz).

(vi) For a probability measure v, disjoint sets {#1,...,Hx} in the support of
v, and finite dimensional function spaces L{L1, ..., Lk} such that the domain of L
is in the respected set Hj

K
v(dim(£)) =Y v(Hy)dim(Ly).
k=1

(vii) For function g : R4 — R, the order notation g(z) = O(x) means that there
exists some universal unspecified constant, const > 0, such that g(x) < const x z for
all z € Ry.

2. Mathematical framework and basic properties. We work on a filtered
probability space (Q, F, (Fi)o<i<r,P) containing a ¢-dimensional (¢ > 1) Brownian
motion W. The filtration (F;)o<;<7 satisfies the usual hypotheses. The existence of
a unique strong solution X to the forward equation (1.2) follows from usual Lipschitz
conditions on b and o, see (Ax). The BSDE (1.1) is approximated using a multistep-
forward dynamical programming equation (MDP) studied in [10]. Let 7 := {t; :=
1Ay : 0 <4 < N} be the uniform time-grid with time step Ay = T/N. The solution
(Y:, Z;)o<i<n—1 of the MDP can be written in the form:

(2.1)
Vi = B (g(Xn) + 205N F(G, Y501, Z)A)
AZi = B ((0(Xn) + 050 £ Vi, Z) A0 AW)

} forie {0,...,N —1},

where (X;)i<j<n is a Markov chain approximating the forward component (1.2)
(typically the Euler scheme, see Algorithm 2 below), AW, = W,, , — W,, is the

i+1

4 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

(¢ + 1)-th Brownian motion increment, and E; (-) := E (- | F%,) is the conditional

expectation. Our working assumptions on the functions g and f are as follows:

(Ag) g is a bounded measurable function from R? to R, the upper bound of which is
denoted by C.

(Ag) for every i < N, fi(x,y, 2) is a measurable function R? x R x RY to R, and there
exist two finite constants Ly and C'y such that, for every i < IV,

\filw,y,2) = file, ¢, 2 < Ly(ly = y/'[+ |2 = &),
V(z,y,y,2,2') € R x (R)* x (RY)?,
|fi(z,0,0)| < Cy, VzeR%

The definition of the Markov chain (X;); is made under the following assumptions.
(Ax) The coefficients functions b and o satisfy
(i) b:10,7] xR = R? and o : [0,7] x R — R? @ R? are bounded
measurable, uniformly Lipschitz in the space dimensions;
(ii) there exists ¢ > 1 such that, for all ¢ € R%, the following inequalities
hold: (THEP? < &M a(t, x)o(t,x)TE < (JE)*
Let X; be a random variable with some distribution 7 (more details on this to follow).
Then X; for j > i is generated according to one of the two algorithms below:
ALGORITHM 1 (SDE dynamics). Xj41 = Xy, = X; + j;t:“ b(s, Xs)ds +
7 o, Xo)dW,;
ALGORITHM 2 (Euler dynamics). Xj+1 = Xj + b(tl, Xl)At + O'(ti, XZ)AWZ

The above ellipticity condition (ii) will be used in the proof of Proposition 2.1.

As in the continuous time framework (1.1), the solution of the MDP (2.1) admits a
Markov representation: under (Ax), for every ¢, there exist measurable deterministic
functions y; : R? — R and z; : R? — RY, such that Y; = y;(X;) and Z; = 2(X;),
almost surely. In fact, the value functions y;(-) and z;(-) are independent of how we
initialize the forward component.

For the subsequent stratification algorithm, X; will be sampled randomly (and
independently of the Brownian motion W) according to different squared-integrable
distributions 7. When X; ~ 7, we will write (X](w))ingN the Markov chain given in
(Ax), using either the SDE dynamics (better when possible) or the Euler one. One
can recover the value functions from the conditional expectations: almost surely,

N-1
22) wx(")=E (mw) 3 SO i (D), 5 () A | Xﬁ’")) ,
Jj=1i
Au(X(") =T <<g<Xx*">> + D A (XD, 2 (X) A) AW | Xf“”) ;
j=i+1

the proof of this is the same as [11, Lemma 4.1].

Approximating the solution to (2.1) is actually achieved by approximating the
functions y;(+) and z;(-). In this way, we are directly approximating the solution to
the semilinear PDE (1.3). Our approach consists in approximating the restrictions of
the functions y; and z; to subsets of a cubic partition of R¢ using finite dimensional
linear function spaces. The basic assumptions for this local approximation approach
are given below.

Stratified regression Monte-Carlo scheme for BSDEs 5

(Agtrat.) There are K € N* disjoint hypercubes (Hy : 1 < k < K), that is

K d
Hi NH; =0, U Hi =R? and Hi= H[a:,;l,x;:l)
k=1

=1

for some —oco0 < x,;l < IL < 4o00. Additionally, there are linear function
spaces Ly, and Lz, valued in R and R? respectively, which are subspaces
of Lo(Hy,vk) w.r.t. a probability measure v, on Hy, defined in (A,) below.
Common examples of hypercubes are:
(i) Hypercubes of equal size: m}c"’l — ;= const > 0 for all k and [, except for
exterior strata that must be infinite.
(ii) Hypercubes of equal probability: v(Hy) = 1/K for some probability v to be
defined later in (A,).
Common examples of local approximations spaces Ly, and Lz are:
(1) Piece-wise constant approximation (LPO): Ly, := span{ly, }, and Lz :=
(£y7k)q; dim(ﬁy) =1 and dim(ﬁz,k) =dq.
(ii) Affine approximations (LP1): Ly = span{ly,,z11%,,...,zqly, }, and
Lz :=Lyr) dim(Ly) =d+1and dim(Lzx) = q(d+1).
The key idea in this paper is to select a distribution v, the restriction of which to
the hypercubes Hy, vk, can be explicitly computed. Then, we can easily simulate i.i.d.
copies of Xi(l’”’“) directly in Hj and use the resulting paths of the Markov chain to
estimate yg(-)|2,. This sampling method is traditionally known as stratification, and
for this reason we will call the hypercubes in (Agiras.) the strata. For the stratification,
the components Xi(l’y’“) are sampled as i.i.d. conditional logistic random variables,
which is precisely stated in the following assumption.

(A,) Let > 0. The distribution of Xi(i’”") is given by Po (Xi(i’”"))*l(dx) = yi(dz),

where
14, (x)v(d)
Vk(dx) - kl/(Hk))
and
(1) () SO d
v(dz) :plogis.(x)dx7 plogis.(x) = H mv r = (z1,...,7q) € R%

REMARK 2.1. An important relation of v and vy is that one has the La-norm
.) 2 K 2
identity |-, = >y V(M) ||Vk

In order to generate the random variable Xi(l’”’“), we make use of the inverse
conditional distribution function of 5 and the simulation of uniform random variables,
as shown in the following algorithm:

ALGORITHM 3. Draw d independent random variables (Uy,...,Uy) which are
uniformly distributed on [0,1], and compute

x0) = (Fl (Uy),..., F! (Ud)> Ly

u,[m;7l,zi’l) Vv[atz:,dvz;d)

where we use the functions F,(z) == [* _v(da') =1/ (1 + exp(—pzx)) and

4 _ 1y 1 _
F e an)(U) = Ml & <Fl,(x_) +U(F,(2F) = Fy(z7)) 1)'

6 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

A further reason for the choice of the logistic distribution is that it induces the
following stability property on the Lo norms of the Markov chain (X](z’”))is j<n; this
property will be crucial for the error analysis of the stratified regression scheme in
§3.2. The proof is postponed to Appendix A.1.

PROPOSITION 2.1. Suppose that v is the logistic distribution defined in (A,).
There is a constant c(a,) € [1,+00) such that, for any function h : R? — R or RY in
La(v), for any 0 <i < N, and for any i < j < N — 1, we have

1

“A.)

E[[R(X")) < [BI2 < ca EIRXS)P).

To conclude this section, we recall standard uniform absolute bounds for the
functions y;(-) and z(-).

PROPOSITION 2 2 (a.s. upper bounds, [11, Proposition 3.3]). For N large enough
such that TL? < 12q, we have for any x € R and any 0 <i < N — 1,

T 2 T
)) < — o1 T6q(1VLE)(TV1) i . < =
(23) lyi(@)] < Cy = PID(Cy 45 2Cr).)l <.

Cy
VAL

3. Stratified algorithm and convergence results.

3.1. Algorithm. In this section, we define the SRMDP algorithm mathemati-
cally, and then expose in §4 how to efficiently perform it using GPUs. Our algorithm
involves solving a sequence of Ordinary linear Least Squares regression (OLS) prob-
lems. For a precise mathematical statement, we recall the seemingly abstract but
very convenient definition from [11]; explicit algorithms for the computation of OLS
solutions are exposed in §4.1.

DEFINITION 3.1 (Ordinary linear least-squares regression). For [,I' > 1 and
for probability spaces (Q, F,P) and (R, B(R'),7), let S be a F @ B(R!)-measurable
RY -valued function such that S(w,-) € Lo(B(RY),n) for P-a.e. w € Q, and L a
linear vector subspace of La(B(RY),n) spanned by deterministic R -valued functions
{pr(.),k > 1}. The least squares approzimation of S in the space L with respect to n
is the (P x n-a.e.) unique, F @ B(R!)-measurable function S* given by

S*(w,-) = arg mf /|¢) S(w, z)|*n(dx).

We say that S* solves OLS(S, L, 7).

On the other hand, suppose that ny = ﬁ Z%zl dym) 1S a discrete probability
measure on (R, B(R')), where &, is the Dirac measure on x and XV, ... x) .
Q — R are i.i.d. random variables. For an F® B(Rl) measurable RY Ualued functzon
S such that |S(X(m)| < 0o for any m and P-a.e. w €), the least squares

approximation of S in the space L with respect to nas is the (IP’ a.e.) unique, FOB(R!) -
measurable function S* given by

S(%mm—Zw = 5w, XM (w)) 2.

Stratified regression Monte-Carlo scheme for BSDEs 7

We say that S* solves OLS(S, L,).
DEFINITION 3.2 (Simulations and empirical measures). Recall the Markov chain

(Xj(i’”’“))ingN initialized as in (A,). Foranyi€{0,...,.N—1} and k € {1,..., K},
define M > dim(Ly) V dim(Lz) independent copies of (AW, (X;’”’“)ingN) that

we denote by
Ci,k = {(AWi(i7k’m), (X§i7k7m))iSjSN) Lm = 1, ey M} .

The random wvariables C;j form a cloud of simulations used for the regression at
time i and in the stratum k. Furthermore, we assume that the clouds of simulations
Cir :0<i<N-1,1<k<K) are independently generated. All these random
variables are defined on a probability space (Q(M),}"(M),]P’(M)). Denote by v; 1 v the
empirical probability measure of the C; j-simulations, i.e.

1 M

Vik,M = M Z 6(AWi(i,k,7n)’Xi(i,k,m)’.”’XI(\;',k,m)).
m=1
Denoting by (Q, F,P) the probability space supporting (AW;, X4 : 0 <i < N—1,1 <
k < K), which serves as a generic element for the clouds of simulations C;, the
full probability space used to analyze our algorithm is the product space (Q, F,P) =
(Q, F,P) @ (QM) FOM) p(M)y - By q slight abuse of notation, we write P (resp. E)
to mean P (resp. E) from now on.
We now come to the definition of the stratified LSMDP algorithm, which computes
random approximations yZ(M)(.) and zi(M)(.)
ALGORITHM 4 (SRMDP). Recall the linear spaces Ly, and Lz from (Astrat.),
the bounds (2.3) and the truncation function Ty, (see (1.4)).
Initialization. Set y("(-) = g(-).
Backward iteration for i = N — 1 to i = 0. For any stratum indexk € {1,... K},
generate the empirical measure v; pr as in Definition 3.2, and define
(3.1)
(Zj\f)k() solution of OLS(S(Z{\?(U},&) s L2k s Vik)

M I oor
for S50 (w,x) = SV () w,

zz(M)()|»Hk =Te. ((Zﬂf)k()) (truncation),
wg/]\f)k() solution of OLS(S&J,\?)(&) s Ly Vig M)
N-1
for PP () = glan) + D0 i@yt (i), 25 () Ay

=i
yZ(M)()|H,c = Tcy(g,]\f)k()) (truncation),

where w € RY and x; = (24,...,2y) € (RY)N—HL
An important difference between SRMDP and established Monte Carlo algorithms
[7, 15, 10, 11] is that the number of simulations falling in each hypercube is no more
random but fixed and equal to M. Observe first that this is likely to improve the nu-
merical stability of the regression algorithm: there is no risk that too few simulations
will land in the hypercube, leading to under-fitting. Later, in §4, we shall explain how
to implement Algorithm 4 on a GPU device. The key point is that the calculations at

8 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

every time point are fully independent between the different hypercubes, so that we
can perform them in parallel across the hypercubes. The choice of M independent on
k is made in order to maintain a computational effort equal on each of the strata. In
this way, the gain in parallelization is likely to be the largest. However, the subsequent
mathematical analysis can be easily adapted to make the number of simulations vary
with k whenever necessary.

An easy but important consequence of Algorithm 4 and of the bounds of Proposi-
tion 2.2 is the following absolute bound; the proof is analogous to that of [11, Lemma
4.7].

LEMMA 3.3. With the above notation, we have

V4

(M)
su su SM (x| < Cs3:=C,+T(L:C, |1+ X +0;).
OégNﬁe(Rd)R—m' vi ()< Cos =Gy < ! ‘”{ \/KJ f>

3.2. Error analysis. The analysis will be performed according to several Lo-
norms, either w.r.t. the probability measure v, or the empirical norm related to the
cloud simulations. They are defined as follows:

K 2
(WM, i) = S v(HE (s 0) — ()) ,

W00 - w0) =5 (

where

1/2
Bl o= (/ |h|2<w,xi>ui,k,M<dw,dx») .

In fact, the norms £(., M, i) and &(., M, 1) are related through model-free concentration-
of-measures inequalities. This relation is summarized in the proposition below.
PROPOSITION 3.4. For each i € {0,...,N — 1}, we have

_) . 2028C2log(3M) .
S(K M,’L) < 2E(Yv M’ Z) + yT (V(dlm(£Y7')) + 1) ’

_) - 2028qC2%log(3M)
E(Z,M,i) < 2E(Z,M,i) + i
AM

(v(dim(Lz.)) +1).

Proof. 1t is clearly sufficient to show that

e (= (0 -uol,,)

N 2028C; log(3M)
M

yM) = wil)

(dim(Ly,) +1),

Stratified regression Monte-Carlo scheme for BSDEs 9

)< (|00 a0,)

=
2028¢C log(3M)
AM

which follows exactly as in the proof of [11, Proposition 4.10]. O

From the previous proposition, the controls on (Y, M,i) and £(Z, M,i) stem
from those on E(Y, M, i) and £(Z, M, i), which are handled in Theorem 3.5 below.
In order to study the impact of basis selection, we define the squared quadratic ap-
proximation errors associated to the basis in hypercube H; by

A00) a0

Vi

(dim(Lz,)+ 1),

TY := inf — TZ .= inf — 2.

i,k bELy k |¢) yz‘yk) i,k beLy |¢ 1‘%
These terms are the minimal error that can possibly be achieved by the basis Ly
(resp. Lz) in order to approximate the restriction y;(-)|x, (resp. zi(-)|n,) in the Lo
norm. Consequently, the global squared quadratic approximation error is given by

K
3.2 TY = v(Hp)TY, = inf — 2,
(3.2) ; (M)Tie = . ¢|ercy,k‘¢ yil,
K
3.3 T? =Y v(HW)TE = inf —z]?.
(3.3) 2 ()T =, ¢|ercz,k‘¢ L

As we shall see in Theorem 3.5 below, the terms T} and T are closely associated to
the limit of the expected quadratic error of the numerical scheme in the asymptotic
M — oo; for this reason, these terms are usually called bias terms.

Now, we are in the position to state our main result giving non-asymptotic error
estimates.

THEOREM 3.5 (Error for the Stratified LSMDP scheme). Recall the constants
Cy from Proposition 2.2, C33 from Lemma 3.3, and c(a,) from Proposition 2.1. For
each i € {0,...,N — 1}, define

— , v(dim(Ly,)) (v(dim(L7,)) + 1)gC2 log(3M)

gi) =23 A, (TjY + 303 5 o+ 12168L3A,
j=i

M

. v(dim(£Lz,))
+3T7 + 64C2 7)

3.3 AtM
1014C2? log(3M
+(T - ti)y—g() (v(dim(Ly..)) +1) + ~ (u(dim(L2.)) + 1)) -
M Ay
For Ay small enough such that LA, < ,/12—5 and AtL?c < 2880(2AV>5A,1(1+T) , we have,

forall0<i< N —1,

5 v(dim(Ly,))

dim(C 1)¢C2 log(3M
S(Y,M,z‘)gTiY+303_3T+12168L§At(V(m(£z.)) +1)4C, log(3M)

M
(3.4) + (14 15L3A)Cs 5E (i),

N-1
(3:5))_ A(Z, M, j) < Cs5(0),

j=i

where Cs.5 1= exp(2880%Ay)CA,1(1 + T)L?CT).

10 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

3.3. Proof of Theorem 3.5. We start by obtaining estimates on the local em-

pirical quadratic errors terms
2 2
e (). ())
ik, M ik, M
on each of the hypercubes Hy, (k=1,...,K). We first reformulate (2.2) with n = v

in terms of the Definition 3.1 of OLS. For each i € {0,...,N -1} and k € {1,..., K},
let v :=Po (AW;, X" ..., X3™)7!, so that we have

yM) = wil) ()= z()

¥i(+) |3, solution of OLS(Sy, (x;) , ES) y Vik)
N—

where Sy;(x;) := g(zn) Z (25, yj1(wj41), 25 (25)) Ay,

2i(+) |21, solution of OLS(Sz ;(w 771-) , Eéq) , Vik)

1
where Sz, (w,x;) = KSY,iH(Xi) w,
t

where w € RY, x; := (z4,...,2n) € (RY)N =+ and where Egl) is any dense separable
subspace in the R'-valued functions belonging to Lg(B(#y),v). The above OLS
solutions and those defined in (3.1) will be compared with other intermediate OLS
solutions given by

7/)Y,i,k(') solution of OLS(Sy,i(gi) R ,Cy,k s Vi,k,M)7
Yzik(-) solution of OLS(Sz (w,x;), Lzk , VikM)-
In order to handle the dependence on the simulation clouds, we define the follow-
ing o-algebras.
DEFINITION 3.6. Define the o-algebras
]:(*) = J(Cijq’k, . ;CNfl,k 1<EkL K),]:Z(’IkVI) =]:1(*) V O’(Xl-(i’k’m) :1<m< M)

K2

For every i € {0,...,N — 1} and k € {1,...,K}, let IEEA,;I) () (resp.]P’%C (1)) with
respect to]—'l(]]\f) Defining additionally the functions

&.4(0) =E (SPD (X)) — Sv4(X,) | Xi =2, FOD)
§zi(r) =E (S(Zf}f)(AWi7Xi) — Sz (AWLX,) | X; = x’]_—(M)> ’

now we are in the position to prove that

“(

(3.6) + 12168L3 A,

(3.7 E (

N 2 o dim(Ly k)
()|,,k) + 303.3T)

() — 200)

a0 -0,)
(dim(Lzx) + 1)gC; log(3M)
M)

2 A * 2 2 dim(ﬁz,k)
i,k,M> <Ti) +2E (|521()|Vk> + QQCS'3W'

, (M)]2
i) — y; ()M’M

><Tk+6]E(

+ 15L3AJE (

CIORE M0

Stratified regression Monte-Carlo scheme for BSDEs 11

In fact, the proof of (3.6)—(3.7) follows analogously the proof of [11, (4.12)—(4.13)]; in
order to follow the steps of that proof, one must note that the term R, of that paper
is equal to 1 here, Cj is equal to A, and 0 = 1. Moreover, one must exchange all
norms, OLS problems, o-algebras, and empirical functions from the reference to the
localized versions defined in the preceding paragraphs. Indeed, the proof method of
[11, (4.12)—(4.13)] is model free in the sense that it does not care about the distribution
of the Markov chain at time ¢;.

We now aim at aggregating the previous estimates across the strata and propa-
gating them along time. For this, let

v 5 v(dim(Ly,)) 5« (w(dim(Lz,.)) + 1)qC2 log(3M)
& (; l At (T + 305 3——— " + 121681} A, Y
7 o v(dim(Lz,))\ .
(3.8) TS 46905,)r],

where T'; := (1 +~vA;)? with v to be determined below. Next, defining
(3.9) v = 288¢{a,)Can(1+ T)L3.

and recalling that Athc < then v and A; satisfy

288c%,)CAA1(1+T)’

1
(3.10)max (7 X 12c(A Car1(1+T)L3, A x 12c Caa(1 +T)L2>

Gn\»—l
> =

Additionally, T'; < exp(yT) := Cs5 for every 0 < i < N. Now, multiply (3.6) and
(3.7) by v(H)AI'; and sum them up over ¢ and k to ascertain that

N-—-1 N-1

E Atg(x Ma])F] + § Atg(Zv M>])FJ
g=i j=i
N—-1 . 2
v(dim(L£ (v(dim(Lzk)) + 1)gC; log(3M)
< ;:i Ay (T +3C§3% +12168L7 A, i r;

+ZAt{<T +2qC§3M+2E(

T SO)> (1+ 15L3A?) + 6E (|5Y] |2)}rj

25012)) T

where we have used (1 + 15L3A7) < 3 (since LyA; < 2, and the term & from

(3.8) above. Next, from Proposition 2.1, we have
E(le,) +E (J&2,012) < e (B (167,531) + B (1€2,(X)F))

Furthermore, note that ({;‘/)j(X;)’”),ﬁgjj(X?’") :0 < j < N —1) solves a discrete
BSDE (in the sense of Appendix A.2) with terminal condition 0 and driver

(3.11) < & (i +62At((}g;’j(,)|i>+E(

N2 M v N2 Nz N
fer gy, 2) = FX g X7, 2D (X)) = F (X0 g (X0 2 (X)),

12 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

This allows the application of Proposition A.1, with the first BSDE (&5 ; (X;)’”), 37 (XJQ’”) :
0 <j < N —1), and the second one equal to 0: since Ly, = 0, any choice of v > 0 is
valid and we take v as in (3.9). We obtain

NZA (B (|&,O02) +E (I,)) T
. N-1
<6ca,)Car(1+1T) (+ At) L3 Z A,

Jj=t
M v v M N v
% |B (I (X910 = uim (7)R) + B (|05 = 2 (X)) | 1
Now, Proposition 2.1 yields to
(M v v M N v
E (I OG0 — s (OGP) + B (157057 = 5(X5)F)

)) 20280; log(3M)]
<2ca)EY,M,j+1)+E(Z, M, j)] + O B VA (v(dim(Ly,.)) + 1)
2028qC?2 log(3M))
+eay B (i (£2,)) 1)

where the last inequality follows from the concentration-measure inequalities in Propo-
sition 3.4. In order to summarize this, we define

N-1

E(i) = W Z AL ((dim(Ly,.)) +1) + Ai (v(dim(Lz,)) + 1))

t

and make use of (3.10), and that I'; <T';4; in order to ascertain that we have

> (= (j6,08) + 2 (1g,01) T,

N-1

<12¢fy,Can(l +T)(+A>L2 D ACEY, M, §) + E(Z, M, §))T; + E(i)
j=t
1 1 N-1
<5 %5 | 2o A EWM,)+ E(Z, M) Ty + E(0)
J=1

By plugging this into (3.11) readily yields to

N-1 N-1
S TAEY, M T+ Y AE(Z, M,)T
j=i j=i

N-1
< &(i) + % D ACEY, M, §) + E(Z, M, §))T; + E(i)

Stratified regression Monte-Carlo scheme for BSDEs 13

and therefore

N-1 N-1
(3.12) STAEY, M T+ Y AE(Z, M, §)T; < 261 (i) + E(9).
Jj=t Jj=t

This completes the proof of the estimate (3.5) on z as stated in Theorem 3.5, using
1<T; <Cs5and 285 (i) + &2(i) < C35E(4). It remains to derive (3.4). Starting from
(3.6), multiplying by v(Hy) and summing over k yields to

540 + a8 HnAE)

(

+ 15LF A (281 (i) + Ea(i)

(v(dim(Lz,.)) +1)qC; log(3M)
M

E(Y,M,q) <TY +6E (

(3.13) + 12168L3 A,

where we use the inequality (3.12) to control A.E(Z, M, i). Using the same arguments
. 2
(l&.()[2) by

as before, we upper bound E

N-1

1 - N F ,
6¢ia, Can (7 + At> L3 A (E(Y, M, j) + E(2,M,j))T;.

j=i

By additionally bounding (Y, M, j) and £(Z, M, j) using the concentration-measure
inequalities of Proposition 3.4 and plugging this in (3.13), we finally obtain

E(Y,M,i) < TV, + 303?-3% +15L3A, (2&1(i) + Ea(4))

+ 1916822, (L2) + 1)qC2 log(3M)
[IAY:

M
, 1 o [= _ . ‘
+ 7200, Can | 5+ A0) L] D ALEY M, j) + E(Z, M,) T; + E(i)
j=i

From (3.10) and (3.12), the last term in previous inequality is bounded by

1 1))
<4(1 + T) + 4(1 + T)) (251(1) + 52(7’) + 52(2)) < 81(2) +82(’L) < 251(1) + 52(2).

This completes the proof of (3.6), using again 2&; (i) + &2(i) < C3.5E(7). O

4. GPU implementation. In this section, we consider the computation of
yl(M)(~) for a given stratum Hjy and time point i. The calculation of sz)(~) is rather
similar, only requiring component-wise calculations to be taken into account, so that
we do not provide details. The theoretical description of the calculation was given in
63.1. In this section, we first describe the required computations to implement the
approximations with LP0O and LP1 local polynomials in §4.1, and then present their

implementation on the GPU in §4.2.

4.1. Explicit solutions to OLS in Algorithm 4.

14 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

LPO. This piecewise solution is given by the simple formula [13, Ch. 4]

M (M) (~¢ (4,k,m)
_, 5y (X
(41) yfj\/[)()‘Hk —]Cy <Zm—l Y,Jz\4(—z)))

Observe that there will be a local memory consumption of O(1) per hypercube to
store the simulations needed for the computation of SS(,{\f) (X§i7k7m)). Once added in
the sum (4.1), their allocation can be freed.

LP1. Let A be the RM @ R4t! matrix, the components of which are given
by A[m, j] = 1103(j) + X;Vijk’m)l{o}c(j), where XZ-(’iJfk’m) is the j-th component of
XUF™ and let S be the RM vector given by S[m] = S%I)(Xl(»i’k’m)). In order to

compute yl(M)(-)|Hk, we first perform a QR-factorization A = QR, where @ is and
RM @ RM orthogonal matrix, and R is an R™ ® R%*! upper triangular matrix. The
computational cost to compute this factorization is (d +1)% (M — (d + 1)/3) flops us-
ing the Householder reflections method [12, Alg. 5.3.2]. Using the form of LP1 and
the density of vy, we can prove that the rank of A is d + 1 with probability 1, i.e. R
is invertible a.s. (the OLS problem is non-degenerate).

Then, we obtain the approximation yEM) (1)|34, by computing the coefficients o =
(ag,...,aq) € R using the QR factorization and backward-substitution method
as follows:

d
(4.2) Ra=Q"S, 4™ k)=Tc, [a0+ ajm xz;(k) |

Jj=1

for any vector (z(k) = (z1(k),...,zqa(k)) in Hy. By using the Householder reflection
algorithm for computing the QR-factorization, there will be a local memory consump-
tion of O (M x (d + 1)) for the storage of the matrix A on each hypercube. This mem-
ory can be deallocated once the computation (4.2) is completed. We remark that the
memory consumption is considerably lower than other alternative QR-factorization
methods, as for example the Givens rotations method [12, Alg. 5.2.2], which requires
a memory consumption O(M?) to store the matrix Q. This reduced memory con-
sumption is instrumental in the GPU approach, as we explain in forthcoming §5.2.2.

4.2. Pseudo-algorithms for GPU. Algorithm 4 will be implemented on an
NVIDIA GPU device. The device architecture is built around a scalable array of
multithreaded Streaming Multiprocessors (SMs); each multiprocessor is designed to
execute hundreds of threads concurrently. To manage such a large amount of threads,
it employs a unique architecture called SIMT (Single-Instruction, Multiple-Thread).
The code execution unit is called a kernel and is executed simultaneously on all
SMs by independent blocks of threads. Each thread is assigned to a single processor
and executes within its own execution environment. Thus, all threads run the same
instruction at a time, although over different data. In this section we briefly describe
pseudo-codes for the Algorithm 4.

The algorithm has been programmed using the Compute Unified Device Archi-
tecture (CUDA) toolkit, specially designed for NVIDIA GPUs, see [17]. The code
was built from an optimized C code. The below pseudo-algorithms reflect this pro-
gramming feature. For the generation of the random numbers in parallel we took
advantage of the NVIDIA CURAND library, see [18].

Stratified regression Monte-Carlo scheme for BSDEs 15

The time loop corresponding to the backward iteration of Algorithm 4 is shown
in Listing 1; the kernel corresponds to the use of either the LPO or the LP1 basis. In
Listing 2, a sketch for the LPO kernel is given. Notice that we are paralellizing the
loop for any stratum index k € {1,..., K} in the Algorithm 4; the terms S)(,{\;[) (x;) and

S(ZJ’\? (w, x;) are computed in the compute_responses_i function, and the coefficients for

gvf)k() and zb(ZAf)k() are computed in compute_psi_Y and compute_psi_Z, respectively,

according to (4.1). Having in view an optimal performance, memory accesses to the
simulations, responses and regression coefficients are coalesced, see [17]. In Listing
3, the sketch for the LP1 kernel is given. Additionally to the tasks of the kernel in
Listing 2, each thread builds the matrix A and applies a QR factorization, as detailed

in §4.1. The coefficients for wg/z\;[)k() and Q/J(ZJ\/ZI)k() are computed according to (4.2).

int i
curandState xdevStates
Initialize devStates
Initialize n_blocks, n_threads_per_block
for (i=N—-1; i>=0; i—)
kernel_bsde<<<n_blocks ,n_threads_per_block >>>(i, devStates, ...)

LISTING 1
Backward iteration for i = N —1 to¢=0.

__global__ void kernel_bsde_LPO(int i, curandStatex devStates, ..
const unsigned int global_tid = blockDim.x % blockIdx.x 4+ threadldx.x
curandState localState = devStates[global_tid]
unsigned long long int bin
for (bin=global_tid; bin<K; bint+=n_blocks*n_threads_per_block) {

simulates_x(&localState , global_tid , bin, ...)
compute_responses_i(&localState , global_tid , i

c iy)
.)

L)

compute_psi_-Z(global_tid , bin
compute_psi-Y (global_tid , bin, i

devStates[global_tid] = localState

}

LISTING 2
Kernel for the approximation with LPO.

__global__ void kernel_bsde_LP1(int i, curandState xdevStates, ...)
const unsigned int global_tid = blockDim.x % blockldx.x + threadldx.x
curandState localState = devStates[global_tid]

unsigned long long int bin

for (bin=global_tid ; bin<K;bin+=n_blocks*n_threads_per_block) {
simulates_x(&localState , global_tid , bin,
compute_responses_i(&localState , global_tid, i, ...)

build_-d_-A (global_tid , d-A, ...)

qr(global_tid , d-A, ...)

compute_psi_-Z(global_tid , bin, i, d-A, ...)

compute_psi_-Y (global_tid , bin, i, d-A, ...)

devStates[global_tid] = localState

}

LISTING 3
Kernel for the approximation with LP1.

16 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

4.3. Theoretical complexity analysis. In this section, we assume that the
functions y;(+) and 2;(+) are smooth, namely globally Lipschitz (resp. C* and the first
derivatives are globally Lipschitz) in the LPO (resp. LP1) case. The strata will be
composed of uniform hypercubes of side length § > 0 in the domain [—L, L]¢, where
L =log(N)/u and p is the parameter of the logistic distribution. This choice ensures
v (RN\[-L,L]%) < 2dexp(—pL) = O(N™'). Our aim is to calibrate the numerical
parameters (number of simulations and number of strata) so that the error given in
Theorem 3.5 is O(N 1), where N is the number of time-steps. This tolerance error is
the one we usually obtain after time discretization with N time points [20, 8, 19]. In
the following, we focus on polynomial dependency w.r.t. IV, keeping only the highest
degree, ignoring constants and log(N) terms.

Squared bias errors T\, and T7; in (3.2)-(3.3). First, we remark that the ap-
proximation error of the numerical scheme, namely the error due to basis selection,
depends principally on the size § of strata. In the case of LPO, the squared bias er-
ror is proportional to the squared hypercube diameter plus the tail contribution, i.e.
O (6% + v (RY\[-L, L]")); to calibrate this bias to O(N '), we require § = O(N—/?).
In contrast, the squared bias in [~ L, L]¢ using LP1 is proportional to the fourth power
of the hypercube diameter, whence § = O(N*1/4). As a result, ignoring the log terms
the number of required hypercubes is

LP0O: K =O(N%?), LP1: K =O(N%%),

in both cases.

Statistical and interdependence errors. These error terms depend on the number
of local polynomials, as well as on the number of simulations. Indeed, denoting
K' = dim(Ly or z,.) the number of local polynomials and M the number of simulations
in the hypercube, then both errors are dominated by O (NK'log(M)/M), where the
factor N comes from the Z part of the solution (see £(¢) in Theorem 3.5). For LP0
(resp. LP1), K’ =1 or ¢q (resp. K’ =d+ 1 or g(d+ 1)). This implies to select

LPO: M =O(N?), LP1: M =O(N?),

again omitting the log terms.

Computational cost. The computational cost (in flops) of the simulations per
hypercube is equal to O(M x N), because we simulate M paths (of length N) of the
process X. The cost of the regression per hypercube is O (M x N), see §4.1, and thus
equivalent to the simulation cost. Putting in the values of M from the last paragraph,
the overall computational cost Ceost (sSummed over all hypercubes and time steps) is

LPO: C3Y = O(N*T/?), LP1: C&Y = O(N*H/4).

cost T cost T

This quantity is related to the computational time for a sequential system (CPU
implementation) where there is no parallel computing. For the GPU implementation,
described in §4.2, there is an additional computational time improvement since the
computations on the hypercubes will be threaded across the cores of the card. Thus,
the computational cost on GPU is

LPO : CGPU = O(N4+d/2)/CLoad factor, LP1: CGPU - O(N4+d/4)/CLoad factor-

cost T cost T

where the load factor Croad factor 1S ideally the number of threads on the device.
Finally, we quantify the improvement in memory consumption offered by the SR-
MDP algorithm compared to the LSMDP algorithm of [11]. This is a very important

Stratified regression Monte-Carlo scheme for BSDEs 17

improvement, because, as explained in the introduction, the memory is the key con-
straint in solving problems in high dimension. We only compare sequential versions
of the algorithms, meaning that the computational costs will be the same. The main
difference between the two schemes is then in the number of simulations that must
be stored in the machine at any given time. We summarize this in Table 1 below.

Algorithm Number of Computational
simulations cost
LPO LP1 LPO LP1
SRMDP N2 N2 NA+d/2 | NAt+d/4
LSMDP N2+d/2 N2+d/4 N4+d/2 N4+d/4
TABLE 1

Comparison of numerical parameters with or without stratified sampling, as a function of N.

In SRMDP, the shared memory is mainly related to storing coefficients repre-
senting the solutions on hypercubes, that is O(N x dim(Ly o z,.) x K); if one is
using the LP1 basis, one must also take into account the local memory consumption
M x (d+1) = O(N?) for the QR factorization, explained in §4.1. In contrast, the
memory consumption for LSMDP is mainly O(K x N?), which represents the number
of simulated paths of the Markov chains that must be stored in the machine at any
given time. We summarize the memory consumption of the two algorithms in Table
2.

Algorithm LPO LP1
SRMDP | NI+d/2 [NI+d/4y, N2
LSMDP | N2+d/2 N2+d/4

TABLE 2

Comparison of shared memory requirement as a function of N.

Observe that SRMDP requires N times less memory than LSMDP with the LPO
basis. This implicitly implies a gain of 2 on the dimension d that can be handled. On
the other hand, if the LP1 basis is used, the SRMDP requires O(N?%*) less memory
for d < 4 than LSMDP, and N times less memory for d > 4. Therefore, there is an
implicit gain of 4 in the dimension that can be handled by the algorithm.

5. Numerical experiments.

5.1. Model, stratification, and performance benchmark. We use the Brow-
nian motion model X = W (d = ¢). Moreover, the numerical experiments will
consider the performance according to the dimension d. We introduce the function
w(t,z) = exp(t + >_{_, x). We perform numerical experiments on the BSDE with
data g(z) = w(T,z)(1 + w(T,z))"* and

Flt2,9,7) = (; k> <y - 2;) ,

where z = (21, ...,2,). The BSDE has explicit solutions in this framework, given by
yi(x) = wty, 2)(1 4 w(ty,)™, 2i(2) = w(ty, x)(1 4 w(ts,)72,

where 2y, ;(z) is the k-th component of the ¢g-dimensional cylindrical function z;(x) €
RY.

18 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

The logistic distribution for Algorithm 4 is parameterized by p = 1. For the least-
squares Monte Carlo, we stratify the domain [—6.5,6.5]9 with uniform hypercubes.
To assess the performance of the algorithm, we compute the average mean squared
error (MSE) over 10 independent runs of the algorithm for three error indicators:

10®
MSEy max =4 107 max > |y(Riwm) — 98" (Rim)? ¢ .
m=1

0<i<N-—1

10° N—1
MS By =1 107N 3" ST yi(Rign) — 9™ (Rin) ¢

m=1 =0

10> N—1
MSEza = 10N 3" N7 2i(Rim) — 2 (R ¢

m=1 =0

where the simulations {R; ,,;i =0,...,N —1, m =1,...,10%} are independent and
identically v-distributed, and independently drawn from the simulations used for the
LSMC scheme. We parameterize the hypercubes according to the instructions given
in the theoretical complexity analysis, see §4.3. In particular, we consider different
values of N and always set K = O(N%?) in LPO (resp. O(N%*) in LP1) and
M = O(N?). Note, however, that we do not specify the value of §, but rather the
number of hypercubes per dimension K1/, which we denote #C in what follows; this
being equivalent to setting §, but is more convenient to program. As we shall illustrate,
the error converges as predicted as N increases, although the exact error values will
depend on the constants that we choose in the parameterization of K and M.

5.2. CPU and GPU performance. In this section, several experiments based
on §5.1 are presented to assess the performance of CUDA implementation of Algorithm
4; the pseudo-algorithms are given in §4.2. We shall compare its performance to a
version of SRMDP implemented only on CPU, so that the computations across the
hypercubes are performed sequentially. Moreover, in order to test the theoretical
results of §4.3, we compare the performance of the two algorithms according to the
choice of the basis functions, the impact of this choice on the convergence of the
approximation of the BSDE, and the impact of this choice on the computational
performance in terms of computational time and memory consumption.

There are two types of basis functions we investigate: LPO in §5.2.1, and LP1 in
§5.2.2. As explained in §4.3, the LPO basis is highly suited to GPU implementation
because it has a very low memory requirement per thread of computation. On the
other hand, it has a very high global memory requirement for storing coefficients. This
represents a problem in high dimensions because one needs many coefficients to obtain
a good accuracy. On the other hand, the LP1 basis involves a higher cost per thread,
although requires a far lower global memory for storing coefficients; this implies that
the impact of the GPU implementation is lower in moderate dimensional problems,
but that one can solve problems in higher dimension. Moreover, the full performance
impact of the GPU implementation on the LP1 basis is in high dimension, where
the number of strata is very high and therefore the GPU is better saturated with
computations. We illustrate numerically all of these effects in the following sections.

The numerical experiments have been performed with the following hardware and
software configurations: a GPU GeForce GTX TITAN Black with 6 GBytes of global
memory (see [16] for details in the architecture), a recent Intel Xeon CPU E5-2620 v2

Stratified regression Monte-Carlo scheme for BSDEs 19

clocked at 2.10 GHz with 62 GBytes of RAM, CentOS Linux, NVIDIA CUDA SDK 7.0
and GNU C compiler 4.8.2. The CPU programs were compiled with and without -03
flag (which takes advantage of CPU vectorial extensions); the compilation without
-03 flag is closer to the pure sequential version. Since the CUDA code has been
derived from an optimized C code, both codes perform exactly the same operations,
and their performance can be fairly compared according to computation time alone;
the CPU time (CPU), the CPU time using -03 flag (VE) and the GPU time (GPU)
will all be measured in seconds in the tables of results tables.

5.2.1. Examples with the approximation with LPO local polynomials.
All examples will be run using a 256 x 64 threads configuration. In Table 3 we show

results for d = 4, with #C= L4\/NJ and M = N2. Except for the case A; = 0.2

where there are not enough strata to fully take advantage of the GPU, the GPU
implementation provides a significant reduction in the computational time: the GPU
speed-up reaches the value 521 (without -03 flag). Moreover, the speed-up improves
as we increase the #C. Those cells filled with the symbol * represent CPU times that
are prohibitive in terms of computational time.

[At [#C [M H MSEy max [MSEy ay [MSEz . [CPU [VE [GPU]
0.2 8 25 —3.712973 | —3.774071 | —0.964842 1.74 1.25 2.00
0.1 | 12 100 —4.066741 | —4.303750 | —1.607104 112.64 78.76 2.20
0.05 | 17 400 —4.337988 | —4.698645 | —2.302092 | 6462.19 | 4352.33 12.39
0.02 | 28 | 2500 —4.472564 | —4.988069 | —3.225411 * * | 3070.92

TABLE 3

LPO local polynomials, d = 4, #C= {4\/ NJ , M = N2,

Tables 4 and 5 show results for d = 6 with #C= [\/NJ and #C= P\/NJ, re-

spectively. Convergence is clearly improved by doubling #C. In Table 5 the case of
A; = 0.02 is not shown due to insufficient GPU global memory. In Table 4, the GPU
speed-up reaches 531, whereas in Table 5 it reaches 558 (without -03 compiler flag).
As in Table 3, the increase in the speed-up is explained due to the increased number
of hypercubes, thus demonstrating how important it is to have many hypercubes in
the GPU implementation. However, the finer basis requires 2° times as much memory
for storing coefficients.

[Ar [#C [M || MSEymax | MSEya | MSEgzay | CPU | VE | GPU |
02] 2 25 —2.392320 | —2.451332 | —0.431059 0.04 0.03 1.99
01| 3] 100 —2.440274 | —2.500775 | —1.096603 5.77 4.19 2.05
0.05 | 4 | 400 —2.829757 | —2.905192 | —1.687142 451.18 329.40 3.15
0.02 | 7 | 2500 —3.235130 | —3.539011 | —2.557686 | 464444.02 | 317954.67 | 874.25

TABLE 4
LPO local polynomials, d = 6, #C= {\/ NJ , M = N2,

Table 6 shows that the algorithm can work for d = 11 in several seconds with
a reasonable accuracy in a GPU. The corresponding speed-up with respect to CPU
version is around 400.

5.2.2. Examples with the approximation with LP1 local polynomials.
In this section we show the results corresponding to the approximation with the LP1
basis. Compared to LPO, this basis consumes much less global memory to store

20 E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

[At [#C [M H MSEy max [MSEy,ay [MSEz . [CPU [VE [GPU]
0.2 4 25 —2.707882 | —2.784022 | —0.477751 2.52 1.97 1.94
0.1 6 | 100 —3.195937 | —3.294488 | —1.133834 374.19 263.91 2.44
0.05 8 | 400 —3.505867 | —3.664396 | —1.795697 | 29172.89 | 20998.77 | 52.20

TABLE 5

LPO local polynomials, d = 6, #C:P\/ NJ , M = N2,

[Ar [#C [M [MSEymax | MSEyay | MSEzay | CPU | VE | GPU |
02] 2 25 —2.152253 | —2.202357 0.211590 2.26 1.69 1.992
0.1 [3] 100 —2.144843 | —2.267742 | —0.469759 | 2541.45 | 1908.24 6.29
0.05 | 4 | 400 —2.484169 | —2.633602 | —1.070096 * * | 2108.64

TABLE 6

LPO local polynomials, d = 11, #C= {\/ NJ , M = N2,

coeflicients, because it requires far fewer hypercubes, see §4.3. On the other hand, the
approximation with LP1 basis demands higher local memory due to the storage of a
large matrix for each hypercube, as explained in §4.3. This may have an impact on
the computational time on the GPU: recalling from §4.2 the GPU handles multiple
hypercubes at any given time, each one requiring the storage of a matrix A, the global
memory capacity of the GPU device restricts the number of threads we can handle
at any given time. This issue is much less significant with the LPO basis. In order
to optimize the performance of the LP1 basis, we must minimize the local memory
storage. We implement the Householder reflection method for QR-factorization, [12,
Alg. 5.3.2]. For this, we must store a matrix containing M x (d + 1) = O(N?)
floating point values per thread on the GPU memory. Nonetheless, in all subsequent
examples, we are able to use the highly efficient 256 x 64 thread configuration on the
GPU. This leads to high speed-ups not only compared to the sequential code, but
also compared with the LPO basis. Moreover, thanks to the reduced global memory
storage for coefficients, we are able to work in a rather high dimension d = 16 whilst
maintaining an optimal thread configuration; this was not the case in LPO.

REMARK 5.1. There are many methods to implement QR-factorization. How-
ever, the choice of method has a substantial impact on the performance of the GPU
implementation. For example, the Givens rotation method [12, Alg. 5.2.2] requires
the storage of an M x M matriz, which corresponds to O(N*) floating points. This
is rather more than the required O(N?) for the Householder reflection method given
in Section 4.1. Therefore, the Givens rotation method would be far slower when im-
plemented on a GPU than the Householder reflection method, because it may not be
possible to use an optimal thread configuration.

REMARK 5.2. In the forthcoming examples, we use more simulations per stratum
for the LP1 basis compared to the equivalent results for LPO. This is to account for
the additional statistical and interdependence errors, as explained in §4.3.

In Table 7, we present results for d = 4. These results are to be compared
with Table 3, where in particular the MSEy ,, results are closer line to line. The
computational time is substantially improved for the CPU and VE calculations. On
the other hand, the GPU performance is better only for A; = 0.02. Also note that,
unlike for the Z component, the accuracy for the Y component is substantially better
for the LP1 basis than for the LPO one. The difference in the accuracy results
between the Y and Z components is likely explained by the fact that the function

Stratified regression Monte-Carlo scheme for BSDEs 21

x +— z;(x) is rather flat, so it is much better approximated by LPO basis functions
than x +— y;(x). The GPU speed-up reaches 65.

[Ay [#C] M || MSEymax | MSEyay | MSEgz.y | CPU | VE [GPU |
0.2] 3 125 —4.021483 | —4.131725 | —0.900286 0.24 0.18 2.28
01| 5 500 —4.290881 | —4.695769 | —1.551480 22.04 15.15 3.46
0.05 | 7 | 2000 —4.541253 | —5.022405 | —2.281332 1161.68 789.92 23.22
0.02 | 10 | 12500 —4.574551 | —5.143310 | —3.228237 | 170855.89 | 113131.26 | 2614.86

TABLE 7
LP1 local polynomials, d = 4, #C= {3\/ dvN — SJ , M = (d+1)NZ2.

Next, results for d = 6 are shown. Thus, we compare Table 8 below with Table 5.
Again, for a given precision on the Z component of the solution, we observe substantial
improvements in the sequential and vectorized codes, but no such gains on the GPU
version. In contrast, the accuracy of the Y approximation is, as in the d = 4 case,
substantially better. Moreover, whereas we were not able to do computations for
Ay = 0.02 with the LPO basis due to insufficient GPU memory, we are now able to
make these calculations with the LP1 basis. The GPU speed-up reaches 75, which is
lower than the LPO basis speed-up factor, as expected.

[Ar [#] M] MSEymax | MSEy,a | MSEz., | CPU | VE] GPU]
02 2 175 [—3.504153 | —3.668801 | —0.461077 0.39 0.25 2.45
01 3 700 || —3.804091 | —3.911488 | —1.133263 56.61 37.39 5.10
0.05 | 4] 2800 || —4.075928 | —4.231639 | —1.791519 | 4422.97 [2795.09 58.60
0.02 | 6 [17500 || —3.809734 | —4.529827 | —2.689432 X * | 43745.92

TABLE 8

LP1 local polynomials, d = 6, #C:ll.S\/ dvN — 3J , M = (d+1)N2.

In the high dimensional d = 11 setting shown in Table 9, we compare with Table
6. We observe a speed-up of order 125 compared to the sequential implementation.

[A: [#C | M [MSEymax | MSEyay | MSEz.av | CPU | VE | GPU |
0.2] 22000 [[—3.271648 | —3.368051 | —1.455388 290.84 178.24 8.05
0.2 | 3]4000 [—3.269004 | —3.403994 | —1.975300 | 51043.88 | 32251.24 | 408.04

TABLE 9

LP1 local polynomials, d = 11.

In the remainder of this section, we present results in dimension d = 12 to d = 16
(in Tables 10, 11, 12, 13 and 14, respectively) for which the capacity of the GPU is
maximally used to provide the highest possible accuracy. The GPU speed-up reaches
up to 118 compared to the sequential implementation.

Appendix.

A.1. Proof of Proposition 2.1. It is known from [9, Proposition 3.1] that it is
sufficient to show that there is a continuous C, : R — [1, 00) such that, for all A > 0,
A€ [0,A], and y € R?,

(A1) Plos. () </ (4 v exp(—)z < 0, (A, (1)
: CP(A) — Rd plogis. Y p 92 — ~p plogis. Y)-

22

E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

[A: [#C [M]| MSEymax | MSEyav | MSEgz., | CPU | VE [GPU |
0.2 2 | 2000 —3.111153 | —3.232051 | —1.297737 646.55 394.63 10.03
0.2 3 | 4000 —3.214096 | —3.272644 | —1.821935 | 174473.26 | 108795.96 | 2086.94

TABLE 10
LP1 local polynomials, d = 12.

[A; [#¢] M [MSEymax | MSEyay | MSEza | CPU | VE [GPU |
0.2 2 | 3000 —2.995413 | —3.153302 | —1.460911 | 2129.23 | 1304.44 | 18.55
0.2 2 | 4000 —3.022855 | —3.158471 | —1.649632 | 2854.72 | 1749.02 | 24.24

TABLE 11

LP1 local polynomials, d = 13.

The proof is given for d = 1; generalization to higher dimensions is obvious be-
cause the multidimensional density is just the product of the one-dimensional densities
over the components. Moreover, for simplicity the proof is given for 4 = 1, as gen-
erality in this parameter does not change the proof. For simplicity, we will write

(1) in what foll
Plogis.(¥) = p(x) in what follows.
In terms of the hyperbolic cosine function, the density can be expressed as

-1

(x) = exp(=2) 5 = (exp(g) Jrexp(fg))_1 = (2 cosh(%))

(1+ exp(—=z))

We define I(y, \) := 2 [, p(y + 2V/\) exp(—%)dz7 so that from the relation cosh(z +
y) = cosh(x) cosh(y) + sinh(x) sinh(y), we have that

exp(—%)
#) + sinh(§) sinh (=¥

dz := I+(y7)\) + I—(y7 >‘)

3

I(y,\) =
®2) /Rcosh(g)cosh(2)

where I _ denotes respectively the integral on RT and R™.
Upper bound. Suppose thaty > 0. Then, if z > 0, it follows that sinh(y/2) sinh(zﬁ/Q) >
0, whence

2
exp(—%) 2
I+(y,)\)§/ 2 dz:2/ e” 2dz x p(y).
Ry cosh(¥) cosh(z‘f) R
On the other hand, if z < 0, then sinh(%) sinh(zéﬁ) > cosh(%) sinh(z\Qa)7 therefore
2
—Z 2 hY
I_(y,)\)g/ exp()\z) : 7 dz:?/ exp (2'2 Z[) dz x p(y).
R- cosh(§){cosh(%5>) + sinh(=%=)} _

Therefore, if y > 0 then I(y,\) < 2 [, eXp(M)dz x p(y). Observing that
I(y, \) is symmetric in y, thus the upper bound (A.1) is proved.

Lower bound. Suppose that y > 0. For z < 0, observe that sinh(¥) sinh(#) <0,
whence

exp(—

dizz [S0
) B cosh(22)

2
exp(—%)

I-(y,A) = /
R_ cosh(§) cosh(z‘g

dz x p(y).

Stratified regression Monte-Carlo scheme for BSDEs 23

[At [#C [M H MSEy max [MSEy ay [MSEz . [CPU [VE [GPU]
0.2 2 | 2000 —3.011673 | —3.092870 | —1.026128 | 3111.37 | 1915.67 | 27.36
0.2 2 | 4000 —3.029663 | —3.105833 | —1.558935 | 6244.38 | 3904.64 | 80.26

TABLE 12

LP1 local polynomials, d = 14.

[Ai[#C] M || MSEymax | MSEy,ay | MSEza., | CPU | VE [GPU |
[0.2] 275000 [[—2.981181 [—3.106590 | —1.574532 [17246.62 [10522.20 | 226.37 |
TABLE 13

LP1 local polynomials, d = 15.

For z > 0, we use that sinh(%) sinh(“{’\) < cosh(%) sinh(z‘f) to obtain

2

Li(y,\) > / op(3) dz

Ry cosh(%){cosh(#) + sinh(“f\)}

2
> 2/ exp <—Z — Zﬂ) dz x p(y).
- 2 2

The result on y < 0 follows again from the symmetry of I(y, \). O

A.2. Stability results for discrete BSDE. We recall standard results bor-
rowed to [11] and adapted to our setting, they are aimed at comparing two solutions
of discrete BSDEs of the form (2.1) with different data. Namely, consider two discrete
BSDEs, (Y14, Z1,i)o<i<n and (Y23, Z2)o<i<n, given by

N-1

Yii =Ei | 9(Xn) + D i (X, Vi1, Zi)A |

j=i

N-1
AZyi =Ei [(9(Xn)+ D f1i(X5, Vg1, Z) A)AW; |
j=it1

fori e {0,...,N —1}, 1 €{1,2}.
To allow the driver fi; to depend on the clouds of simulations (necessary in the
analysis), we require that it is measurable w.r.t. Fr instead of F;, as usually.
PROPOSITION A.1. Assume that (Ag) and (Ax)hold. Moreover, for each i €
{0,...,N — 1}, assume that f1,(X;,Y1,i+1,Z1,) € Lao(Fr) and fo satisfies (Ag) with
constants Ly, and Cy,. Then, for any v € (0,+00) satisfying 6q(A, + %)L?«z <1, we
have for 0 <i < N

N-1
Y1, — Ya,l’Ti + Z AE; (|21 — 22

j=i

)Ty

N-—1
1
<3Caa (7 + At> Z AE; (1f1,5(X5, Y1541, Z1,5) — f2.5(X5, Y1541, Z05) %) T,
j=i

where Ty := (1 +vA)" and Cyaq :=2q + (1 +T)eT/?.

E. Gobet, J. G. Lépez-Salas, P. Turkedjiev and C. Vazquez

[A; [#C] M [MSEymax | MSEyay | MSEz.ay | CPU | VE | GPU |
[02] 276000 [—2.795353 | —2.959375 | —1.588716 [45587.17 | 27507.47 | 669.28 |
TABLE 14

[20]

LP1 local polynomials, d = 16.

REFERENCES

L. ABBAS-TURKI AND B. LAPEYRE, American options pricing on multi-core graphic cards, in
Business Intelligence and Financial Engineering, 2009. BIFE’09. International Conference
on, IEEE, 2009, pp. 307-311.

L. ABBAS-TURKI, S. VIALLE, B. LAPEYRE, AND P. MERCIER, High dimensional pricing of exotic
European contracts on a GPU cluster, and comparison to a CPU cluster, in Parallel &
Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, IEEE, 2009,
pp. 1-8.

C. BENDER AND J. STEINER, Least-squares Monte Carlo for BSDEs, in Numerical Methods
in Finance, R. Carmona, P. Del Moral, P. Hu, and N. Oudjane, eds., Series: Springer
Proceedings in Mathematics, Vol. 12, 2012, pp. 257-289.

B. BOUCHARD AND X. WARIN, Monte-Carlo valuation of American options: facts and new
algorithms to improve existing methods, in Numerical Methods in Finance, R. Carmona,
P. Del Moral, P. Hu, and N. Oudjane, eds., Series: Springer Proceedings in Mathematics,
Vol. 12, 2012, pp. 215-255.

P. BRIAND AND C. LABART, Simulation of BSDEs by Wiener Chaos Exzpansion, Annals of
Applied Probability, 24 (2014), pp. 1129-1171.

E. GOoBET AND C. LABART, Solving BSDE with adaptive control variate, STAM Numerical
Analysis, 48 (2010), pp. 257-277.

E. GoBET, J-P. LEMOR, AND X. WARIN, A regression-based Monte Carlo method to solve back-
ward stochastic differential equations, Annals of Applied Probability, 15 (2005), pp. 2172—
2202.

E. GOBET AND A. MAKHLOUF, La-time regularity of BSDEs with irregular terminal functions,
Stochastic Processes and their Applications, 120 (2010), pp. 1105-1132.

E. GOBET AND P. TURKEDJIEV, Adaptive importance sampling in least-squares Monte Carlo
algorithms for backward stochastic differential equations, Preprint, hal-01169119, (2015).

, Approzimation of BSDEs using Malliavin weights and least-squares regression, To ap-

pear in Bernoulli, (2015).

, Linear regression MDP scheme for discrete backward stochastic differential equations
under general conditions, To appear in Mathematics of Computation, (2015).

G. H. GoLuB aAnND C. F. VAN LoOAN, Matriz computations, Johns Hopkins Studies in the
Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, third ed., 1996.

L. GYORFI, M. KOHLER, A. KRzZYZAK, AND H. WALK, A distribution-free theory of nonpara-
metric regression, Springer Series in Statistics, Springer-Verlag, New York, 2002.

C. LABART AND J. LELONG, A parallel algorithm for solving BSDEs, Monte Carlo Methods
Appl., 19 (2013), pp. 11-39.

J-P. LEMOR, E. GOBET, AND X. WARIN, Rate of convergence of an empirical regression method
for solving generalized backward stochastic differential equations, Bernoulli, 12 (2006),
pp. 889-916.

NVIDIA, NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110/210.

———, CUDA C Programming Guide, March 2015.

, CURAND Library, March 2015.

P. TURKEDJIEV, Two algorithms for the discrete time approximation of Markovian backward
stochastic differential equations under local conditions, Electronic Journal of Probability,
20 (2015).

J. ZHANG, A numerical scheme for BSDEs, The Annals of Applied Probability, 14 (2004),
pp- 459-488.

