Pierre Picard 
email: pierre.picard@polytechnique.edu
  
Equilibrium in insurance markets with adverse selection when insurers pay policy dividends

We show that an equilibrium always exists in the Rothschild-Stiglitz insurance market model with adverse selection and an arbitrary number of risk types, when insurance contracts include policy dividend rules. The Miyazaki-Wilson-Spence state-contingent allocation is an equilibrium allocation (de…ned as a set of type-dependent lotteries sustained at a symmetric equilibrium of a market game), and it is the only one when out-of-equilibrium beliefs satisfy a robustness criterion. It is shown that stock insurers and mutuals may coexist, with stock insurers o¤ering insurance coverage at actuarial price and mutuals crosssubsidizing risks.

Introduction

The fact that no equilibrium may exist in the [START_REF] Rothschild | Equilibrium in competitive insurance markets: an essay on the economics of imperfect information[END_REF] model of insurance markets under adverse selection has been at the origin of an abundant literature in economic theory. In one way or another, most articles in this area have moved away from the basic premise of the Rothschild-Stiglitz approach. This approach consisted of modelling the strategic interactions between insurers who simultaneously o¤er contracts under hidden information about the risk types of insurance seekers.

An important avenue of research that followed the seminal contribution of [START_REF] Rothschild | Equilibrium in competitive insurance markets: an essay on the economics of imperfect information[END_REF] has its origin in the article by [START_REF] Wilson | A model of insurance markets with incomplete information[END_REF]. It focuses attention on competitive mechanisms when insurers interact in a dynamic way. This includes the "anticipatory equilibrium" of [START_REF] Miyazaki | The rat race and internal labor markets[END_REF], [START_REF] Wilson | A model of insurance markets with incomplete information[END_REF] and [START_REF] Spence | Product di¤erentiation and performance in insurance markets[END_REF], the "reactive equilibrium" of [START_REF] Riley | Informational equilibrium[END_REF], and the variations on the equilibrium concept introduced by [START_REF] Hellwig | Some recent developments in the theory of competition in markets with adverse selection[END_REF] and [START_REF] Engers | Market equilibrium with hidden knowledge and self selection[END_REF], and in more recent papers surveyed by [START_REF] Mimra | New developments in the theory of adverse selection in competitive insurance[END_REF], in particular [START_REF] Mimra | A game-theoretic foundation for the Wilson equilibrium in competitive insurance markets with adverse selection[END_REF], and [START_REF] Netzer | A game theoretic foundation of competitive equilibria with adverse selection[END_REF]. Another line of research, illustrated by the works of [START_REF] Dubey | Competitive pooling: Rothschild and Stiglitz reconsidered[END_REF] and [START_REF] Bisin | E¢ cient competitive equilibria with adverse selection[END_REF] among others, departs from the strategic dimension and considers atomistic insurance markets under adverse selection in line with the approach by [START_REF] Prescott | Pareto optima and competitive equilibria with adverse selection and moral hazard[END_REF].

Unlike these two strands of research, 1 our purpose is to reexamine the equilibrium issue in a perspective that remains framed within the initial Rothschild-Stiglitz approach. This requires a few preliminary explanations. [START_REF] Rothschild | Equilibrium in competitive insurance markets: an essay on the economics of imperfect information[END_REF] considered a simple setting in which each insurer is constrained to o¤ering a single contract, with a free entry equilibrium concept, but they emphasized that such an equilibrium could be viewed as a Nash equilibrium of a game in which insurers interact by o¤ering contracts simultaneously. They also noted that a next step was to test a less restrictive de…nition of insurers'strategies.

In particular, they observed that allowing insurers to o¤er menus of contracts would make the condition under which an equilibrium exists even more restrictive. When commenting on the approach by [START_REF] Wilson | A model of insurance markets with incomplete information[END_REF], they noted that "the peculiar provision of many insurance contracts, that the e¤ective premium is not determined until the end of the period (when the individual obtains what is called a dividend), is perhaps a re ‡ection of the uncertainty associated with who will purchase the policy, which in turn is associated with the uncertainty about what contracts other insurance …rms will o¤er". In other words, many insurance contracts, mostly those o¤ered by mutuals, have a participating dimension which should not be ignored when we seek to understand how competition works in the real word. 2 Our objective in the present paper is to move forward in that direction. In a …rst approach [START_REF] Picard | Participating insurance contracts and the Rothschild-Stiglitz equilibrium puzzle[END_REF], we have studied how allowing insurers to o¤er either participating or non-participating contracts, or in other words to act as mutuals or as stock insurers,3 a¤ects the conclusion about the existence of an equilibrium if all other asand [START_REF] Rosenthal | Mixed-strategy equilibrium in a market with asymmetric information[END_REF], at a mixed-strategy equilibrium, a potential entrant could make positive pro…t. This reinforces the fundamental conclusion of Rothschild and Stiglitz, that is, that an entry-deterring equilibrium may not exist.

2 Mutuals di¤er according to the role of the premium charged at the start of each policy period.

Advance premium mutuals set premium rates at a level that is expected to be su¢ cient to pay the expected losses and expenses while providing a margin for contingencies, and policyholders usually receive dividends. In contrast, assessment mutuals collect an initial premium that is su¢ cient only to pay typical losses and expenses and levy supplementary premiums whenever unusual losses occur.

sumptions of the Rothschild-Stiglitz model are unchanged. An equilibrium (within the meaning of Rothschild and Stiglitz) always exists in such a setting, and the socalled Miyazaki-Wilson-Spence (MWS) allocation is a state contingent equilibrium allocation. Furthermore, mutuals o¤ering participating contracts is the corporate form that emerges in markets where cross-subsidization provides a Pareto-improvement over the Rothschild-Stiglitz separating pair of contracts, a case where no equilibrium exists in the standard Rothschild-Stiglitz model. However, these conclusions were reached under quite restrictive assumptions: we postulated that there were only two risk types (high risk and low risk), as in the initial Rothschild-Stiglitz model, and we restricted attention to linear policy dividend rules that allow insurers to distribute a …xed proportion of their aggregate underwriting pro…t to policyholders. Furthermore, we did not present conditions under which a unique equilibrium allocation exists. The objective of the present paper is to reexamine these issues in a setting with an arbitrary number of risk types and a more general de…nition of admissible policy dividend rules, and also to obtain conditions under which there is a unique equilibrium allocation.

It turns out that, beyond the extended validity of our conclusions, considering an arbitrary number of risk types provide an endogenous structure of corporate forms in the insurance industry: mutuals emerge for risk type subgroups that require crosssubsidization, while stock insurers and mutuals may provide coverage to subgroups without cross-subsidization. We will thus explain why the coexistence of mutuals and stock insurers is a natural outcome of competitive interactions in insurance markets, porate form (mutuals or stocks) is of course an oversimpli…cation of the insurance market. Firstly, insurers may o¤er participating and non-participating contracts simultaneously. In particular, most life insurance contracts include pro…t participation clauses, even in the case of stock insurers. Furthermore, whatever the corporate structure, the participation of policyholders in pro…t may take other forms than policy dividends: in particular, it may be in the form of discounts when contracts are renewed, which is a strategy available to stock insurers and mutuals. In addition, the superiority of one corporate form over another may also re ‡ect other factors, including agency costs and governance problems.

a conclusion that …ts with the facts observed in many countries. 4 Finally, we will also examine the issue of equilibrium uniqueness, and we will highlight a robustness criterion under which there is a unique equilibrium. However, considering an arbitrary number of types and non-linear policy dividend rules and extending the approach to conditions under which a unique equilibrium exists requires a more formal approach than the geometry-based reasoning that is su¢ cient for more simple cases, such as the seminal article of [START_REF] Rothschild | Equilibrium in competitive insurance markets: an essay on the economics of imperfect information[END_REF].

The rest of this article is organized as follows. Section 2 presents our setting, which is an insurance market under adverse selection with an arbitrary number of risk types, where insurance contracts may include policy dividend rules. Section 3 is the core of the paper: it analyzes the market equilibrium by de…ning a market game and an equilibrium of this game, as well as the MWS allocation in the manner of [START_REF] Spence | Product di¤erentiation and performance in insurance markets[END_REF]. We show that this allocation is sustained by a symmetric equilibrium of the market game and, more speci…cally, that it may be sustained by participating contracts for subgroups with cross-subsidization and non-participating contracts in the other cases. Finally, we show that the MWS allocation is the only equilibrium allocation under a robustness criterion derived from evolutionary stability criterions in games with a continuum of players. Section 4 concludes. Proofs are in the Appendix.

The setting

We consider a large population represented by a continuum of individuals, with mass 1, facing idiosyncratic risks of having an accident. 5 All individuals are risk averse: 4 The mutual market share is over 40% in Japan, France and Germany. It is almost 50% in the Netherlands and it is over 60% in Austria. In the US, it reached 36.3% in 2013. These aggregate …gures mask important disparities between the life and non-life lines of business. 5 The word "accident" is taken in its generic meaning: it refers to any kind of insurable loss, such as health care expenditures or …re damages.

they maximize the expected utility of wealth u(W ); where W denotes wealth and the (twice continuously di¤erentiable) utility function u is such that u 0 > 0 and u 00 < 0:

If no insurance policy is taken out, we have W = W N in the no-accident state and W = W A in the accident state; A = W N W A is the loss from an accident. Individuals di¤er according to their probability of accident , and they have private information on their own accident probability. There are n types of individuals, with = i for type i with 0 < n < n 1 < ::: < 1 < 1. Hence, the larger the index i, the lower the probability of an accident. i is the fraction of type i individuals among the whole population with P n i=1 i = 1. Insurance contracts are o¤ered by m insurers (m 2) indexed by j = 1; :::; m who may o¤er participating or non-participating contracts. In other words, insurers are entrepreneurs who may be stock insurers or mutual insurers. Stock insurers pool risks between policyholders through non-participating insurance contracts, and they transfer underwriting pro…t to risk-neutral shareholders. Mutual insurers have no shareholders: they share risks between their members only through participating contracts. Insurers o¤er contracts in order to maximize their residual expected pro…t (i.e. the expected corporate earnings after policy dividends have been distributed). 6 We assume that each individual can take out only one contract. An insurance contract is written as (k; x), where k is the insurance premium and x is the net payout 6 Thus, the insurance corporate form is a consequence of the kind of insurance contracts o¤ered at the equilibrium of the insurance market. It is not given ex ante. The underwriting activity as well as all other aspects of the insurance business (e.g. claims handling) are supposed to be costless. Insurers earn …xed fees in a competitive market. The mere fact that they may transfer risks to risk-neutral investors leads them to maximize the expected residual pro…t. If an insurer could increase its residual expected pro…t by o¤ering other insurance policies, then it could contract with risk neutral investors and secure higher …xed fees. Note that the residual pro…t of a mutual is zero if pro…ts are distributed as policy dividends or losses are absorbed through supplementary premiums. In that case, if the mutual insurer could make positive residual pro…t, then he would bene…t from becoming a stock insurer.

in case of an accident. Hence, x+k is the indemnity. Participating insurance contracts also specify how policy dividends are paid or supplementary premiums are levied. We will restrict attention to deterministic policies in which dividend rules de…ne the (nonrandom) policy dividend D as a function of average pro…ts and of the number of policyholders, for each contract o¤ered by the insurer (see below for details). 7 The expected utility of a type i policyholder is then written as:

Eu = (1 i )u(W N k + D) + i u(W A + x + D):
Our objective is to characterize a subgame perfect Nash equilibrium of a two stage game called "the market game", where insurers can o¤er participating or nonparticipating contracts. At stage 1, insurers o¤er menus of contracts, and at stage 2 individuals respond by choosing the contracts they prefer among the o¤ers made by the insurers.

It is of utmost importance to note that the choices of individuals depend on the intrinsic characteristics of the contracts that have been o¤ered at stage 1, but also on expected policy dividends. Expected policy dividends should coincide with true dividends (for contracts that are actually chosen by some individuals), that are themselves dependent on the distribution of risk types among policyholders for each contract.

Thus, at stage 2, the participating nature of contracts induces a form of interdependence between individuals'strategies that is absent in the standard model with only non-participating contracts.

At stage 1, the strategy of insurer j is de…ned by a menu of n contracts, one for each type of individual, written as C j = (C j 1 ; C j 2 ; :::; C j n ; D j (:)), where C j h = (k j h ; x j h ) speci…es the premium k j h and the net indemnity x j h . D j (:) is a policy dividend rule, i.e., a way to distribute the net pro…ts made on C j . We write D j (:) = (D j 1 (:); :::; D j n (:)),

where D j h (N j 1 ; P j 1 ; :::; N j n ; P j n ) denotes the policy dividend paid to each individual who has chosen contract C j h when N j i is the fraction of individuals in the whole population who have chosen C j i with underwriting pro…t (the di¤erence between premium and indemnity) per policyholder P j i , with 

P m j=1 P n i=1 N j i = 1. 8 C j is non-participating if D j h (N
; P j n ) n X h=1 N j h P j h :
We will assume that D j h (N j 1 ; P j 1 ; :::; N j n ; P j n ) is non-decreasing with respect to P j 1 ; :::; P j n and homogeneous of degree zero with respect to (N j 1 ; :::; N j n ). We can write the policy dividend as D j h = D j h ( j 1 ; P j 1 ; :::; j n ; P j n );

where

j h N j h P n i=1 N j i
is the fraction of insurer j 0 s customers who have chosen C j h , with P n h=1 j h = 1. The homogeneity assumption is made for the sake of mathematical simplicity, but also because it …ts with the standard policy dividend rules we may think of. For instance, if insurer j shares a fraction j 2 [0; 1] of its underwriting pro…t evenly among all its policyholders, then we have

D j h = j n X i=1 j i P j
i for all h = 1; :::; n:

If insurer j distributes a fraction j 2 [0; 1] of the underwriting pro…t made on C j h to the policyholders who have chosen this contract, then D j h = j P j h for all h = 1; :::; n:

8 D j h < 0 corresponds to a supplementary premium levied on C j h . 9 C j may be fully participating with D j h 0 for some h. In other words, a fully participating menu may include non-participating policies.

If insurer j distributes a fraction j 2 [0; 1] of its underwriting pro…t to the policyholders, with di¤erent rights to dividend according to the contract, then we may postulate that there exist coe¢ cients j h 0, with j 1 = 1 such that D j h = j h D j 1 , which gives

D j h = j h n X h=1 j i j i j n X h=1 j h P j
h for all h = 1; :::; n:

Thus, although the homogeneity assumption reduces the generality of our analysis, it nevertheless encompasses a broad variety of cases that we observe in practice.

Market equilibrium

Let C (C 1 ; C 2 ; :::; C m ) be the pro…le of contract menus o¤ered by insurers at stage 1 of the market game, with C j = (C j 1 ; C j 2 ; :::; C j n ; D j (:)). At stage 2, the strategy of a type i individual10 speci…es for all j and all h the probability j ih (C) to choose C j h as a function of C. The contract choice strategy of type i individuals is thus de…ned by When an insurance contract C j h = (k j h ; x j h ) is taken out by a type i individual, with (non-random) policy dividend D j h , the policyholder's expected utility and the expected underwriting pro…t are respectively written as:

U i (C j h ; D j h ) (1 i )u(W N k j h + D j h ) + i u(W A + x j h + D j h ); i (C j h ) (1 i )k j h i x j h :
When type i individuals choose C j h with probability j ih , we may write j h and P j h as functions of individual choices and contracts:

j h ( ) n X i=1 i j ih n X i=1 n X k=1 i j ik if n X i=1 n X k=1 i j ik > 0; P j h (C j h ; ) = n X i=1 i j ih i (C j h ) n X i=1 i j ih if n X i=1 i j ih > 0;
where = ( 1 ; :::; n ) with i = (:::; j ih ; :::). We are now in a position to de…ne a market equilibrium more formally. is a subgame perfect Nash equilibrium of the market game (in short a market equilib-

De…nition of a market equilibrium

rium) if m X j=1 n X h=1 e j ih (C)U i (C j h ; D j h (C)) = maxfU i (C j h ; D j h (C
)); j = 1; :::; m; h = 1; :::; ng for all i = 1; :::; n and all C;

(1) (3)

j ( e C) j (C j ; e C j )
j (C) n X i=1 n X h=1 i e j ih (C)[ i (C j h ) D j h (C)]; (4) with j h (C) = j h (e (C)) for all h if n X i=1 n X k=1 i e j ik (C) > 0; P j h (C) = P j h (C j h ; e (C)) for all h if n X i=1 i e j ih (C) > 0; j h (C) 0 and P j h (C) 2 [ 1 (C j h ); n (C j h )] for all h; with n X h=1 j h (C) = 1; if n X i=1 n X k=1 i e j ik (C) = 0:
The notations in De…nition 1 are as follows. Consider a pro…le of contracts C = (C 1 ; :::; C m ) where C j = (C j 1 ; C j 2 ; :::; C j n ; D j (:)) is the menu o¤ered by insurer j. Then j h (C) is the proportion of insurer j 0 s policyholders who choose C j h when C is offered, with P j h (C) the corresponding pro…t per policyholder. When insurer j attracts policyholders, then 3) and (4) denote the policy dividend for C j h and the residual pro…t of insurer j, respectively. They depend on the set of contracts C o¤ered in the market and on the pro…le of individuals' contract choice strategy e (:). In particular,

D j h (C) = e D j h ( j 1 (C); P j 1 (C); :::; j n (C); P j n (C)) if C j = e C j .
Keeping these notations in mind, ( 1) and ( 2) correspond to the standard de…nition of a subgame perfect Nash equilibrium. From (1), choosing C j h with probability e j ih (C) is an optimal contract choice for type i individuals, given expected policy dividends.11 

(2) means that e C j is an optimal o¤er by insurer j (i.e., an o¤er that maximizes residual pro…t, that is, the di¤erence between underwriting pro…t and policy dividend) when e C j is o¤ered by the other insurers, given the contract choice strategy of individuals.

Let C denote the menu of contracts at a symmetric equilibrium of the market game (de…ned as an equilibrium where all active insurers, i.e., all insurers with customers, o¤er the same menu and individuals are evenly shared between insurers), with e C j = C (C 1 ; C 2 ; :::; C n ; D (:)) for each active insurer j and C i = (k i ; x i ) for all i = 1; :::; n and D (:) (D 1 (:); :::; D n (:)). If individuals do not randomize between contracts,

C i = (k i ; x i ) denotes the contract chosen by type i individuals.
A symmetric equilibrium of the market game sustains an equilibrium allocation

f(W 1 i ; W 2 i ); i = 1; :::; ng, where (W 1 i ; W 2 i )
is the lottery on …nal wealth induced by the equilibrium strategies for type i individuals (meaning that their …nal wealth is W 1 i with probability 1 i and W 2 i with probability i ), with

W 1 i = W N k i + D i and W 2 i = W A + x i + D i ; where D i D i ( 1 ; 1 ; :::; n ; n ) with i i (C i ):
Our main objective in what follows is to establish the existence and uniqueness of such an equilibrium allocation. To do that, we …rst characterize a candidate equilibrium allocation by following the [START_REF] Spence | Product di¤erentiation and performance in insurance markets[END_REF] approach to the Miyazaki-Wilson equilibrium with an arbitrary number of types (we will call it the MWS allocation), and next we show that this allocation is sustained by a pro…le of strategies which is a symmetric equilibrium of the market game.

The MWS allocation

When a type i individual takes out a contract C i = (k i ; x i ) and receives policy dividend expected residual pro…t (in short, its pro…t) is

D i , then she is facing lottery (W 1 i ; W 2 i ) = (W N k i +D i ; W A +x i +D i ),
i (C i ) D i = W N (1 i )W 1 i i (W 2 i + A): (5) 
This allows us to characterize candidate equilibrium allocations as follows. Let us de…ne a sequence of expected utility levels u i by u 1 = u(W N 1 A), and for 2 i n:

u i = max(1 i )u(W 1 i ) + i u(W 2 i )
with respect to W 1 h ; W 2 h ; h = 1; :::; i , subject to

(1 h )u(W 1 h ) + h u(W 2 h ) u h for h < i; (6) (1 h )u(W 1 h ) + h u(W 2 h ) (1 h )u(W 1 h+1 ) + h u(W 2 h+1 ) for h < i; (7) i X h=1 h [W N (1 h )W 1 h h (W 2 h + A)] = 0: (8) 
Let P i denote the problem which de…nes u i , with i = 2; :::; n. The objective function in P i is the expected utility of type i individuals by restricting attention to individuals with types 1 to i. Constraints (6) ensure that higher risk individuals (i.e. h < i) get expected utility no less than u h . ( 7) are incentive compatibility constraints: type h individuals (with h < i) are deterred from choosing the policy targeted at the adjacent less risky type h+1. (8) is the break-even constraint over the set of risk types h i. For n = 2, the optimal solution to P 2 is the Miyazaki-Wilson equilibrium allocation. Let

f( c W 1 i ; c W 2 
i ); i = 1; :::; ng be the optimal solution to P n . It is characterized in Lemmas 1 and 2, which are adapted from [START_REF] Spence | Product di¤erentiation and performance in insurance markets[END_REF], and, as usual in the literature, we may call it the MWS allocation.

Lemma 1 There exist T 2 N; 0 T n 1, and `t 2 f0; :::; ng, t = 0; :::; T + 1 with `0 = 0 `1 `2 ::: `T < `T+1 = n such that for all t = 0; ::

:; T h X i=`t+1 i [W N (1 i ) c W 1 i i ( c W 2 i + A)] < 0 for all h = `t + 1; :::; `t+1 1; (9) `t+1 X i=`t+1 i [W N (1 i ) c W 1 i i ( c W 2 i + A)] = 0: (10)
Furthermore, we have

(1 i )u( c W 1 i ) + i u( c W 2 i ) = u i if i 2 f`1; `2; :::; ng; (11) 
(1 i )u( c W 1 i ) + i u( c W 2 i ) > u i otherwise: (12) 
In P n , for each risk type i lower than n, the optimal lottery ( c

W 1 i ; c W 2 i )
trades o¤ the increase in insurance cost against the relaxation of the adjacent incentive constraint. In addition, the minimal expected utility level u i has to be reached. Lemma 1 states that this trade-o¤ results in pooling risk types in T + 1 subgroups indexed by t. Subgroup t includes risk types i = `t + 1; :::; `t+1 with `0 = 0 and `T+1 = n. From ( 12), within each subgroup t, all types i except the highest (i.e. i = `t + 1; :::; `t+1 1) get more than their reservation utility u i , and from (9) there is negative pro…t over this subset of individuals. They are cross-subsidized by the highest risk type (i.e., by type `t+1 ).

From ( 11) and ( 10), type `t just reaches its reservation utility u `t , for t = 1; :::; T + 1, with zero pro…t over the whole subgroup t. In what follows, I will denote the set of risk types in subgroups with cross-subsidization, i.e. i 2 I f1; :::; ng if `t < i `t+1 for t 2 f0; :::; T g such that `t+1 `t 2:

When n = 2, we know from [START_REF] Crocker | The e¢ ciency of competitive equilibria in insurance markets with asymmetric information[END_REF] 12 that there exists 2 (0; 1)

such that I = f1; 2g if 1 < and I = ; if 1 . When n > 2, the population
is distributed among subgroups. A case with n = 5; T = 2; `1 = 3 and `2 = 4 is illustrated in Figure 1. There are three subgroups in this example: type i = 3 crosssubsidizes types 1 and 2, while the contracts o¤ered to types 4 and 5 make zero pro…t.

We thus have I = f1; 2; 3g and b u h > u h for h = 1; 2 and b u h = u h for h = 3; 4 and 5, where b u h is the type h expected utility at the optimal solution to P n . 13Figure 1

Lemma 2 There does not exist any incentive compatible allocation f(W 1 i ; W 2 i ); i = 1; :::; ng such that

(1 `t )u(W 1 `t ) + `t u(W 2 `t ) u `t for all t = 1; :::; T + 1 (13) and n X i=1 i [W N (1 i )W 1 i i (W 2 i + A)] > 0: (14) 
Lemma 2 states that no insurer can make positive pro…t by attracting all individuals and o¤ering more than u `t to threshold types `t. Suppose that there exists a pro…table allocation close to f( c W 1 i ; c W 2 i ); i = 1; :::; ng that provides more than u `t to types `t. Such an allocation would provide an expected utility larger than u h for all h (this is just a consequence of the second part of Lemma 1), which would contradict the de…nition of u n . The proof of Lemma 2 extends this argument to allocations that are not close to f( c W 1 i ; c W 2 i ); i = 1; :::; ng. The main consequence of Lemma 2 is that it is impossible to make positive pro…t in a deviation from f( c W 1 i ; c W 2 i ); i = 1; :::; ng if threshold types `t are guaranteed to get at least u `t .

Existence of an equilibrium

Proposition 1 f( c W 1 i ; c W 2 i ); i = 1; :::; ng is an equilibrium allocation. It is sustained by a symmetric equilibrium of the market game where each insurer j o¤ers

C j = C ( b C 1 ; :::; b C n ; D (:)), type i individuals choose b C i ( b k i ; b x i ) = (W N c W 1 i ; c W 2 i W A ) and
that the case described in Figure 1 emerges from a situation where 1 = 3 and 2 = 3 are relatively small so that cross-subsidizing risk types 1 and 2 allows a higher expected utility u 3 for type 3 to be reached, while 3 = 4 and 4 = 5 are relatively large so that it would be too costly to cross-subsidize risk types 3 and 4. cross-subsidization at equilibrium, and from ( 16) no policy dividend is paid on the equilibrium path. From ( 17), threshold types `t are excluded from the sharing of pro…ts.

To intuitively understand how Proposition 1 is deduced from Lemma 2, consider an allocation induced by C j 0 6 = C o¤ered by a deviant insurer j 0 . This corresponds to a compound lottery generated by individuals' mixed strategies over C j 0 and C .

The aggregate residual pro…t of this allocation is larger or equal to the pro…t made on C j 0 alone, because non-deviant insurers j 6 = j 0 o¤er a menu of contracts with full distribution of pro…ts or payment of losses on f b C i ; i 2 Ig and non-negative pro…ts on Condition (17) assures that all threshold types `t get at least u `t . Lemma 2 shows that this allocation cannot be pro…table, hence deviant insurer j 0 does not make positive pro…t14 .

f b C i ; i = 2 Ig. Furthermore,
Remark 1 Note that equilibrium premiums are not uniquely de…ned, since insurers may compensate higher premiums through higher dividends. More precisely, the equilibrium allocation f( c W 1 i ; c W 2 i ); i = 1; :::; ng can also be sustained by an equilibrium of the market game where insurers o¤er contracts b

C 0 i ( b k 0 i ; b x 0 i ) where b k 0 i = b k i + and b x 0 i = b x i
, with policy dividend rule D i (N 1 ; P 1 ; :::; N n ; P n ) D i (N 1 ; P 1 ; :::; N n ; P n ) + , with > 0. In that case, dividends include a …xed part paid to all policyholders and a variable part that does not concern threshold types. Hence, the fundamental meaning of Condition ( 17) is not the fact that threshold types do not receive policy dividends, since they may actually receive such dividends according to the level of premiums: Condition (17) assures us that threshold types cannot be penalized when deviant insurers o¤er new contracts. 15 Although no policy dividend (or dividend ) is paid on the equilibrium path, there may be variations in policy dividends when a deviant insurer j 0 o¤ers a menu C j 0 that di¤ers from C = ( b C 1 ; :::; b C n ). Such a deviation may a¤ect the distribution of types among individuals who still choose a contract in C , with possible variations in pro…ts or losses of insurers j 6 = j 0 , and thus policy dividends or supplementary premiums.

Variations in policy dividends can then act as an implicit threat that dissuades deviant insurers from undertaking competitive attacks. For the sake of illustration, assume

D i (N 1 ; P 1 ; :::; N n ; P n ) = b k i b k `t+1 `t+1 X h=`t+1 N h ( b k h b k `t+1 ) `t+1 X h=`t+1 N h P h ( 18 
)
for all i 2 f`t + 1; :::; `t+1 g I. Here, D (:) involves the sharing of pro…t within each subgroup t with cross-subsidization. The total pro…t made within subgroup t is P `t+1 h=`t+1 N h P h . It is distributed to policyholders within the same subgroup. Furthermore, according to the policy dividend rule, the larger the premium, the larger 15 Condition (17) seems necessary to get an equilibrium existence result when n > 2. For the sake of illustration, assume n = 3 and consider a case where b C 1 is in de…cit and b C 2 and b C 3 are pro…table when respectively chosen by types 1; 2 and 3 (a case where I = f1; 2; 3g and T = 0). Assume also that underwriting pro…t or losses are uniformly shared between policyholders, including type 3. In that case, if 2 is small enough, there exists a pro…table non-participating contract the policy dividend in absolute value. There is no right to receive a policy dividend for the individuals who pay the smallest premium (i.e. for type `t+1 ), while rights are larger for types i who pay larger premiums, which re ‡ects the practice of mutuals that pay larger dividends to policyholders who have paid larger premiums. We have P `t+1 h=`t+1 h ( b C h ) = 0 for all t from (10), and thus this policy dividend rule satis…es conditions ( 15)-( 17). If a deviant insurer j 0 attracts some individuals who cross-subsidize other risk types within subgroup t, then after the deviation we will have P `t+1 h=`t+1 N h P h < 0 for non-deviant insurers j 6 = j 0 , and consequently the welfare of these other individuals will deteriorate if they keep choosing the same contract because they will have to pay supplementary premiums. It may then be impossible for insurer j 0 to not also attract them, which will make its o¤er non-pro…table. The proof of Proposition 1 shows that this is indeed the case. 16 16 It might be objected that, in practice, a deviant insurer could limit its o¤er to a small number of individuals by rationing demand, which would lessen the e¤ect of its action on non-deviant insurers.

In this way, if a deviant insurer restricts its o¤er to a small group of size ", then its deviation only entails a small e¤ect on the pro…t of non-deviant insurers: the lower ", the smaller the shift in the lotteries o¤ered by non-deviant insurers, which would open the door to pro…table deviations attracting type `t individuals when I 6 = ;. A complete analysis of the market equilibrium with quantity rationing is beyond the scope of the present paper and would require a thorough analysis. However, at this stage, we may observe that insurers could use discontinuous policy dividend rules to prevent deviant competitors from attracting a small group of their policyholders. For example, participating contracts may stipulate that no policy dividend will be distributed unless the insurer's pro…t reaches a predetermined target level. Equilibrium strategies may consist of o¤ering b

C 0 i ( b k 0 i ; b x 0 i ), as de…ned in Remark 1 if i 2 I,
and committing to pay positive dividend if the pro…t is at least and nothing otherwise. Any deviation that attracts " type `t individuals would cancel the payment of policy dividends by non-deviant insurers. Consequently, there exists a continuation equilibrium where the deviant does not make pro…t. Regarding competition with quantity rationing in the insurance market, see [START_REF] Inderst | Competitive insurance markets under adverse selection and capacity constraints[END_REF].

More generally, we may choose D (:) such that `t+1 X i=`t+1 i2I

N i D i (N 1 ; P 1 ; :::; N n ; P n ) `t+1

X i=`t+1 i2I

N i P i ;
for all subgroup t with cross-subsidization, which shows that the equilibrium allocation is also sustained by equilibrium strategies where each insurer sells insurance to a given subgroup of individuals (gathering risk types i = `t+1; :::; `t+1 in I) or to a combination of these subgroups. Insurers who sell insurance to subgroups with only one risk type (i.e. to types i = 2 I) or to a combination of these subgroups do not cross-subsidize risks.

They o¤er non-participating policies, and we may consider them as stock insurers.

Insurers who sell insurance policies to individuals who belong to subgroups with crosssubsidization (i.e. to types i 2 I) o¤er fully participating policies: they act as mutuals do. In the example illustrated in Figure 1, mutuals would o¤er participating contracts to subgroup t = 1 (that includes types 1, 2 and 3) and stock insurers would o¤er non-participating contracts to subgroups t = 2 and 3: Hence, the model explains why stock insurers and mutuals may coexist: mutuals o¤er insurance contracts that are robust to competitive attacks when there is cross-subsidization, while stock insurers o¤er insurance contracts at actuarial price. The following corollary recaps our results more compactly.

Corollary 1 The MWS allocation is also sustained by a market equilibrium where mutual insurers o¤er participating contracts to subgroups of individuals with types i 2 I and stock insurers o¤er non-participating contracts to types i = 2 I.

Uniqueness of equilibrium

Participating contracts induce an interdependence between the individuals' contract choices. Consequently: multiple continuation equilibria 17 may exist after menus of contracts have been o¤ered at stage 1. Typically, type i individuals may decide to choose a participating contract o¤ered by insurer j if they anticipate that less risky types i 0 (i.e., i 0 > i) are going to do the same, but they may make another choice for other expectations. This creates leeway in the characterization of a continuation equilibrium after a deviation at stage 1, and it opens the door to multiple equilibrium issues in the market game itself. In particular, contracts may not be chosen by anyone because of pessimistic expectations about the contracts o¤ered by inactive insurers:

insurance seekers may anticipate that the insurers who o¤er these contracts are going to attract only high-risk individuals, with negative underwriting pro…t. These pessimistic expectations (i.e., out-of-equilibrium beliefs) may annihilate pro…table deviations, although such deviations would exist under more optimistic expectations.

An equilibrium sustained by arbitrarily pessimistic beliefs is not very convincing if choosing contracts o¤ered by a deviant insurer were bene…cial to some policyholders.

De…nition 2 introduces a robustness criterion, that eliminates such equilibria.

De…nition 2 A market equilibrium e (:); e C is based on robust beliefs if there does not exist a deviation C j 0 where insurer j 0 does not attract any customer, i.e.,

X n i=1 X n h=1 i e j 0 ih (C j 0 ; e C j 0 ) = 0;
and a risk type i 0 such that:

(i) Type i 0 individuals would be better o¤ if they choose a contract C j 0 i 0 in C j 0 in a deviation from their equilibrium strategy, and if they belong to an in…nitely small subset of type i 0 individuals who are the only ones to do so, i.e.,

U i 0 (C j 0 i 0 ; D j 0 i 0 ) > maxfU i 0 ( e C j h ; D j h ( 
C)); j 6 = j 0 ; h = 1; :::; ng;

where D j 0 i 0 is the policy dividend received by type i 0 individuals when they are the only ones to choose a contract in C j 0 , 18 18 Since D j0 h (N j0 1 ; P j0 1 ; :::; N j0 n ; P j0 n ) is homogeneous of degree zero with respect to (N j0 1 ; :::; N j0 n ), D j0 i0 does not depend on the mass of the subset ot type i 0 individual who choose C j0 i0 .

(ii) insurer j 0 attracts type i 0 policyholders, and possibly other individuals, in at least one other continuation equilibrium following the deviation from e C j 0 to C j 0 and makes positive pro…t at all such continuation equilibria.

A robust equilibrium allocation is sustained by a symmetric market equilibrium based on robut beliefs.

Proposition 2 The MSW allocation is the only robust equilibrium allocation.

Presumably, individuals may make error in the real world, and this is the logic of the robustness criterion used to eliminate equilibria based on arbitrarily pessimistic beliefs. In De…nition 2 (i), if a subgroup of type i 0 individuals with positive measure do such an error (i.e., they choose C j 0 i 0 ), then they would observe that this departure from their equilibrium contracts is in fact favorable to them. De…nition 2 (ii) adds the condition that this improvement would be con…rmed at all continuation equilibria where insurer j 0 attracts policyholders, and that such continuation equilibria exist and are pro…table to insurer j 0 . De…nition 2 says that an equilibrium is based on robust beliefs if such deviations do not exist and Proposition 2 states that the MWS allocation is the only equilibrium allocation when beliefs are required to be robust.

Remark 2 De…nition 2 is inspired by robustness criterions in games with a continuum of players (non-atomic games). In an evolutionary game setting with a large group of identical players, a (mixed or pure) strategy of a given player is said to be neutrally stable (NSS) if there does not exist another strategy that would be strongly prefered by this player if this alternative strategy were played by a small enough fraction of similar individuals 19 . De…nition 2 (i) adapts the NSS criterion to any subgame that follows a deviation by some insurer j 0 . De…nition 2 (ii) weakens this equilibrium selection criterion by requiring that alternative strategies also provide a higher expected utility to the deviant individuals at another equilibrium (thus, not only when they are played in deviation from equilibrium by a small subgroup of individuals) and that insurer j 0 makes positive pro…t in such continuation equilibria.

Concluding comments

Thus, the MWS allocation is always an equilibrium allocation in the Rothschild-Stiglitz model when insurers can issue participating or non-participating policies. It is the only equilibrium allocation when out-of-equilibrium beliefs satisfy a robustness criterion. This equilibrium allocation is characterized by a classi…cation of individuals into subgroups as done by [START_REF] Spence | Product di¤erentiation and performance in insurance markets[END_REF], with cross-subsidization within each subgroup that includes several risk types. Participating policies act as an implicit threat which prevents deviant insurers from attracting low-risk individuals only. If a deviant insurer attracts individuals who cross-subsidize other risk types within a given subgroup, then these other individuals will have to pay supplementary premiums or receive lower dividends if they keep choosing the same contract from their non-deviant insurer. Consequently, it will be impossible for the deviant insurer to not also attract them, which will make its o¤er non-pro…table. This mechanism is similar to the logic of the MWS equilibrium. In both cases, a deviant insurer is deterred from attracting low risk individuals because it is expected that ultimately its o¤er would also attract higher risks, which would make it unpro…table.

However, in the MWS equilibrium, insurers are protected from these competitive atneutrally stable strategy cannot be destabilized by deviations of a small group of mutants. NSS is a weakening of the evolutionary stability criterion (ESS) introduced by Maynard Smith and Price (1973) and Maynard [START_REF] Smith | The theory of games and the evolution of animal con- ‡icts[END_REF]. On the connections between evolutionary stability criteria and other robustness criteria of Nash equilibria, see [START_REF] Weibull | Evolutionary Game Theory[END_REF]. tacks because they can react by withdrawing contracts that become unpro…table. This assumption may be considered as unsatisfactory because it means that insurers are not committed to actually o¤er the announced contracts. It can also be legitimately argued that this description of the dynamic relationship between insurers is arbitrary. Other timings are possible, as shown by [START_REF] Riley | Informational equilibrium[END_REF], [START_REF] Hellwig | Some recent developments in the theory of competition in markets with adverse selection[END_REF] and others. [START_REF] Mimra | New developments in the theory of adverse selection in competitive insurance[END_REF] list papers that have departed from the original game structure of Rosthschild and Stiglitz (1976), and we have to admit that no particular timing has an obvious superiority over the others. Moving away from the Rothschild-Stiglitz game structure may be like opening a Pandora's box, since there always exist new ways to describe the dynamic competitive interaction between …rms.

We have taken a di¤erent route. Our analysis has not stepped away from the instantaneous strategic interaction between insurers that characterizes the Rothschild-Stiglitz model, and we have explored the consequences of deleting an exogenous restriction on the content of insurance policies. 20 As observed by [START_REF] Rothschild | Equilibrium in competitive insurance markets: an essay on the economics of imperfect information[END_REF] themselves, extending their model in order to include "the peculiar provision of many insurance contracts", …rstly by considering menus, and secondly by allowing insurers to pay policy dividends, is a natural way to reconcile the empirical observation and the theoretical de…nition of a market equilibrium, and this is what we have done in this paper. Of course, we may consider that the glass is half empty rather than half full, and that even more general contracts, e.g., with quantity rationing, should be considered. This is another research avenue worth exploring. However, the case where …rms commit to honour the o¤ers made to clients, without restricting these o¤ers to a subset of consumers, seems to be a natural starting point for the analysis of competitive markets.

The main outcome of this modelling, apart from the existence and uniqueness of an equilibrium, is the fact that it leads to an endogenous de…nition of corporate forms, where mutuals and stock insurers may coexist, with speci…c functions: mutuals may provide coverage to risk groups that require cross-subsidization, while at the same time being protected against competitive attacks that would target their least risky policyholders. Subgroups without cross-subsidization do not require such endogenous protection, and they purchase non-participating or participating contracts. If, for some other reasons, stock insurers bene…t from competitive advantages, for instance because they can transfer systemic risks to stockholders, then we may reach a complete market structuring that trades o¤ the ability of mutuals to implement e¢ cient crosssubsidization and the superiority of stock insurers in the face of macroeconomic risks.

The diversity of market structures that we may observe in practice suggests that the balance is not always on the same side.

Appendix

Proof of Lemma 1

If P i h=1 h [W N (1 h ) c W 1 h h ( c W 2 h + A)]
> 0 for i 2 f1; :::; ng, then it would be possible to provide a higher expected utility than u h for all h = 1; :::; i, while breaking even over the subset of individuals h = 1; :::; i, which would contradict the de…nition of u i . 21 We thus have

P i h=1 h [W N (1 h ) c W 1 h h ( c W 2 h + A)
] 0 for all i 2 f1; :::; ng, which yields the …rst part of the Lemma.

We have

(1 i )u( c W 1 i ) + i u( c W 2 i )
u i for all i from the de…nition of P n . If i 2 f`1; `2; :::; ng, we have

P i h=1 h [W N (1 h ) c W 1 h h ( c W 2 h + A)]
= 0 from the …rst part of the Lemma, and we deduce

(1 i )u( c W 1 i ) + i u( c W 2 i ) = u i , for otherwise
21 More explicitly, let " be a positive real number and let f(W 1 h ( ); W 2 h ( )); h = 1; :::; ig that sati…es (7) for all > 0 with W

1 h (0) = c W 1 h ; W 2 h (0) = c W 2
h for all h = 1; :::; i; and dW 1 h =d = dW 2 h =d > " for all and all h = 1; :::i. There exists b > 0 such that f(W 1 h (b ); W 2 h (b )); h = 1; :::; ig sati…es (8), with U i (W 1 h (b ); W 2 h (b )) > u h for all h = 1; :::; i, which contradicts the de…nition of u i .

we would have a contradiction with the de…nition of u i . Conversely, suppose we have

(1 i )u( c W 1 i ) + i u( c W 2 
i ) = u i and i = 2 f`1; `2; :::; ng. We would then have

P i h=1 h [W N (1 h ) c W 1 h h ( c W 2 h + A)] < 0.
Hence the allocation f( c W 1 h ; c W 2 h ); h = 1; :::; ig is in de…cit. Let f(W 10 h ; W 20 h ); h = 1; :::; ig be the optimal solution to P i . Replacing f( c W 1 h ; c W 2 h ); h = 1; :::; ig with f(W 10 h ; W 20 h ); h = 1; :::; ig allows us to improve the optimal solution to P n , since the same type i expected utility u i can be reached while breaking even on the set h = 1; :::; i, which provides additional resources that could be used to raise

(1 n )u(W 1 n ) + n u(W 2 n ) over (1 n )u( c W 1 n ) + n u( c W 2 n ).
We thus obtain a contradiction with the fact that f( c W 1 i ; c W 2 i ); i = 1; :::; ng is the optimal solution to P n .

Proof of Lemma 2

We …rst restrict attention to incentive compatible allocations f(W 1 i ; W 2 i ); i = 1; :::; ng located in a neighbourhood of f( c W 1 i ; c W 2 i ); i = 1; :::; ng. Suppose that such an allocation satis…es ( 13)-( 14). Lemma 1 shows that

(1 i )u(W 1 i ) + i u(W 2 i ) u i for all i = 1; :::; n; if (W 1 i ; W 2 i ) is close enough to ( c W 1 i ; c W 2 i )
. Hence f(W 1 i ; W 2 i ); i = 1; :::; ng satis…es the constraints of P n with positive pro…ts and expected utility larger or equal to u n for type n, hence a contradiction.

We now prove that there does not exist any incentive compatible allocation f(W 1 i ; W 2 i ); i = 1; :::; ng that satis…es ( 13)-( 14), even if we do not restrict attention to allocations close to f( c 

W 1 i ; c W 2 i ); i =
(1 i )z 1 i + i z 2 i (1 i )z 1 i+1 + i z 2 i+1 for i = 1; :::; n 1 ; (20) n X i=1 i f(1 i )[W N u 1 (z 1 i )] i [u 1 (z 2 i ) W A ]g > n X i=1 i f(1 i )[W N u 1 (b z 1 i )] i [u 1 (b z 2 i ) W A ]g: (21) 
The set of f(z 1 i ; z 2 i ); i = 1; :::; ng that satis…es the conditions ( 19)-( 21) is convex. Hence if there is any allocation f(z 1 i ; z 2 i ); i = 1; :::; ng that satis…es these conditions, there is an allocation in any neighbourhood of f(b z 1 i ; b z 2 i ); i = 1; :::; ng that satis…es them, which contradicts our previous result.

Remark 3 Lemmas 1 and 2 easily extend to allocations where individuals of a given type may randomize between contracts that are equivalent for themselves. An allocation is then a type-dependent randomization over a set of lotteries. Formally, an allocation is de…ned by a set of lotteries f(W 1 s ; W 2 s ); s = 1; :::; Sg and individuals' choices ( 1 ; 2 ; :::; n ) with i = ( i1 ; :::; iS ), where is is the probability that a type i individual chooses (W 1 s ; W 2 s ), with P S s=1 is = 1. In other words, type i individuals get a compound lottery generated by their mixed strategy i over available lotteries f(W 1 s ; W 2 s ); s = 1; :::; Sg. An allocation is incentive compatible if

S X s=1 is [(1 i )u(W 1 s ) + i u(W 2 s )] = maxf(1 i )u(W 1 s ) + i u(W 2 
s ); s = 1; :::; Sg;

for all i = 1; :::; n. In words, an allocation is incentive compatible when individuals only choose their best contract with positive probability. The de…nition of Problem P i for i = 1; :::; n can be extended straightforwardly to this more general setting, with an unchanged de…nition of u i . In particular, individuals choose only one (non compound) lottery at the optimal solution to P i , and the MWS lotteries are still an optimal solution to P n . Lemma 1 is thus still valid. Lemma 3 extends Lemma 2 to the case where individuals may randomize between contracts.

Lemma 3 There does not exist any incentive compatible allocation with randomization f(W 1 s ; W 2 s ); s = 1; :::; S;

( 1 ; 2 ; :::

; n )g such that S X s=1 `t;s [(1 `t )u(W 1 s ) + `t u(W 2 
s )] u `t for all t = 1; :::; T + 1 (22)

and n X h=1 h f S X s=1 hs [W N (1 h )W 1 s h (W 2 s + A)]g > 0: (23) 
Proof of Lemma 3

For a given incentive compatible allocation with randomization f(W 1 s ; W 2 s ); s = 1; :::; S;

( 1 ; 2 ; :::; n )g, let (W

1 h ; W 2 h ) = (W 1 s(h) ; W 2 s(h)
) be one of the the most pro…table lotteries which are chosen by type h individuals with positive probability, i.e., s(h) is such that h;s(h) > 0 and

(1 h )W 1 s(h) + h W 2 s(h) (1 h )W 1 s 0 + h W 2 s 0
for all s 0 such that h;s 0 > 0. If ( 22) and ( 23) hold for the initial allocation with randomization, then ( 13) and ( 14) also hold for the non-randomized incentive compatible allocation f(W C. Let us denote s j th = 1 if individual t chooses C j h and s j th = 0 otherwise. The expected utility of a type i who chooses C j h is U i (C j h ; X j h ), where X j h = D j h ( j 1 ; P j 1 ; :::; j n ; P j n ), with

1 h ; W 2 
j h = P N t=1 s j th P N t=1 P n k=1 s j tk if N X t=1 n X k=1
s j tk > 0;

P j h = P n i=1 P t2S N i s j th i (C j h ) P N t=1 s j th if N X t=1 s j th > 0;
This discretized subgame is a …nite strategic-form game. Consider an " perturbation of this game, with " > 0, where all individuals may play mixed strategy and are required to choose each contract C j h with probability larger or equal to ". This perturbated game is characterized by N and " and it has a mixed strategy equilibrium, where all type i individuals choose C j h with probability j N ih (") ".22 Let N i (") = ( j N ih (")). Thus, if t 2 S N i , we have

E h U i (C j h ; X j N ht (") N (") i = max n E h U i (C j k ; X j N kt (") N (") i for all j; k o if j N ih (") > "; (24) 
where expected value E : N (") is conditional on the equilibrium mixed strategies played by all individuals except t, and where X j N ht (") is the equilibrium random policy dividend when all individuals except t play the equilibrium type-dependent mixed strategy N (") = ( N 1 ("); :::; N n (")) and individual t chooses C j h . Consider a sequence of such discretized subgames indexed by N 2 N, where " depends on N , with " " N > 0, such that S N i =N ! i for all i and " N ! 0 when N ! 1. The sequence f N = (:::; j N i (" N ); :::)g N 2N is in a compact set, and thus it includes a converging subsequence: N ! = (:::; j ih ; :::) with

P m j=1 P n h=1 j ih = 1 for all i, when N ! 1; N 2 N 0 N. Let j N k ; P j N k
be the equilibrium proportion of insurer j's policyholders who choose C j k and the corresponding equilibrium pro…t per policyholder, respectively. The weak law of large numbers yields ) for all t when N ! 1; N 2 N 0 . Taking the limit of (24), when N ! 1 ; N 2 N 0 , then gives Then b C i is an optimal choice of type i individuals if no policy dividend is paid on any contract. ( 16) shows that this is actually the case when all individuals are evenly shared among insurers.

j N h P ! n X i=1 i j N ih (" N ) n X i=1 n X k=1 i j N ik (" N ) j N h ; P j N h P ! n X i=1 i j N ih (" N ) i (C j h ) n X i=1 i j N ih (" N ) P j N h ; when N ! 1. We have j N h ! n X i=1 i j ih n X i=1 n X k=1 i j ik j h if n X i=1 n X k=1 i j ik > 0; P j N h ! n X i=1 i j ih i (C j h ) n X i=1 i j ih P j h if n X i=1 i j ih > 0; when N ! 1; N 2 N 0 . If P n i=1 P n k=1 i j ik = 0, then we have j N h ! j h 0 and P j N P j h with P n h=1 h = 1 and P j h 2 [ 1 (C j h ); n (C j h )] for all h, when N ! 1; N 2 N 0 . We have X j N ht (" N ) D j h ( j N 1 ; P j N 1 ; :::; j N n ; P j N n ) ! 0 for all t when N ! 1. Hence, X j N ht (" N ) P ! D j h D j h ( j 
U i (C j h ; D j h ) = maxfU i (C j k ; D j k ) for all j; kg if j ih > 0: Using P m j=1 P n h=1 j ih = 1 then yields m X j=1 n X h=1 j ih U i (C j h ; D j h ) = maxfU i (C j h ; D j 
Suppose some insurer j 0 deviates from b C to another menu C j 0 = fC j 0 1 ; C j 0 2 ; :::; C j 0 n ; D j 0 (:)g with C j 0 i = (k j 0 i ; x j 0 i ). Let e (C j 0 ; b C j 0 ) be a continuation equilibrium following the deviation, i.e., equilibrium contract choices by individuals in the subgame where C j 0 and b C are simultaneously o¤ered, respectively by insurer j 0 and by all the other insurers j 6 = j 0 . Lemma 4 shows that such a continuation equilibrium exists. Let us restrict the de…nition of this subgame by imposing e j i 1;i = 0 for all i = 2 I; j 6 = j 0 .

From (17), type i 1 individuals weakly prefer b C i 1 to b C i if i = 2 I, so that any equilibrium of the restricted game is also an equilibrium of the original game. Let P j h be the pro…t per policyholder made by insurer j 6 = j 0 on contract b C h and j h be the proportion of insurer j 0 s customers who choose b C h , after the deviation by insurer j 0 . Consider a continuation equilibrium where individuals of a given type are evenly shared between insurers j 6 = j 0 , i.e., where e j ih (C j 0 ; b C j 0 ) = e j 0 ih (C j 0 ; b C j 0 ) for all h if j 6 = j 0 , j; j 0 6 = j 0 23 . We may then use more compact notations e 0 ih e j 0 ih (C j 0 ; b C j 0 ) and e 1 ih e j ih (C j 0 ; b C j 0 ); P

1 h = P j h ; N 1 h = N j
h for all j 6 = j 0 . Let also P 0 h and 0 h be, respectively, the average pro…t made on C j 0 h and the proportion of the customers of insurer j 0 who choose C j 0 h . After the deviation by insurer j 0 , type i individuals get the following lottery on 23 Such a continuation equilibrium exists because it is a Nash equilibrium of an equivalent game with only two insurers that respectively o¤er b C j0 and C j0 . Note that this equivalence is possible because D j h (:) is homogeneous of degree 1 with respect to (N j 1 ; :::; N j n ).

…nal wealth:

(W 1 0h ; W 2 0h ) (W N k j 0 h + D 0 h ; W A + x j 0 h + D 0 h
) with probability e 0 ih ; for h = 1; :::; n, with P n h=1 [e 0 ih + e 1 ih (n 1)] = 1. Let us denote this lottery by L. Let denote the residual pro…t made by insurer j 0 . We have

(W 1 1h ; W 2 1h ) ( c W 1 h + D 1 h ; c W 2 h + D 1 
= n X i=1 i f n X h=1 e 0 ih [W N (1 i )W 1 0h i (W 2 0h + A)]g: (25) 
We know from (15) that D (:) involves the full distribution of pro…ts made by nondeviant insurers on the set of contracts f b C i ; i 2 Ig. Furthermore, we have e 1 hi = 0 if h < i 1 when i = 2 I, because types h strongly prefer b C i 1 to b C i for all h < i 1.24 

Thus we have e 1 hi = 0 if h i when i = 2 I, and consequently the pro…t made on b C i by non-deviant insurers is non-negative when i = 2 I. We deduce that non-deviant insurers j make non-negative residual pro…t. We thus have `t u( c W 2 1`t ) = u `t ; and fe 0 `t;h ; e 1 `t;h ; h = 1; :::; ng is an optimal contract choice strategy of type `t individuals. The right-hand side of ( 27) is the expected pro…t associated with L. Lemma 3 applied to lottery L then gives 0. Hence the deviation is non-pro…table, which completes the proof.

n X i=1 i f n X h=1 e 1 ih [W N (1 i )W 1 1h i (W 2 1h + A)]g 0: (26) 

Proof of Proposition 2

In the proof of Proposition 1, it has been shown that the MWS allocation is sustained by a market equilibrium where stage 1 deviations are non-pro…table at all continuation equilibrium. Hence this equilibrium allocation is robust.

Let f( f W 1 i ; f W 2 i ); i = 1; :::; ng be an equilibrium allocation that di¤ers from the MWS allocation, with expected utility e u i for type i. This allocation satis…es incentive compatibility constraints (7) for all h = 1; :::; n 1, and it is sustained by a symmetric At such an equilibrium, insurers make non-negative residual pro…t, for otherwise they would deviate to a "zero contract". Hence f( f W 1 i ; f W 2 i ); i = 1; :::; ng satis…es (8) for i = n, rewritten as a weak inequality (with sign ). Since f( f W 1 i ; f W 2 i ); i = 1; :::; ng satis…es (7) and ( 8) for i = n and it is not an optimal solution to P n , we deduce that there is i 0 in f1; :::; ng such that e u i u i if i < i 0 and e u i 0 < u i 0 . Thus, there exists an allocation f(W 1 i ; W 2 i ); i = 1; :::; i 0 g in the neighbourhood of the optimal solution to P i 0 , with expected utility u i for type i, that satis…es ( 6) and ( 7) as strong inequalities and (8) rewritten as a strong inequality (with sign <) for i = i 0 . Let 

i

  (C) f j ih (C) 2 [0; 1] for j = 1; :::; m and h = 1; :::; n with for all C. Let (:) ( 1 (:); 2 (:); :::; n (:)) be a pro…le of individuals'strategies.

De…nition 1 A

 1 pro…le of strategies e (:); e C ( e C 1 ; :::; e C m ), where e C j = ( e C j 1 ; :::; e C j n ; e D j (:));

  for all C j and all j = 1; :::; m (2) where C (C 1 ; :::; C m ); C j = (C j 1 ; :::; C j n ; D j (:)); e C j = ( e C 1 ; :::; e C j 1 ; e C j+1 ; :::; e C m )

  are derived from individuals' contract choice strategy e (C). Otherwise, j h (C) and P j h (C) are out-of-equilibrium beliefs that full…ll the coherency conditions stated in De…nition 1. Then D j h (C) and j (C) de-…ned by (

  and the insurer's P j h (C) and D j h (C) by considering themselves as members of a deviant group with in…nitesimal mass who would choose contracts o¤ered by insurer j, and their out-of-equilibrium beliefs correspond to the composition of this hypothetical deviant group.

D

  (:) = (D 1 (:); :::; D n (:)) is any policy dividend rule such thatX i2I N i D i (N 1 ; P 1 ; :::; N n ; P n ) X i2I N i P i ;(15)D i ( 1 ; 1 ( b C 1 ); :::; n ; n ( b C n )) =0 for all i = 1; :::; n; (16) D `t (N 1 ; P 1 ; :::; N n ; P n ) 0 for all t = 1; :::; T + 1: (17) At the symmetric equilibrium of the market game described in Proposition 1, each insurer o¤ers C = ( b C 1 ; :::; b C n ; D (:)), and type i individuals choose b C i . The conditions on D (:) are su¢ cient for C to be an equilibrium contract o¤er. (15) means that pro…ts are fully distributed among the individuals who choose a contract with

  C 0 2 closed to b C 2 which would attract type 2 individuals if o¤ered in deviation from equilibrium, while types 1 and 3 would keep choosing b C 1 and b C 3 and pay (small) supplementary premiums.

17

  Contract choice strategies e (C) = ( e 1 (C); e 2 (C); :::; e n (C)) de…ne a continuation equilibrium associated with the contract o¤er C when they satisfy (1), with D j h (C) given by (3).

hN

  ); h = 1; :::; ng, which contradicts Lemma 2.Lemma 4 For any contract o¤er C = (C 1 ; :::; C m ) made at stage 1, there exists at least one continuation equilibrium (C) = ( 1 (C); 2 (C); :::; n (C)) at stage 2.Proof of Lemma 4Let C = (C 1 ; :::; C m ) with C j = (C j 1 ; :::; C j n ; D j (:)) be a contract o¤er. Consider a discretization of the stage 2 subgame that follows C, with N individuals. Individuals are indexed by t = 1; :::; N and S N i is the set of type i individuals, with . In this discretized game, a pure strategy of individual t is the choice of a contract in

h

  ) for all j; hg, which shows that is an equilibrium of the stage 2 subgame when insurers o¤er C at stage 1 and policy dividends are D Assume that each insurer o¤ers b C = ( b C 1 ; b C 2 ; :::; b C n ; D (:)) such that (15)-(17) hold.

  Nash equilibrium of the market game with m a active insurers (m a m) where each active insurer o¤ers e C = ( e C 1 ; e C 2 ; :::; e C n ; e D(:)), with e D(:) = ( e D 1 (:); e D 2 (:); :::; e D n (:)).

  Figure1

The fact that there may be no equilibrium in the Rothschild-Stiglitz model is related to the discontinuity of insurers' payo¤ functions, since small changes in their contract o¤ers may lead all individuals of a given type to switch to other insurers, with a possible jump in the insurers'expected pro…ts.Dasgupta and Maskin (1986a,b) have established existence theorems for mixed strategy equilibria in a class of games where payo¤ functions have discontinuity points, and, as shown by[START_REF] Rosenthal | Mixed-strategy equilibrium in a market with asymmetric information[END_REF] in the case of the Spence model of education choices, such a mixed strategy equilibrium exists in the Rothschild-Stiglitz insurance market model. However, assuming that …rms play mixed strategies at the contract o¤er stage has not been considered as reasonable in the subsequent literature on markets with adverse selection. In addition, as shown by Rosenthal

This mapping between the nature of contracts (participating or non-participating) and the cor-

D will be non random because the law of large numbers allows us to evaluate the average pro…t by the expected pro…t made on a policyholder who is randomly drawn among the customers. D < 0 corresponds to a supplementary call.

Hence, for the sake of notational simplicity, it is assumed that all individuals of the same type choose the same mixed strategy. In a more general setting, di¤erent individuals of the same type could choose di¤erent mixed strategies. This extension would not a¤ect our conclusions insofar as the policy dividends paid by an insurer only depend on the distribution of customers among its contracts and by the proportion of each type for each contract, and not on the identity of the individuals who purchase a given contract. See the proof of Lemma 4 in the Appendix.

Since there is a continuum of individuals in the population, when a type i individual chooses her mixed strategy i (C), she considers that expected underwriting pro…t P j h (C) and expected policy dividends D j h (C) are independent from her own choices. This is implicit in equation (1): type i individuals choose their insurance contract for given expectations on policy dividends, because they believe they are in…nitesimal in the group of insureds who choose the same contract. If C j h is chosen by nobody, or more generally if insurer j does not attract any customer, then individuals estimate

See also[START_REF] Picard | Participating insurance contracts and the Rothschild-Stiglitz equilibrium puzzle[END_REF].

The structure of cross-subsidization subgroups follows from the interaction of the i and i in a complex way, which makes a more precise characterization di¢ cult. For given i , intuition suggests

More precisely, Proposition 1 follows from a straightforward extension of Lemma 2 to allocations with randomization between contracts. See Lemma 3 in the Appendix.

The NSS criterion was introduced by Maynard Smith(1982). In the terminology of evolutionary games, the alternative strategy is played by a small group of "mutants" who appears in a large population of individuals who are programmed to play the same incumbent strategy. Following the biological intuition, we may assume that evolutionary forces select against the mutant strategy if and only if its postentry payo¤ (or …tness) is not larger than that of the incumbent strategy. Thus, a

To be honest, it must be acknowledged that there are two possible game theory interpretation of the Rothschild-Stiglitz framework. In the most usual one, insurers face a continuum of individuals of various possible risk types, and they know the fraction of each type, but not any given individual's type. This is the interpretation we have come up with in this paper. In another one, insurers compete for a single potential insured individual whose type is privately observed, and insurers have a common prior over this type. Only the …rst interpretation is compatible with our analysis.

The payo¤ functions are such that there is always an equilibrium of the discretized game where individuals of the same type play the same mixed strategy.

Note that we here use D i 0 and D i 1 0 when i = 2 I, which follows from (17).

i and x i = W 2 i W A for i i 0 . Let j 0 be some insurer that belongs to the set of inactive insurers if m a = 1 and that may be active or inactive if m a > 1.

Suppose insurer j 0 deviates from e C to C j 0 = fC j 0 1 ; C j 0 2 ; :::; C j 0 n ; D j 0 (:)g with D j 0 (:) = (D j 0 1 (:); D j 0 2 (:); :::; D j 0 n (:)); where

with K > 0. For K large enough, insurer j 0 makes positive pro…t at any continuation equilibrium after the deviation to C j 0 where it attracts some individuals. This is the case when all type i 0 individuals choose C j 0 i 0 and reach expected utility u i 0 (with u i 0 u i 0 > e u i 0 ) and possibly other individuals choose a contract in C j 0 . Thus, any market equilibrium where insurer j 0 does not attract some individuals after deviating from e C to C j 0 is not based on robust beliefs. We deduce that f( f W 1 i ; f W 2 i ); i = 1; :::; ng is not a robust equilibrium allocation.