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Abstract

The conical shape of a shuttlecock allows it to flip on impact. As alight and extended particle, it flies
with a pure drag trajectory. We first study the flip phenomenon and the dynamics of the flight and
then discuss the implications on the game. Lastly, a possible classification of different shots is
proposed.

Introduction

History

The first games important to the creation of badminton were practised in Asia 2500 yr BC [1]. Soldiers played fi-
jian-zi, which consisted of exchanging with their feet a shuttle generally made of a heavy leather ball planted with
feathers (figure 1(a)). This game is now called chien-tsu and is practised with modern shuttles as shown in

figure 1(b). Rackets were introduced for the first time in Japan with hagoita (figure 1(c)). During this period,
shuttles were composed of the fruits of the Savonnier tree, which look like beans and were again furnished with
feathers. Contemporary badminton is a racket sport originating from the Indian game tomfool, modified by
British colonials, and played with a feathered shuttlecock and a racket made with strings, as attested by the
painting of Jean-Siméon Chardin, reproduced in figure 1(d).

The modern game

Badminton is played either by two opposing players (singles) or two opposing pairs (doubles). Each player (or
team) stands on opposite halves of a rectangular court which is 13.4 meters long, 5.2 meters wide and divided by
a 1.55 meter-high net (figure 2(a)). Players score points by striking a shuttlecock with their rackets (a typical
racket is shown in figure 2(b)) so that it passes over the net and lands in the opponent’s half-court. Each side may
strike the shuttlecock only once before it passes over the net. A rally ends once the shuttlecock has hit the floor or
aplayer commits a fault. The shuttlecock is a feathered (or, in uncompetitive games, plastic) projectile. It is made
of 16 goose feathers planted into a cork (figure 2(c)). This object weighs M = 5 g, itslengthis L = 10 cm and its
diameteris D = 6 cm. Shuttlecocks have a top speed of up to 137 ms ' [2]. Since the projectile flight is affected
by the wind, competitive badminton is played indoors. Since 2008, all the finals of the Olympic Games and the
World Championships have been contested by Lin Dan (China) and Lee Chong Wei (Malaysia). Looking at
those finals, one observes that a typical game lasts about one hour (20 min by set), each rally lasts on average
about 10 s with typically 10 exchanges. Badminton strategy consists of performing the appropriate shuttlecock
trajectory, which passes over the net, falls in the limit of the court and minimizes time for the opponent reaction.

The state of the art

The trajectories of shuttlecocks have been extensively studied with experimental, theoretical and numerical
approaches. Cooke recorded the trajectories of different shuttlecocks in the court and compared them to
numerical simulations [3]. The aerodynamics of several shuttlecocks was studied in a wind tunnel by Cooke and
Firoz [4, 5]. They measured the air drag Fj, = pSCp U?%/2 exerted by air on a shuttlecock (where p is the air
density, S = z (D/2)? the shuttlecock cross-section and U'its velocity) and showed that the drag coefficient Cp, is
approximatively constant for Reynolds numbers (Re = DU /v, with v the air kinematic viscosity) between

1.0 x 10*and 2.0 X 10°. For commercial shuttlecocks, Cp, varies between 0.6 and 0.7 depending on the design

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Engraving of a ti-jian-zi game extracted from Le Tour du Monde: Nouveau Journal des Voyages written by Edouard
Charton in 1860. (b) Shuttle used in chien-tsu. (c) Drawing of Three Beauties Playing Battledore and Shuttlecock by Utagawa Toyokuni
in 1800. (d) La Fillette au Volant by Jean-Siméon Chardin in 1741.

—
o
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Figure 2. (a) Sketch of a badminton court. (b) A badminton racket. (c) An example of a feathered shuttlecock. The dark line indicates
1 cm. This image has been obtained by the author from the Wikipedia website and the owner of the copyright in the image is unclear.
Accordingly, to the extent that the law allows, IOP Publishing disclaims any liability that any person may suffer as a result of accessing,
using or forwarding the image and permission should be sought before using or forwarding the image from Wikipedia and/or the
copyright owner. This image was made available on Wikipedia under a creative commons CC BY SA 3.0 licence.

of the skirt. Wind tunnel measurements also reveal that there is no lift force on a shuttlecock when its axis of
symmetry is aligned along the velocity direction. A synthesis of data collected in the court and wind tunnels has
been done by Chan [6]. Shuttlecock trajectories have been calculated by Chen [7], and Cohen et al [8] proposed
an analytical approximation for the range of projectiles submitted to weight and drag at high Reynolds number.
Nevertheless, the peculiarities of shuttlecocks such as their conical shape and flipping properties have rarely been
discussed [9]. For instance, the observation of impacts with a racket (figure 3) reveals a dynamics specific to
badminton: shuttlecocks fly with the nose ahead so that they can be hit on the cork by each player, which
requires the shuttlecock to flip after each racket impact.

The questions we address in this work are: what makes the shuttlecock flight unique, and how does it
influence the badminton game? In the first section, we study the ‘versatile’ behavior of a shuttlecock. The
characteristic times associated with the motion are measured, and we develop an aerodynamical model to
predict them. The second part concerns trajectories at the scale of the court, that is, for clear strokes. In this
section, we study how the flight of a shuttlecock depends on its characteristics (mass, composition and
geometry) and on the fluid parameters (density, temperature and humidity). Finally, we discuss in the third
section how the shuttlecock flight influences the badminton game in terms of techniques, strategies and rules.

1. Flips

1.1. Observations

Different sequences of the flip of a shuttlecock are recorded using a high speed video camera (figure 3). After
contact with the racket (typical time of 1 ms), it takes typically 20 ms for the projectile to flip. Then, the
shuttlecock axis undergoes damped oscillations until it aligns along the velocity direction U. The projectile never

2
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Figure 3. Chronophotographies of shuttlecocks after an impact with a racket, showing the time evolution of the angle ¢ between the
shuttlecock orientation and its velocity U. White lines indicate 50 cm. (a) The time interval between each position is 5 ms, the

shuttlecock initial velocity is Uy ~ 18.6 m s~! and its initial angular velocity is ¢, = 206 rad s~!. (b) Time interval between each
position is 6.5 ms, the shuttlecock initial velocity is Uy ~ 10.4 m s~! and its initial angular velocity is ¢, = 28 rad s~
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Figure 4. Time evolution of the angle ¢ between the shuttlecock axis of symmetry and its velocity U. Measurements correspond to

experiments shown in figure 3. t = 0 is the time when the shuttlecock impacts the racket. Experimental data (blue dots) are bounded by
an exponential envelope (red dashed lines). (a) The shuttlecock initial velocity is Uy ~ 18.6 m s~! and its initial angular velocity is

@, = 206 rad s™". (b) The shuttlecock initial velocity is Uy &~ 10.4 m s~! and its initial angular velocity is ¢, = 28 rad s~

1

performs a complete turn. In figure 3(a), the flip lasts four time intervals, which corresponds to 15 ms. The
oscillating time of the shuttlecock direction is estimated as 80 ms. After 130 ms, the shuttlecock axis of symmetry
is aligned along the velocity direction. When the hit intensity decreases, the dynamics of the shuttlecock slows
down. Figure 3(b) shows the same shuttlecock leaving the racket at a velocity two times smaller than the previous
one. The flipping time increases to 35 ms, the oscillating time lasts about 120 ms and the stabilizing time is
estimated as 180 ms.

Such movies allow us to measure the angle ¢ between the shuttlecock axis and the velocity direction, as
defined in figure 3. A typical example of the time evolution of ¢ is plotted in figure 4. Such graphs highlight the
three characteristic times introduced earlier. The first one is the flipping time 7, needed for ¢ to vary from 180°
to 0°. The second one, denoted as 7, is the pseudo-period of oscillations. The third one is the stabilizing time 7,

which corresponds to the damping of the oscillations (red dashed lines in figure 4). The purpose of this section is
to understand this complex dynamics.

1.2. Flip model

In order to understand the shuttlecock behavior after impact, it is necessary to evaluate the forces applied to i,
namely weight and aerodynamic pressure forces. These latter reduce to drag, the application point of which
being the pressure center, where the aerodynamic torque vanishes [ 10]. Its location depends on the pressure
profile around the projectile. If this profile is constant around the projectile, the aerodynamic center is the
centroid of the object. Since the mass as a function of axial distance is non-homogeneous in a shuttlecock, the

3
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Figure 5. (a) Drag force Fp applied on a shuttlecock whose direction forms an angle ¢ with the velocity U. (b) Model system
composed of a sphere of large section S and mass M, which stands for the skirt, and a sphere of small section s and large mass M,
which represents the cork.

center of gravity is closer to the cork and it differs from the center of pressure. Using numerical simulations,
Cooke estimates that the distance [ between the center of mass and center of pressure is about 3.0 cm [3]. The
sketch in figure 5(a) highlights the effect of the drag F, on an inclined shuttlecock. The aerodynamic drag
applies a torque in a way opposite to the projectile velocity U and stabilizes the cork (corresponding to ¢ = 0).

Since the versatile behavior of a shuttlecock arises from the non-coincidence between its center of mass and
center of pressure, we model the object with two spheres. The first one stands for the skirt of mass My and large
cross-section S positioned in B, and the second one represents the cork of mass M and smaller cross-section s
placed in C (figure 5(b)). The shuttlecock characteristics are condensed in a heavy small cork and a large light
skirt. A torque balance around G provides the following equation in the realistic limit SM¢ >> sMp:

pSCDU . pSCDUZ
(4
2MB<1 +MB/MC) 2(Mc + Mp)lge

sing =0 (1)

where Cp is the drag coefficient of a sphere and /¢ the distance between the points Gand C (Igc = Mp/Mc I5c).
The calculation leading to equation (1) is detailed in appendix A. This second order differential equation for ¢ is
one of a damped oscillator. The square of pulsation w; = pSCp U?/2 Ml corresponds to the stabilizing
torque generated by the aerodynamic drag (figure 5(b)). The damping term,

1/7, = pSCp U/2Mp (1 + Mp/M¢), results from the drag associated with the orthoradial movement of the
shuttlecock as ¢ varies. The different characteristic times arising from (1) can finally be compared to the data.

1.2.1. Flipping time

Experiments show that the flipping time is smaller than the stabilizing time. This remark leads one to neglect the
damping term ¢ /7, in equation (1). In this limit, the equation of motion can be integrated with the initial
conditions ¢ (t = 0) = zand ¢ (t = 0) = ¢, whichyields:

(p2=(p02+2a)02(1 + cos ). (2)

Hence, the flipping dynamics of the shuttlecock depends on the pulsation w, and initial angular velocity ¢,.
In our experiments, we have M¢ = 3.0 g, Mg = 2.0 gand S = 28 cm?, and we assume Cpp, = 0.44 and
Igc = 2.0 cm, as determined by Cooke [4]. Together with the air density p = 1.2 kg m™>, we get a pulsation
wo ~ 10 rad s™!, for U = 10 m s~ If ¢», > @,, equation (2) reducesto ¢ (t) = ¢, and the flipping time,
defined as ¢ (77 ) = 0, becomes:
T
Trh=—. (3)
Py
This limit corresponds to the experiments reported in figures 3(a) and 4(a) where ¢, = 206 rad s~ and

wo = 23 rad s~!. If the condition ¢, > @ is not satisfied, equation (2) must be integrated numerically using:

0
Trm = f do / \/qb»(, > 4+ 2w (1 + cos @), as for the data reported in figures 3(b) and 4(b). The determination

of Uy, ¢, and ¢, for the experiments shown in figure 3(a) and (b) allows us to estimate the flipping time. We
find 77 _, = 15 msand 75 4, = 42 ms for experiments (a) and (b). These predictions are close to the
experimental values of 7 o,_, = 16 msand 75 . = 39 ms. Moreover, we can look at the flipping time

Tf exp Of a shuttlecock submitted to impacts of various intensities. For each impact, the initial rotational velocity

4
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Figure 6. (a) Experimental flipping time 7 ,,, as a function of the one 7y ;; predicted by equation (2). (b) Experimental initial angular
velocity ¢, times the skirt length L, as a function of the shuttlecock initial velocity Unafter its impact with a racket.
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Figure 7. (a) Experimental oscillating time 7, .y, as a function of the predicted one 7, , determined from equation (4) including the
measured value of the shuttlecock velocity U. (b) Experimental stabilizing time 7, e, as a function of the predicted one 7 ¢, estimated
by the way of relation (5).

%, and shuttlecock speed Uare measured. Figure 6(a) compares the experimental flipping time 7 ¢, with the
theoretical one 7y 4, predicted by solving equation (2).

All the data (blue dots) are distributed around a line of slope 1.1. Figure 6(b) highlights the dependency
between the initial angular velocity ¢, and its initial velocity U. For a standard impact, the two initial conditions
given to a shuttlecock are thus not independent.

1.2.2. Oscillating time

The oscillating time of a shuttlecock can also be predicted by equation (1). By considering typical values of the
characteristics of a shuttlecock, we estimate the quantity 1 /wyz, = /2 MpSCplgc/2Mp (1 + Mp/Mc) ~ 0.04.
This leads one to consider low damped oscillations where the oscillating time can be expressed as 7, = 27 /.
This approximation provides:

NE fe (4)

where £ = 2 M/pSCp. Using the previous values for shuttlecock characteristics and the initial velocities in
experiments shown in figures 3(a) and (b), we estimate the oscillating times using relation (4). This provides

To th—a = 102 ms and 7, »,_, = 183 ms for the experiments (a) and (b), which nicely compares to the data

Ty exp—a = 92 msand 7, oy = 168 ms. Moreover, we can inspect experimentally the oscillating time 7, ¢, ofa
given shuttlecock submitted to impacts of various intensities. For each impact, the shuttlecock speed U and its
oscillating time are measured. Figure 7(a) shows that the experimental flipping time 7, .y, agrees with 7, 4, the
one predicted by equation (4).
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Figure 8. (a) Sketch of the setup used to measure the drag coefficient of a shuttlecock in a wind tunnel as a function of its orientation
with the air flow. (b) Drag coefficients of a plastic (blue dots) and a feathered (red squares) shuttlecock as a function of its orientation
in the air flow. Measurements have been done with a wind velocity U = 14.5 ms~! and non-spinning projectiles.

1.2.3. Stabilizing time
The stabilizing time is experimentally determined to be about one hundred milliseconds (figure 3) and it appears
in equation (1) through the damping term ¢ /z,. According to the previous model, it can be expressed as:

My (1 + Mp/Mc) My ¢
pSCpU MU'

(5)

Tsth =

For typical orders of magnitude implied in badminton (U = 20 m s™!), this relation provides 7, ~ 0.3 s. We
can look at the evolution of the stabilizing time with the shuttlecock velocity for different impacts. Figure 7(b)
shows the stabilizing time as a function of the one predicted by equation (5). All the data (blue dots) collapse on a
line of slope 0.4. The fact that the slope is lower than unity may come from the approximation of a drag
coefficient independent of the shuttlecock orientation. Actually, the shuttlecock drag coefficient increases with
the orientation angle ¢ as shown in figure 8(b). This phenomenon, which is not taken into account in the model,
tends to reduce the calculated stabilizing time.

1.3. On the shape of a shuttlecock

We now discuss how the shuttlecock geometry influences its flipping dynamics, which ideally might explain why
ashuttlecock opening angle A close to 45 °was selected (figure 2(c)). In order to answer this question,
shuttlecock prototypes have been constructed. They are made with a dense iron ball and a light plastic skirt
(figure 9(a)). The characteristics of these prototypes (length L, diameter D, mass M and opening angle A) can be
easily varied. For each one, the flipping dynamics was captured and analyzed in a free fall experiment where the
shuttlecock was released upside down without initial velocity. These experiments were conducted in a water
tank in order to reduce the length scales. The Reynolds number corresponding to the flow is also reduced but it
stays in the regime of high Reynolds number (Re > 10°) where fluid effects are described by the same laws.
Figure 9(b) shows a chronophotograph of a prototype flipping during its fall in water. We performed
experiments with given mass M and diameter D, but different opening angles A between 10° and 160°. The
evolution of 7 ¢, and 7, ey, With A is reported in figure 9(c). The graph shows the existence of an optimal
opening angle for which the flipping and stabilizing times are minimal.

The dependency of 7, and 7, with A can be understood qualitatively. For small opening angles, the
shuttlecock is elongated and the skirt has a high momentum of inertia. The object is difficult to set in motion and
the characteristic times are long. In the opposite case (large A) the shuttlecock is short and /is small as the
stabilizing torque resulting from the drag force. This situation also corresponds to large values of flipping and
stabilizing times. Between these two regimes, there is a range of opening angles for which the flipping motion is
faster. Real shuttlecocks seem to belong to this family of intermediate opening angles that rapidly flip.

The basic model developed previously for shuttlecocks can be applied to any object which have a distinct
center of mass and center of pressure.
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Figure 9. (a) Prototype of a shuttlecock made with a dense iron ball and a light plastic skirt. The dark line indicates 1 cm. (b)
Chronophotography of a prototype launched upside down without initial velocity in a water tank. Snapshots are separated by 160 ms
and the bar indicates 2 cm. (c) Flipping (blue dots) and stabilizing (red squares) times are plotted as a function of the shuttlecock
opening angle A. Shuttlecocks have amass M = 2.2 gandasection S = # (D/2)* = 12.4 cm®.

Y \\\5\

Figure 10. Comparison between the observed trajectories (circles) and trajectories calculated with a pure drag equation and

£ = 4.6 m (solid line) for different initial conditions: Uy = 19.8 m s~'and 6, = 39° (blue); Uy = 24.7 ms™!, 0y = 44° (green);
Up = 6.8 ms™, 8y = 55° (cyan); Uy = 9.7 m s, 6y = 44° (yellow); Uy = 9.5 m s, 6y = 30° (light-purple); Uy = 9.6 m s7},
0y = 18° (gray); Uy = 13.4 m s7!, 6, = 58° (black); Uy = 37.6 ms™}, §, = 38° (red); Uy = 32.3 m s7}, §, = 12° (dark-purple).

2. High clears

2.1. Trajectories
We now discuss the global trajectory of a shuttlecock. The equation of motion for such a projectile is
M 'Z—‘: = Mg - %pSC p UU. The trajectory depends on the initial conditions Uy, 8, and on a characteristic

length £ = 2M/pSCp called the aerodynamic length. Considering M = 5.0 g, p = 1.2 kg m~>, S = 28 cm?
and Cp = 0.65 + 0.05 (determined in a wind tunnel), we get £ = 4.6 m. This value allows us to evaluate the
projectile terminal velocity in free fall, U, = \/g_E = 6.7 m s~!, which corresponds to the steady state

dU/dt = 0. Numerical solutions of the equation of motion for various initial conditions are plotted in figure 10
with solid lines. These trajectories are compared with experimental ones of the same initial conditions Uy and 6,
(see dotsin figure 10). The time step between two positions is 100 ms.

One observes the superimposition of numerical and experimental trajectories. This agreement validates the
assumptions of constant Cp, (and S) along the shuttlecock trajectory, as also observed by Phomsoupha etal [11].
The equation of motion for shuttlecocks has an analytical solution [8]. This solution leads to an approximate
expression for the range x, of the projectile, defined as the position on the horizontal axis where the particle
returns to its initial height (figure 10):

U2
Xy = £ cos Oy In|1 + 4=2 sin 6, |. (6)
2 gL
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Figure 11. Plastic and feathered shuttlecock trajectories obtained with the same initial conditions, 8y and Uj. Blue and red dots are
used for plastic or feathered projectiles respectively. Solid lines are numerical solutions of the equation of motion using the same initial
conditions as in experiments. The aerodynamic length is determined for each shuttlecock from wind tunnel measurements.
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Figure 12. Drag coefficient (Cp = 2Fp/pz (D/2)*U?) as a function of the Reynolds number (Re = DU/v). Blue dots stand for plastic
shuttlecocks whereas red squares are used for feathered projectiles. Solid lines show the mean value of the drag coefficient in each case.

Uy < Uy = \/g_E , equation (6) reduces to the parabolic range xo = U sin 26,/g. In the opposite case
U > Uy = \/g_ﬁ ), we observe alogarithmic dependency of x, with the initial velocity: the range virtually
saturates at a distance scalingas £. In badminton, the initial launching velocity Uy is often much larger than U,
and players can feel the saturation of the range with initial velocity. In this regime, x, highly depends on
shuttlecock and air properties through the aerodynamic length £. In the following, the influence of the
shuttlecock and fluid characteristics on trajectories is studied.

2.2. Difference between plastic and feather shuttlecocks

Shuttlecocks are usually classified in two categories, namely plastic and feathered. In order to understand the
difference between both types, we observed their trajectories. Figure 11 reports two shuttlecock trajectories with
the same initial conditions but with a different kind of projectile.

With the same initial angle and velocity, the range is larger for plastic than for feathered shuttlecocks. This
increase is about one meter, which represents 10% of the total range. This phenomenon is observed on a large
variety of plastic and feathered shuttlecocks [3]: both projectiles can be distinguished by their aerodynamic
lengths. Parameters influencing £ are determined, such as drag coefficients measured in a wind tunnel, and
results are plotted in figure 12.

Since Cp is independent of the Reynolds number, we consider its mean value. For the feathered projectile, it
is Cp r = 0.65 + 0.05 whereas we have for the plasticone Cp , = 0.68 + 0.05. The exposed section
S = m(D/2)*isequal to 28 cm? for both shuttlecocks. The shuttlecock’s mass is M £ = 5.0 g for the feathered
oneand M, = 5.3 g for the plastic. Combining all these data, we estimate the aerodynamic length for each kind
of shuttlecock: £y = 4.04 mand £, = 4.48 m. We solve numerically the equation of motion including these
values and plot the resulting trajectories in figure 11 with solid lines. Numerical trajectories correspond to
experimental ones and predict the range for both kinds of shuttlecock. Trajectories mainly differ because of the
difference in aerodynamic length between the two projectiles, a difference itself due to the larger mass of a plastic

8
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Figure 13. Deformation of a plastic shuttlecock with a cut skirt, submitted to an increasing air flow velocity.

Figure 14. Comparison between the trajectory of a standard plastic shuttlecock (full blue dots) and the one of a cut shuttlecock (empty
blue dots). The time interval between two positions is 100 ms. The blue solid line shows the solution of the equation of motion with
the same initial conditions and the same properties of a standard shuttlecock while the dashed line shows this solution after taking into
account the modification of the cross-section of the projectile measured in a wind tunnel (figure 13).

shuttlecock compared to a feathered one. It is practically not very easy to reduce the mass of a plastic projectile
while keeping its robustness and price unchanged, which explains why the two masses are different.

Experienced players prefer to play with a fragile feathered shuttlecock than with a cheaper and more resistant
plastic one. This can be understood by the fact that feathered projectiles may have faster initial velocities without
exiting the court, owing to their smaller aerodynamic length. Using feathered shuttlecocks, a player can hita
smash at a higher speed, which allows less time for the opponent to react.

According to experienced players, the trajectories of feathered shuttlecocks are more ‘triangular’, as indeed
seenin figure 11. Players’ feelings about the triangular nature of the trajectory may come from the curvature at

the top ( %)0=0’ which is inversely proportional to £ and independent of the initial velocity U,. Asa

consequence, feathered trajectories are indeed more curved at the top than plastic ones.

As the shuttlecock geometry is critical for the badminton game, we have imagined a way to approach the
pure triangular trajectory. The skirt rigidity of a plastic shuttlecock is reduced by cutting it longitudinally (first
image in figure 13). Figure 13 shows that increasing air flow reduces the cross-section S of the projectile by a
factor 2 as the flow velocity increases from 0 ms ™' to 50 ms ™.

Figure 14 compares the trajectory of a cut shuttlecock with the one observed for a standard plastic projectile.
For similar initial conditions, the skirt deformability indeed induces a modified trajectory which is more
triangular than the normal one. The fact that the shuttlecock with a cut skirt has alower range means that the

increase of its cross-section at low speed predominates over its reduction at high velocity.

2.3. Shuttlecock rotation

Shuttlecocks are not exactly symmetric with respect to their axis because feathers are superimposed one over
another. This asymmetry also exists for plastic models, and it implies that a shuttlecock rotates around its axis
when placed into an air flow [12]. This section quantitatively describes this effect shown in figure 15(a).
Considering that the behavior of a feather is similar to the one of a thin plate in an air flow, the fluid force is
perpendicular to the object and in a direction opposite to its velocity. Forces exerted on each feather (as
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Figure 15. (a) Sketch indicating the rotation of a shuttlecock moving with the cork ahead. Thin blue arrows indicate the drag force on
each feather. (b) Rotation velocity R £2 asa function of the translation speed U for a plastic (blue dots) and a feathered shuttlecock
(red squares).

represented in figure 15(a) with blue arrows) create a torque which puts a projectile into rotation so that feathers
rip through air.

Shuttlecocks rotate at a velocity such that this torque is balanced by air resistance. The rotational velocity £ is
measured as a function of the projectile speed U, as shown in figure 15(b). The graph reveals a linear correlation
between R £ and U, and differences between plastic and feather rotational velocities. Whereas the slope of the
linear trend is equal to 0.02 for the plastic shuttlecock, the one for the feathered projectile is twice as large.

The link between the rotational and linear velocity of a shuttlecock can be understood by writing the balance
between the propulsive and friction torques applied on a feather:

pS, sin(A/2) sin f cos f U? R ~ pS, sin(A/2)tan (%) U?R (7)

where S, is the feather surface area, A the opening angle and f the tilted angle of feathers resulting from their
superimposition. Experimental observations show that RQ2 <« U, which leads to the following relation:

RQ ~sinf cos f U. (8)

This approach predicts the linear dependency of rotational shuttlecock velocity with U. In addition, the
factor between these two quantities is estimated as 0.06 for A ~ 45°and f = 4° and the model roughly captures
the origin of rotation of a shuttlecock around its axis, and its amplitude. The effect of rotation on the flight can
also be discussed. In a wind tunnel, we measured the drag coefficients of projectiles without rotation or free to
rotate. The results are gathered in figure 16. Whatever the rotation, the drag coefficient is found to remain
between 0.65 and 0.75. Considering the uncertainty of our experiments, we conclude that the rotation of a
shuttlecock has no strong effect on the drag coefficient.

One may wonder whether rotation induces gyroscopic stabilization. Such a phenomenon happens if the
angular momentum of the shuttlecock is high compared to the aerodynamic torque applied to it. It eventually
leads to a non-zero value of the angle ¢ between the axis of the shuttlecock and its velocity direction along the
trajectory. Figure 17 reports the time evolution of this angle along a high clear trajectory. Apart from the first
flipping phase, the shuttlecock is never tilted compared to its velocity direction.

The fact that axial rotation does not lead to gyroscopic stabilization can be understood. On the one hand, the
angular momentum of this object is JQ? where J is the moment of inertia of the shuttlecock relative to its axis of
rotation and £ the angular velocity. On the other hand, the aerodynamic torque scales as pR*U . Gyroscopic
stabilization only occurs if we have RQ/U > RZ\/;T/] . Using a pendular system, Cooke measured different
shuttlecocks’ moments of inertia and concluded that Jis 1.2 X 107¢ kg m~2 [3]. Considering typical values
(I~ 3cm,R=~3cmand p = 1.2 kg m>), we deduce the following criterion for gyroscopic stabilization:
RQ/U > 0.1. According to figure 15(b), this condition is not achieved when rotation is imposed by air flow and
shuttlecock rotation along its axis does not stabilize it in a direction different to the velocity one. However, when
the axis is not aligned with the air flow, the aerodynamic torque on the rotating object induces a precessing
motion of period 7, = 47JQ2/pSCp U? I. The typical distance over which a shuttlecock follows precession is

Uz, ~ (J/ pR3 1) (RQ/U). Considering typical values of the ratio R€2/U (extracted from figure 15(b)) and the
characteristics of a shuttlecock, we estimate that Uz, is about 2 m for a plastic projectile and 4 m for a feathered
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Figure 16. Shuttlecock drag coefficients (Cp, = 2Fp/px (D/2)?U?) as function of the Reynolds number (Re = DU /v) for projectiles
free to rotate or not (full and empty symbols, respectively). (a) Plastic shuttlecock MAVIS 370. (b) Feathered shuttlecock.
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Figure 17. Plot of the experimental angle ¢ between the shuttlecock axis and its velocity as a function of the coordinate s of the
shuttlecock along its trajectory divided by the curvilinear coordinate when the projectile reaches the floor (s = spay). The initial
launching conditions correspond to a high clear: Uy = 26 m s~ and 6, = 56°.

one. This difference leads to a smoother early path for the second case. This phenomenon may also contribute to
the players’ preference for feathered shuttlecocks.

Obayashi et al also investigated the effect of a shuttlecock rotation on to its skirt deflection [13]. They proved
that the skirt enlargement due to the centrifugal forces is compensated by the effect of the aerodynamic drag.
Thanks to rotation, shuttlecocks keep a constant cross-section.

3. Influence of the shuttlecock flight on the game

3.1. Flipping strokes

We discussed in section 1 how shuttlecocks flip after being impacted by a racket. Among the strokes used in
badminton, we aim to determine which ones are influenced by this versatile motion. The flipping dynamics of a
shuttlecock is sensitive to the players only if the stabilizing time 7, compares to the total flying time 7,. We plotin
figure 18 the ratio 7; /7y, where 7, is deduced from relation (5), as a function of the horizontal traveled distance x,
normalized by the court length L.

The graph reveals that there is only a small domain of the court (x( S 0.25 L ;g = 3 m) where players can
receive a shuttlecock not yet aligned with its velocity direction. This situation only happens in the case of net
drops. When a good player performs a net drop, his purpose is to delay the flip of the shuttlecock and let the skirt
fly ahead. Then, the opponent cannot hit the cork of the shuttlecock and send it back properly. In practice,
players perform tricks called ‘spin in’ and ‘spin out’, which consist of gently hitting the shuttlecock and
simultaneously gripping the cork to maximize the initial spin ¢, positively or negatively. Relations (4) and (5)
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Figure 18. Ratio of the stabilizing time 7, derived from expression (5) and the computed flying time 7 as a function of the horizontal
range x, divided by the courtlength Lg;4. This plot is obtained for a shuttlecock of aerodynamiclength £ = 4.6 m, initially launched
aty =2 mwith an initial angle 6, = 15°.

imply that a small initial velocity Uy, as employed in net drops, increases the shuttlecock oscillating and
stabilizing times.

The criterion for having a shuttlecock turning several times on itself before stabilizing can be discussed
quantitatively. This situation happens if the initial rotational kinetic energy, (Mgl35 + Mclic) @y /2, is larger
than the depth of the potential energy well, pSCp U % /2, imposed by the drag exerted on the skirt. One
deduces that a shuttlecock does several turns before stabilizing if the initial angular velocity verifies
¢y 2 U pSCp/lgcMp. For typical shuttlecocks, this relation becomes L¢p,/ U 2 2.2.In the case of standard
impacts, we saw in figure 6(b) that Lg,/U ~ 1. This explains that shuttlecocks generally perform less than a
complete turn after an impact with a racket. Only the ‘spin in’ or ‘spin out’ techniques allow one to outweigh this
criterion and make the projectile turn several times before stabilizing with the nose ahead.

Apart from net drops, all other strokes have a stabilizing time shorter than the flying one. Thus the
shuttlecock is always aligned with the velocity direction, corresponding to the trajectories studied in section 2.

3.2. Clear strokes

For clear strokes, section 2.1 shows that the range ‘saturates’ with the initial velocity at a maximal value which
depends on the aerodynamical length £. For the maximal initial speed ever recorded (U, = 137 m s™!), the
shuttlecock maximum range x,,,4, is 13.8 m [14]. This distance compares to the courtlength (L seg = 13.4 m),
which implies that the projectile rarely leaves the field and may explain why the mean number of shots per rally
(13.5) is so large in top level badminton competitions [ 15]. For comparison, this number falls to 3.5 in top level
tennis competitions consistently with the fact that the maximum range of a tennis ball (x,,,, = 66.9 m) is much
larger than the courtlength (L g = 24 m).

3.3. A possible classification

Depending on players and shuttlecock positions, several kinds of stroke are used, as sketched in figure 19(a) [2].
Each stroke is characterized by a horizontal traveled distance x, and a flying time zy. We propose classifying
badminton strokes in the diagram drawn in figure 19(b). On the x-axis, one finds the flying time 7, divided by
the time of reaction 7, of a player (7, isabout 1 s for trained players). The y-axis shows the ratio between the
horizontal traveled distance x, and the court length Lg,;;. This diagram reveals that smashes, drives and net shots
correspond to short flying time strokes, as opposed to clears, drops and lifts. The only stroke whose range is short
compared to the court size is the net shot. A red color is used for killing shots of proportion larger than 10% (see
table 1): all the short-time shots fall in this efficient category.

Badminton strategy consists in moving the opponent away from the court center using clear, drop or lift
strokes before finishing the point with a rapid shot such as a smash or a net shot. This strategy impacts the strokes
frequency as reported in table 1, which differentiates the killing shots from other ones. For clears, drops and lifts,
the frequency of non-winning shots is much larger than the frequency of killing shots, which emphasizes that
these shots are defensive or preparatory shots; this contrasts with drives, smashes and net shots which largely
dominate the statistics of killing shots. Thus, ending a rally in badminton is mainly a question of flight duration.

3.4. Upwards and downwards strokes
Another way to classify the different strokes consists in noting the direction: the up-going family is composed of
clear and lift, while the down-going family includes smash, drop and kill (which is an offensive shot hit from the
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Figure 19. (a) Side view of the court showing the different shuttlecock trajectories during a game [2]. The clear can be an offensive
stroke (1), moving the opponent back from the net or a defensive one (2), saving time to improve the player’s position. Drops (3) and
net shots (7) are slow, gentle shots that fall just behind the net into the opponent’s forecast. A lift (4) is actually an underarm clear
played from around the net area. This shot allows one to move the opponent to the back or to save time. The drive (5) is aline-drive
shot parallel to the ground passing just over the net. The smash (6) is a fast ball with a sharp straight trajectory aimed either at the
opponent’s body or at the limits of the court. (b) Classification of badminton shots according to the ratio between the flying time 7,
and the reaction time 7, of the opponent, and to the ratio between the horizontal traveled distance x, and the court size Lg,;4. Strokes
highlighted in red have a frequency larger than 10% in killing shots (see table 1).

Table 1. Measurements of the frequency of different
strokes (first column) as referenced in figure 19 for all
playing shots (second column) and for killing shots
(third column). Data are extracted from [16]. Strokes
which are killing shots with a frequency larger than
10% are highlighted in bold, as also stressed in red in

figure 19(b).

Strokes Playing shots Killing shots
Clear (1) &(2) 0.11 0.03
Drop (3) 0.07 0.03
Lift (4) 0.21 0.04
Drive (5) 0.14 0.21
Smash (6) 0.20 0.54
Net shots (7) 0.18 0.15
Serve 0.09 0

striped area.

by

Z| ‘ ‘ ‘ ‘ Izdoun :
}L'VVL(L’L' : | | I :

Figure 20. Sketch of abadminton court viewed from the side. In order to pass over the net, downward strokes have to be hit from the

net area and not reported in figure 19). The probability of each family can be approached with geometrical
considerations. Due to the presence of a net, the down-going family must be hit high enough, as represented by

the striped area in figure 20.

Considering that abadminton player can reach a maximum height 4,,,,,, that is, his/her own height (1.78 m
for Lin Dan and 1.74 m for Lee Chong Wei), plus his/her jumping height (0.7 m for Lin Dan), plus the racket
length (0.65 m), we estimate the total cross-sectional area X reachable by a player. Thus the ratio between the
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Table 2. Measurements of the fre-
quency of different downward
strokes during the last four Olympic

finals.

Downward strokes Frequency

Smash 0.14

Drop 0.12

Kill 0.02

Total 0.28

. . 3 hnet . . .
down-going stroke area X,,,,, and the total ¥ isequalto 1 — Er = 0.26, h,,.; being the height of the net. This
max

ratio must be compared to the frequency of downward strokes. Analyzing the last four Olympic finals, Laffaye
and Phomsoupha show that this frequency is equal to 0.28 (table 2), which is close to the ratio X,,,,/~ = 0.26.
One guesses that a change in the net height would modify this frequency and impact the characteristics of the
game, such as the mean number of exchanges per rally and the mean number of points per unit time.

Conclusion

The dynamics of a shuttlecock and its influence on the badminton game have been questioned. The versatile
behavior of a shuttlecock after impact arises from its non-homogenous mass as a function of axial distance. The
cork being denser than the skirt, a shuttlecock has distinct centers of mass and pressure, and thus undergoes a
stabilizing aerodynamic torque setting its nose ahead. The geometry of commercial shuttlecocks is empirically
chosen to minimize flipping and stabilizing times. In practice, badminton players try to delay stabilization with
net drops, in order to prevent the opponent from hitting the projectile correctly.

For other strokes, the stabilizing time is much shorter than the total flying time. In this limit, a shuttlecock is
aligned with its velocity. Because this light particle experiences a large drag, its trajectory is nearly triangular [8]
and it highly depends on the projectile properties. This explains why players carefully choose shuttlecocks as a
function of skills and atmospheric conditions (see appendix B). Experienced players prefer shuttlecocks
submitted to a slightly larger drag, such as feathered ones, in order to hit them violently without exiting the
court. The difference in rotating speed between the two kinds of shuttlecock (plastic and feathered) also plays a
role in this choice since a faster rotation of feather projectile limits its precession.

Beyond this study, many questions concerning the physics of badminton remain to be solved. For example,
the impact dynamics of a shuttlecock with a racket is not considered in this paper. One may wonder if there is an
optimal rigidity for the shaft and the strings to enhance the launching speed of a shuttlecock. Finally, the laws
established for shuttlecock flights could be discussed with other projectiles having a non-homogeneous mass
along their axis, such as air missiles [17] or dandelion achenes [18].
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Appendix A

Equation (1) describes the shuttlecock dynamics. The calculation leading to this equation from the model
proposed in figure 5(b) is derived here. The velocity of point B in the reference frame along the vectors egg and
e, is given by:

—U cos ¢
Us = (U sin @ + Igp (p)' ©)
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Table B1. Air density p as a function of its
temperature T. For each condition, the
shuttlecock aerodynamic length L is esti-
mated with M=5.0 g, S = 28 cm? and
Cp=0.6. The maximal range x,,,,, is cal-
culated for the maximal velocity recorded
inabadminton court, Uy = 117 m s,
and the corresponding optimal initial
angle 0* which verifies

(0x0/00) (Upnaes 0*) =0.

T 14 L Ximax
(°C) (kg m™?) (m) (m)

0 1.293 4.60 13.1
10 1.247 4.77 13.5
20 1.204 4.94 13.9
30 1.164 5.11 14.3
40 1.127 5.28 14.7

The velocity of point Calong the vectors egc and e, is:

U= U cos ¢ (10)
¢ ~Using + lgc ¢)

Hence the angle ¢ satisfies the following equation:
1 1
(MBZGZB + MchZC)gbez =GB A ( —EpSCD UBUB) + GC A ( —E,DSCD UcUc) (11)

where Mplés + Mcl is the moment of inertia of the shuttlecock along the z direction. We have
GB A Up = Igp(U sin ¢ + Igpg)e, and GC A Uc = Igc (—U sin ¢ + Igc@)e,, so that we can express
equation (11) as:

1 . . 1 . .
(MBZCZ;B + MchZC)(p = —E,DSCD UB( U sin @+ lGBgO) lGB - E/)SCD Uc( —U sin @ + ch€0) lcc. (12)
Assuming that Ug ~ Ug ~ U, we get:
C C
(Myls + Mcldc) g + %(s 135 + 5 120) U + %(s los — s loc) U sin g = 0. (13)

As the point G is the center of mass of the two spheres placed in Band C of respective mass M and M, the
distances Iggand Igc are linked by the relation Mplgg = Mclgc. Inserting the previous relation in equation (13)
provides:

Mc Mp
.. /)CD Sm + SVC . pCD SMC — SMB

¢+ Ug
2 Mp+ Mc 2 MC<MB+MC)ZGC

U?sin g = 0. (14)

In the limit SM > sMp, we obtain:

sC SCpU?
o+ oD Up + 22222 sing =0 (15)
2M3(1 + MB/Mc) 2 Migc

where M = M¢ + Mp. Equation (15) corresponds to (1) studied in this paper.

Appendix B

Badminton players always test shuttlecocks before competitions. They hit the projectile with a maximum
strength from one extremity of the court. Only projectiles reaching the corridor on the opposite side are selected
for the game. This test selects shuttlecocks which are appropriate to the current atmospheric conditions, and it
proves that air temperature and humidity influence the trajectory.

The temperature modifies the shuttlecock aerodynamic length via air density p, as reported in table B1 . As
air is hotter, the shuttlecock aerodynamic length increases. This implies an increase of the range of the projectile
by about 10% between 10 and 40 °C, that is, in the typical range of temperature at which badminton is practised.

The effect of air humidity is less obvious to understand. At first glance, parameters in the aerodynamic
length £ do not depend on hygrometry. But such effects only occur with feather shuttlecocks. Goose feathers
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Figure B1. Sketch of a feather showing its microstructure. A typical feather features a main rod, called the rachis. Joined to the rachis
are a series of branches, or barbs; the barbs themselves are also branched and form the barbules.

Table B2. Mass of a feathered shuttlecock as a
function of air humidity. The aerodynamic length
of the projectile is determined for § = 28 cm?,
Cp=0.6and p = 1.2 kg m™>. The maximal range
Xmax 18 calculated for the maximal velocity recor-
ded in abadminton court, Uy = 117 m s~!, and
for the corresponding optimal initial angle 6*
which verifies (0x(/06y) (Upax, 0*) = 0.

Relative humidity M r Xomax
(%) (g) (m) (m)
15 5.20 5.16 14.4
32 5.30 5.25 14.6
42 5.33 5.29 14.7
92 5.51 5.46 15.1

possess structures at different scales (figure B1 ). Structures at the micro-scale are good precursors for small
water droplets resulting from vapor condensation. This phenomenon explains why a feathered shuttlecock
weight depends on air humidity, as does its aerodynamic length.

We conduct an experimental study of shuttlecock mass as a function of humidity conditions at T=20 °C.
Corresponding results are gathered in table B2 . These data reveal the increase of the weight of the projectile with
air humidity up to 10%, which leads to increase the maximal range up to 5%.

This study proves that the shuttlecock aerodynamic length and its range increase with air temperature.
Players usually counterbalance this effect by using lighter shuttlecocks when air is hotter. Alternatively, they do
not hesitate to fold the extremities of feathers toward the interior or the exterior in order to modify the
shuttlecock cross-section and adapt the aerodynamic length to the present atmospheric conditions. Also, players
avoid aerodynamic length variation during a game by exposing the shuttlecocks to ambient humidity several
hours before the game starts.

For clear strokes, the trajectory ends with a nearly vertical fall. This leads to a high sensitivity of the
badminton game to wind. During vertical fall, wind blowing horizontally at a velocity U,, deviates the impacting
point of the shuttlecock by a quantity U sin? 6/g. If U, = 1 m s™! (modest wind) and 8, = 60°, the deviation
is about 8 cm which is larger than the shuttlecock size. This explains why competitive badminton is always
played indoors.
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