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THE SCHRÖDINGER EQUATION IN THE MEAN-FIELD

AND SEMICLASSICAL REGIME

FRANÇOIS GOLSE AND THIERRY PAUL

Abstract. In this paper, we establish (1) the classical limit of the Hartree
equation leading to the Vlasov equation, (2) the classical limit of the N-body

linear Schrödinger equation uniformly in N leading to the N-body Liouville
equation of classical mechanics and (3) the simultaneous mean-field and clas-
sical limit of the N-body linear Schrödinger equation leading to the Vlasov
equation. In all these limits, we assume that the gradient of the interaction
potential is Lipschitz continuous. All our results are formulated as estimates
involving a quantum analogue of the Monge-Kantorovich distance of exponent
2 adapted to the classical limit, reminiscent of, but different from the one de-
fined in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343 (2016),
165–205]. As a by-product, we also provide bounds on the quadratic Monge-
Kantorovich distances between the classical densities and the Husimi functions
of the quantum density matrices.

1. Introduction

Consider the nonrelativistic quantum dynamics of a system of N particles in-
teracting through a two-body potential with a mean-field type coupling constant.
(In other words, the coupling constant is chosen so that the kinetic and potential
energies of typical N -particle configurations are of the same order of magnitude.)
After suitable rescalings of the various quantities involved (see the introduction of
[9] for details), the dynamics happens to be governed by a two-parameter family of
Schrödinger equations indexed by ~ and N , of the form

(1)





i~∂tΨN,~ = − 1
2~

2
N∑

k=1

∆xk
ΨN,~ +

1

2N

N∑

k,l=1

V (xk − xl)ΨN,~ ,

ΨN,~

∣∣
t=0

= Ψin
N,~ .

Here Ψin
N,~ ≡ Ψin

N,~(x1, . . . , xN ) ∈ C and ΨN,~ ≡ ΨN,~(t, x1, . . . , xN ) ∈ C are the
wave functions of the N -particle system initially and at time t respectively, while
V is the real-valued, rescaled interaction potential.

We are concerned with various asymptotic limits of this dynamics as N → ∞
and ~ → 0, which are represented in the diagram below.

In [9], the limits corresponding to the horizontal arrows have been studied in
detail. Following an idea of Dobrushin [8], we arrived at quantitative estimates
on distances metrizing the weak convergence of probability measures, or of their
quantum analogues. However, the method used in [9] differs from Dobrushin’s in [8]
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2 F. GOLSE AND T. PAUL

in several ways. First, we avoid formulating our results in terms of the N -particle
phase-space empirical measure, which does not seem to have any clear quantum
analogue. Likewise, we avoid expressing the solution of the N -particle Liouville
equation by the method of characteristics, of which there is no convenient quantum
analogue. Our approach of the Vlasov limit of the N -particle Liouville equation is
of a completely Eulerian nature, so that its extension to the quantum dynamics is
rather straightforward.

Schrödinger
N→∞−→ Hartree

~ → 0 ↓ ց ↓ ~ → 0

Liouville
N→∞−→ Vlasov

Diagram 1: The large N and small ~ asymptotic limits

The main result in [9] is that the upper horizontal arrow, i.e. the large N ,
mean-field limit of the N -particle linear Schrödinger equation to the Hartree equa-
tion is uniform as ~ → 0. This uniform convergence was stated in terms of a
nonnegative quadratic quantity MK~

2 (R,R
′), defined for pairs of density operators

R,R′ (nonnegative operators of trace 1), obtained by quantization of the quadratic
Monge-Kantorovich distance distMK,2 (see section 2 where the definition of this
distance is recalled for the reader’s convenience). The corresponding estimate was
proved under the assumption that the interaction force field ∇V is bounded and
Lipschitz continuous.

An important observation is that MK~
2 is not a distance on the set of density

operators. However, MK~
2 (R,R

′) remains to within O(~) of the quadratic Monge-
Kantorovich distance between classical objects attached to R,R′. Specifically,

distMK,2(W̃~[R], W̃~[R
′])2 −O(~) ≤MK~

2 (R,R
′)2

where W̃~ designates the Husimi transform, while

MK~

2 (R,R
′)2 ≤ distMK,2(µ, µ

′)2 +O(~)

if R,R′ are Töplitz operators at scale ~ whose respective symbols are (up to some
normalization) the Borel probability measures µ, µ′. (See section 2, where the
definitions of the Husimi transform and of Töplitz operators are recalled.)

Proving the uniformity as ~ → 0 of the mean-field limit corresponding to the
horizontal arrow in Diagram 1 is obviously the key to obtaining the convergence
of the N -body Schrödinger equation to the Vlasov equation in the joint limit as
N → ∞ and ~ → 0. This convergence holds independently of distinguished scaling
assumptions that would link N and ~, as a consequence of the main result in [9],
and of Theorem IV.2 in [18], which establishes the validity of the classical limit of
the Hartree equation, leading to the Vlasov equation (the right vertical arrow in
Diagram 1).

Indeed, the classical limit of the Hartree equation leading to the Vlasov equa-
tion has been first investigated mathematically in [18] for very general initial data
and potentials, including the Coulomb potential, in terms of an appropriate weak



SCHRÖDINGER IN MEAN-FIELD AND SEMICLASSICAL REGIME 3

topology and related compactness methods. The price to pay for this generality on
the data is the lack of quantitative information on the rate of convergence. Besides,
convergence is proved along sequences ~n → 0. Under additional assumptions on
the initial data and the interaction potential, one can prove [1] that the Wigner
function of the solution of Hartree’s equation is L2-close to its weak limit, i.e. to
the solution of the Vlasov equation. The quantum counterpart of this result is the
closeness of the solution of Hartree’s equation to the (Weyl) quantization of the
solution of Vlasov in Hilbert-Schmidt norm. The convergence rate is O(~α) with
α < 1 depending on the initial data and potential (assumed regular enough). The
case α = 1 was recently treated in [5], where a more exhaustive bibliography on the
subject can be found. More precisely, the reference [5] provides an estimate of the
difference between the solution of the Hartree equation and the Weyl quantization
of the solution of the Vlasov equation in trace norm. Unlike Hilbert-Schmidt norm
estimates, trace norm estimates do not have classical analogues. At variance with
these two kinds of estimates (with either the trace norm or the Hilbert-Schmidt
norm), our “pseudo-distance” E~ defined below and used in Theorem 2.5 connects
directly a quantum object (a solution of the Hartree equation) with a classical
one (a solution of the Vlasov equation). Besides, E~ has a (kind of) classical
analogue: Theorem 2.5 provides an upper bound for the classical quadratic Monge-
Kantorovich distance between the solution of the Vlasov equation and the Husimi
function of the solution of the Hartree equation, up to terms of order O(~) which
vanish in the semiclassical limit. The case of pure states is treated in [2] for initial
data given by coherent states, and the solution of Hartree’s equation is computed
at leading order in terms of the linearization of the “Vlasov flow”. Most likely, the
method used in [2] can be extended to any order in the expansion of the Hartree
solution in powers of ~1/2.

Our first main result in the present paper, Theorem 2.5, bears on a quantitative
estimate for the classical limit of Hartree’s equation leading to the Vlasov equation,
i.e. on the convergence rate for Theorem IV.2 in [18]. It involves a hybrid quan-
tity E~ built on distMK,2 and MK~

2 , whose main properties are stated in Theorem
2.4 and which allows comparing classical and quantum objects (see Definition 2.2
below). This convergence rate is established under the assumption that the interac-
tion force field ∇V is bounded and Lipschitz continuous, and involves the Lipschitz
constant of ∇V . Observe that the large-time growth of the convergence rate ob-
tained in Theorem 2.5 is exponential, at variance with the estimates obtained in
[1, 5], which are super-exponential. Our result can be also formulated as a direct
comparison between the Vlasov solution and the Husimi function of the Hartree so-
lution. (A similar comparison can be found in our previous work with C. Mouhot,
at least implicitly, as a consequence of Theorem 2.4 and 2.3 (2) in [9].) Since a
density operator is completely determined by its Husimi function for each ~ > 0
(see Remark 2.3 below), the estimate in Theorem 2.5 involves all the information
included in the quantum density, i.e. the Hartree solution. We also recall that the
Husimi and the Wigner functions of a density operator have the same classical limit
(i.e. the same limit as ~ → 0): see Theorem III.1 (1) in [18].

Our second main result, Theorem 2.6, establishes the limit of the N -body linear
Schrödinger equation leading to the Vlasov equation in the limit as N → ∞ and
~ → 0 jointly, again with a convergence rate where the “distance” between the
single-particle marginal of the N -body density operator and the Vlasov solution is
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expressed in terms of the quantity E~ defined in Definition 2.2. Since the quantities
MK~

2 and E~ are not distances, the estimate in Theorem 2.6 does not immediately
follow from Theorem 2.5 and the uniform convergence result, i.e. Theorem 2.4
in [9]. For that reason, we have provided a direct proof of the limit as N → ∞
and ~ → 0 jointly, corresponding to the diagonal arrow in Diagram 1. This proof
combines ideas from the proofs of Theorem 2.5 and of Theorem 2.4 in [9]. As for
Theorem 2.5, the convergence rate obtained in Theorem 2.6 grows exponentially fast
as t→ +∞. The convergence proof involves a stability and a consistency estimate,
in the sense of the Lax equivalence theorem in numerical analysis [13]. Perhaps
the new element in this proof, in addition to the idea of measuring the “distance”
between a classical and a quantum density by the E~ functional, is the following
observation: while the consistency estimate involves the N -fold tensor product of
copies of the Vlasov solution, the stability estimate is most conveniently formulated
in terms of the first equation only in the BBGKY hierarchy of the quantum N -body
problem.

To the best of our knowledge, the first work concerning this subject is the seminal
paper by Graffi-Martinez-Pulvirenti [10]. For each sequence ~(N) → 0 as N → ∞
and each monokinetic solution of the Vlasov equation (i.e. of the form f(t, x, ξ) :=
ρ(t, x)δ(ξ − u(t, x))), the Wigner transform at scale ~(N) of the first marginal of
the solution of the Schrödinger equation is proved to converge to the solution of
the Vlasov equation over the time interval [0, T ]. A priori, the convergence rate
and the time T depend both on the Vlasov solution f and on the sequence ~(N)
(see Theorem 1.1 in [10]). On the preceding diagram, the result proved in [10]
corresponds to the left vertical and bottom horizontal arrows along distinguished
sequences (~(N);N), over time intervals which may involve the dependence of ~ in
terms of N .

Another approach of the same problem can be found in [21]: it is proved that
each term in the semiclassical expansion as ~ → 0 of the quantum N -body problem
converges as N → ∞ to the corresponding term in the semiclassical expansion of
Hartree’s equation.

One should also mention the earlier reference [20], which treated the mean-field
limit for systems of N fermions with ~(N) = N−1/3 (see also [23], together with
the more recent reference [5]).

Finally, we have applied the ideas in the proofs of Theorems 2.5 and 2.6, i.e.
using the E~ functional and the first equation in the BBGKY hierarchy of the
quantum N -body problem in the stability estimate, to the classical limit of the
quantum N -body problem (i.e. the N -body Schrödinger equation) to the classical
N -body problem (i.e. the N -body Liouville equation) in the limit as ~ → 0. This
is the left vertical arrow in Diagram 1. This limit has been the subject matter of
a large body of mathematical literature for N fixed. At variance with all these
results, the main novelty in Theorem 2.7 is that this vanishing ~-limit is uniform
as N → ∞. Here again, a convergence rate in terms of the E~ functional and of
the Lipschitz constant of the interaction force ∇V is given.

The precise statements of all the assumptions and main results of this article,
together with the general setting of our approach are given in detail in the next
section.
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2. Main Results

2.1. From the Hartree Equation to the Vlasov Equation. Let us consider
the Cauchy problem for the Hartree equation, written in terms of density operators:

(2) i~∂tR~ = [− 1
2~

2∆x + V ⋆x ρ[R~](t, x), R~] , R~

∣∣
t=0

= Rin
~
.

The notation is as follows: R~ ≡ R~(t) ∈ L(H) is the time-dependent density
operator on the state space H := L2(Rd). Henceforth, it is assumed that

R~(t) = R~(t)
∗ ≥ 0 , and that trace(R~(t)) = 1 for all t ≥ 0 .

The set of all bounded operators on H satisfying these properties is denoted by
D(H). Denoting by r~(t, x, y) the integral kernel of R~(t), i.e.

R~(t)φ(x) :=

∫

Rd

r~(t, x, y)φ(y)dy ,

we set1

ρ[R~](t, x) := r~(t, x, x) .

The interaction potential V is assumed to be an even, real-valued, bounded function
in the class C1,1(R). The existence and uniqueness theory for the Cauchy problem
(2) has been studied in [7].

On the other hand, consider the Vlasov equation

(3) ∂tf + { 1
2 |ξ|2 + V ⋆x ρf (t, x), f} = 0 , f

∣∣
t=0

= f in .

Here f ≡ f(t, x, ξ) is a time-dependent probability density on Rd ×Rd,

ρf (t, x) :=

∫

Rd

f(t, x, ξ)dξ ,

and {·, ·} is the Poisson bracket such that

{xk, xl} = {ξk, ξl} = 0 , {ξk, xl} = δkl .

Next we define a way to measure the convergence rate of R~ to f in the limit
as ~ → 0. It involves a quantity which is intermediate between the notion of
Monge-Kantorovich distance of exponent 2 between Borel probability measures on
Rd × Rd and the pseudo-distance MKǫ

2 between density operators defined in [9]
(Definition 2.2). First we define a notion of coupling between distribution functions
in statistical mechanics and density operators in quantum mechanics.

1If R ∈ D(H), then both R and R1/2 are Hilbert-Schmidt operators on L2(Rd) and therefore
have integral kernels denoted respectively r ≡ r(x, y) and r1/2 ≡ r1/2(x, y) in L2(Rd×R

d). Since

R1/2 is self-adjoint

r(x, y) =

∫
Rd

r1/2(x, z)r1/2(y, z)dz for a.e. x, y ∈ R
d .

By the Fubini theorem, the function

ρ[R] : x 7→ r(x, x) :=

∫
Rd

|r1/2(x, z)|
2dz belongs to L1(Rd) ,

(see Example 1.18 in chapter X, §1 in [12]) and, by the Cauchy-Schwarz inequality∫∫
Rd×Rd

|r(x+h,x)−r(x, x)|2dxdy≤‖r1/2‖L2(Rd×Rd)

∫∫
Rd×Rd

|r1/2(x+h, y)−r(x, y)|2dxdy→0

as |h| → 0. In other words, the function (x, h) 7→ r(x+ h, x) belongs to C(Rd
h;L

1(Rd)). This is

a special case of Lemma 2.1 (1) in [4].
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Definition 2.1. Let p ≡ p(x, ξ) be a probability density on Rd × Rd, and let
R ∈ D(H). A coupling of p and R is a measurable function Q : (x, ξ) 7→ Q(x, ξ)
defined a.e. on Rd × Rd and with values in L(H) s.t. Q(x, ξ) = Q(x, ξ)∗ ≥ 0 for
a.e. (x, ξ) ∈ Rd ×Rd, and





trace(Q(x, ξ)) = p(x, ξ) for a.e. (x, ξ) ∈ Rd ×Rd ,
∫

Rd×Rd

Q(x, ξ)dxdξ = R .

The set of all such functions is denoted by C(p,R).

Notice that C(p,R) is nonempty, since the function (x, ξ) 7→ p(x, ξ)R belongs to
C(p,R).

Mimicking the definition of Monge-Kantorovich distances, we next define the
pseudo-distance between R~ and f in terms of an appropriate “cost function” anal-
ogous to the quadratic cost function used in optimal transport.

Definition 2.2. For each probability density p ≡ p(x, ξ) on Rd × Rd and each
R ∈ D(H), we set

E~(p,R) :=

(
inf

Q∈C(p,R)

∫

Rd×Rd

trace(c~(x, ξ)Q(x, ξ))dxdξ

)1/2

∈ [0,+∞] ,

where the transportation cost c~ is the function of (x, ξ) with values in the set of
unbounded operators on H = L2(Rd

y) defined by the formula

c~(x, ξ) :=
1
2 (|x− y|2 + |ξ + i~∇y|2) .

Before going further, we briefly discuss some basic properties of E~. First we
recall a few elementary facts concerning Töplitz quantization on Rd. For each
z = x+ iξ ∈ Cd, we denote

|z, ~〉 : y 7→ (π~)−d/4e−|y−x|2/2~eiξ·(y−x)/~ ,

and we designate by |z, ~〉〈z, ~| the orthogonal projection on the line C|z, ~〉 in H.
An elementary computation shows that

‖|z, ~〉‖H = 1 .

For each Borel probability measure on Rd ×Rd, we set

OPT
~
(µ) :=

1

(2π~)d

∫

Rd×Rd

|x+ iξ, ~〉〈x+ iξ, ~|µ(dxdξ)

and we recall that

(4) OPT
~ (1) = IH .

If φ is a polynomial of degree ≤ 2, one has

(5) OPT
~ (φ(x)) = φ(x) + 1

4~(∆φ)IH , OPT
~ (φ(ξ)) = φ(−i~∇x) +

1
4~(∆φ)IH ,

according to formula (48) in [9].
We also recall the definition of the Wigner and Husimi transforms of a density

operator on H. If R ∈ D(H) with integral kernel r, its Wigner transform at scale ~

is the function on Rd ×Rd defined by the formula

W~[R](x, ξ) :=
1

(2π)d

∫

Rd

e−iξ·yr(x + 1
2~y, x− 1

2~y)dy .
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The Husimi transform of R is

W̃~[R] := e~∆x,ξ/4W~[R]

and we recall that

W̃~[R] ≥ 0 ,

while ∫

Rd×Rd

W̃~[R](x, ξ)dxdξ =

∫

Rd×Rd

W~[R](x, ξ)dxdξ = trace(R) = 1 .

In particular, W̃~[R] is a probability density on Rd ×Rd for each R ∈ D(H).

Remark 2.3 (W̃~[R] uniquely determines R). Let R be a density operator on
H = L2(Rd) with integral kernel r ≡ r(y, y′). Elementary computations show that,
for each x, ξ ∈ Rd, one has

W̃~[R](x, ξ) =
(π~)d/2e−|x|2/~

2d(2π~)2d
J(x, ξ) ,

where

J(x, ξ) :=

∫∫
r(y, y′)e−(|y|2+|y′|2)/2~e(x·(y+y′)−iξ·(y−y′))/~dydy′ .

Since R is a Hilbert-Schmidt operator on H, its kernel r ∈ L2(Rd×Rd) and therefore
J extends as an entire holomorphic function of (x, ξ) ∈ Cd ×Cd. Therefore J is

uniquely determined by its restriction to Rd ×Rd, i.e. by W̃~[R]. Denoting by F
the Fourier transformation, we observe that

J(−ix, ξ) = F [r exp(−(|y|2 + |y′|2)/2~)]((x+ ξ)/~, (x− ξ)/~) ,

and conclude that J uniquely determines in turn r by Fourier inversion. Therefore,
the operator R is uniqueley determined by its Husimi transform. See also Lemma
A.2.1 in [22] for a more general result of the same type.

If µ is a Borel probability measure on Rd ×Rd, then

(6) trace(OPT
~
(µ)R) =

∫

Rd×Rd

W̃~[R](x, ξ)µ(dxdξ) ,

according to formula (54) in [9]. In particular, for each polynomial of degree ≤ 2,
one has

(7) trace((φ(x) + φ(−i~∇x))OPT
~ (µ)) =

∫

Rd×Rd

(φ(x) + φ(ξ))µ(dxdξ) + 1
2~∆φ ,

see formula (55) in [9]. (See also Lemma 5.4 in [16], and more generally [6, 16, 17]
for a more complete discussion on quantization and symbolic calculus.)

In addition, we shall need the following properties of E~.

Theorem 2.4. For each probability density p on Rd ×Rd such that
∫

Rd×Rd

(|x|2 + |ξ|2)p(x, ξ)dxdξ <∞

and each R ∈ D(H), one has

E~(p,R)
2 ≥ 1

2d~ .
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(1) Let R~ = OPT
~
((2π~)dµ), where µ is a Borel probability measure on Rd ×Rd.

Then
E~(p,R~)

2 ≤ distMK,2(p, µ)
2 + 1

2d~ .

(2) For each R ∈ D(H), one has

E~(p,R)
2 ≥ distMK,2(p, W̃~[R])

2 − 1
2d~ .

(3) If R~ ∈ D(H) and W~[R~] → µ in S ′(Rd × Rd) as ~ → 0, then µ is a Borel
probability measure on Rd ×Rd and one has

distMK,2(p, µ) ≤ lim
~→0

E~(p,R~) .

The main result in this section is a quantitative estimate of the convergence rate
of the solution R~ of the Hartree equation to the solution f of the Vlasov equation
in terms of the pseudo-distance E~ and, as a by-product, in terms of the Monge-
Kantorovich distance between f and the Husimi function of R~. We recall that this
limit has been formulated in terms of the Wigner transform of R~ in [18] (Theorem
IV.2). This is the right vertical arrow in the diagram of section 1.

Theorem 2.5. Let V be an even, real-valued, bounded function of class C1,1 on
Rd. Denote by L the Lipschitz constant of ∇V and let Λ = 1 + max(1, 4L2). Let
f in be a probability density on Rd ×Rd such that∫

Rd×Rd

(|x|2 + |ξ|2)f in(x, ξ)dxdξ <∞ ,

and let f be the solution of the Vlasov equation (3) with initial data f in. Let
Rin

~
∈ D(H), and let R~ be the solution of (2) with initial data Rin

~
.

Then, for each t ≥ 0, one has

E~(f(t), R~(t))
2 ≤ eΛtE~(f

in, Rin
~ )2 .

In particular, for all t ≥ 0, one has

distMK,2(f(t), W̃~[R~(t)])
2 ≤ eΛtE~(f

in, Rin
~ )2 + 1

2d~ .

Moreover, if Rin
~

= OPT
~ ((2π~)

dµin), where µin is a Borel probability measure
on Rd ×Rd, then

distMK,2(f(t), W̃~[R~(t)])
2 ≤ eΛt

(
distMK,2(f

in, µin)2 + 1
2d~
)
+ 1

2d~ .

We do not assume that the initial data f in is smooth, or that [∆, Rin
~
] is a

trace-class operator on H. Hence the solutions t 7→ f(t, x, ξ) and t 7→ R~(t) of the
Vlasov and the Hartree equations considered in the statement above are not classical
solutions, but weak solutions. Since V is of class C1 with Lipschitz continuous
gradient on Rd, the characteristic flow of the Vlasov equation (3) is defined globally
by the Cauchy-Lipschitz theorem, and the Cauchy problem (3) has a unique solution
obtained as the push-forward of f in under this flow. The solution t 7→ R~(t) of
the Cauchy problem (2) is obtained similarly as the conjugate of Rin

~
by some

time-dependent unitary operator (see [7], especially Proposition 4.3 there). This
remark also applies to the statements of Theorems 2.6 and 2.7 below and will not
be repeated.

Notice that, because of statement (3) in Theorem 2.4, if the Wigner transform
of R~(t) satisfies

W~[R~(t)] → µ(t) in S ′(Rd ×Rd)
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for all t ≥ 0 as ~ → 0, then the last inequality in Theorem 2.5 leads to

distMK,2(f(t), µ(t)) ≤ distMK,2(f
in, µin)eΛt/2 , t ≥ 0 .

Since µ is a weak solution of the Vlasov equation by Theorem IV.2 in [18], this
inequality is precisely the analogue of Dobrushin’s inequality in [8], formulated in
termes of the Monge-Kantorovich distance of exponent 2, instead of the Monge-
Kantorovich distance of exponent 1 as in [8]. (That the Monge-Kantorovich dis-
tance of exponent 2 can be used in Dobrushin’s argument has been observed by
Loeper [19]; see also [9] for an extension to Monge-Kantorovich distances of arbi-
trary exponents.)

2.2. From the N-Body Schrödinger Equation to the Vlasov Equation.
In this section, we explain how the Vlasov equation, i.e. the mean-field theory
of large particle systems in classical mechanics, can be deduced from the N -body
Schrödinger equation in the limit of large N and small ~. In other words, we
combine the classical limit discussed in the previous section with the mean-field
limit in quantum mechanics, in which the Hartree equation is deduced from the
linear N -body Schrödinger equation. Since the mean-field limit of the N -body
Schrödinger equation is uniform in the limit as ~ → 0 according to Theorem 2.4 in
[9], this combined limit is a straightforward consequence of the quantitative estimate
for the classical limit obtained in Theorem 2.5 above, at least when formulated in
terms of Monge-Kantorovich distances and Husimi transforms.

In this section, we propose a slightly different approach, and estimate directly the
difference between the single-particle marginal of the N -particle density operator
and the Vlasov solution in terms of the E~ functional. This estimate combines the
ideas used in the proof of Theorem 2.5 above, with those of [9].

Before stating our main result, we introduce some elements of notation pertaining
to large particle systems.

Firstly, the particles considered in the present work are indistinguishable. The
mathematical formulation of this property is the following symmetry condition. For
each N > 1, let SN be the group of permutations of the set {1, . . . , N}. For each
σ ∈ SN and each XN := (x1, . . . , xN ) ∈ (Rd)N , we denote

σ ·XN := (xσ(1), . . . , xσ(N)) .

With H := L2(Rd) as in the previous section, we set HN := H⊗N = L2((Rd)N ).
For each ψ ∈ HN and each σ ∈ SN , we set

UσψN (XN ) := ψN (σ ·XN) .

Obviously

U∗
σ = Uσ−1 = U−1

σ

so that Uσ is a unitary operator on HN . A density operator for a system of N
indistinguishable particles is an element RN ∈ D(HN ) satisfying the symmetry
relation

UσRNU
∗
σ = R for each σ ∈ SN .

The subset of elements of D(HN ) satisfying this symmetry condition is henceforth
denoted Ds(HN ).

Secondly, we recall the notion of n-body marginal of an element of D(HN ) for
all n = 1, . . . , N . For each RN ∈ D(HN ) and each n = 1, . . . , N , we define Rn

N to
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be the unique element in D(Hn) such that

(8) traceHn
(Rn

N (A1 ⊗ . . .⊗An)) = traceHN
(RN (A1 ⊗ . . .⊗An ⊗ IH ⊗ . . .⊗ IH))

for each A1, . . . , An ∈ L(H). Equivalently
traceHn

(Rn

NBn) = traceHN
(RN (Bn ⊗ IHN−n

))

for each Bn ∈ L(Hn), using the identification HN ≃ Hn ⊗ HN−n. Clearly

RN ∈ Ds(HN ) ⇒ Rn

N ∈ Ds(Hn) .

At this point, we introduce the N -particle dynamics. Let the interaction po-
tential V be an even, real-valued function of class C1,1 on Rd, and consider the
N -particle quantum Hamiltonian

(9) H~,N :=
N∑

j=1

− 1
2~

2∆xj
+

1

2N

N∑

j,k=1

V (xj − xk) .

Assuming that the state of the N -particle system at time t = 0 is given by the
symmetric density operator Rin

~,N ∈ Ds(HN ), the state at time t > 0 of that same
system is given by the propagated density operator

(10) R~,N(t) = e−itH~,N/~Rin
~,Ne

itH~,N/~ , t ≥ 0 .

Observe that UσH~,N = H~,NUσ for each σ ∈ SN , so that

Uσe
itH~,N/~ = eitH~,N/~Uσ

for each t ∈ R and each σ ∈ SN . As a result, the symmetry property of Rin
~,N is

propagated by the dynamics, i.e.

UσR~,N(t)U∗
σ = R~,N (t) for each t ≥ 0 and each σ ∈ SN .

Theorem 2.6. Let V be an even, real-valued function of class C1,1 on Rd. Denote
by L the Lipschitz constant of ∇V and let Γ = 2+max(4L2, 1). Let Rin

~,N ∈ Ds(HN )

and let R~,N (t) be given by (10) for each t ≥ 0. Let f in be a probability density on
Rd ×Rd such that ∫

Rd×Rd

(|x|2 + |ξ|2)f in(x, ξ)dxdξ <∞ ,

and let f be the solution of the Vlasov equation (3) with initial data f in. Then

1

n
E~(f(t)

⊗n, Rn

~,N(t))2 ≤ 1

N
E~((f

in)⊗N , Rin
~,N)2eΓt +

4‖∇V ‖2L∞

N − 1

eΓt − 1

Γ

for each n = 1, . . . , N and each t ≥ 0. In particular, for each n = 1, . . . , N and
each t ≥ 0, one has

1

n
distMK,2(f(t)

⊗n, W̃~[R
n

~,N (t)])2

≤ 1

N
E~((f

in)⊗N , Rin
~,N )2eΓt +

4‖∇V ‖2L∞

N − 1

eΓt − 1

Γ
+ 1

2d~ .

If moreover Rin
~,N is the Töplitz operator at scale ~ with symbol (2π~)dNµin

N where

µin
N is a symmetric Borel probability measure on (Rd)N , i.e.

Rin
~,N = OPT

~ ((2π~)
dNµin

N ) ,
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one has

1

n
distMK,2(f(t)

⊗n, W̃~[R
n

~,N (t)])2

≤
(

1

N
distMK,2((f

in)⊗N , µin
N )2 + 1

2d~

)
eΓt +

4‖∇V ‖2L∞

N − 1

eΓt − 1

Γ
+ 1

2d~ .

The result in Theorem 2.6 is the diagonal arrow in the diagram of section 1. It is
natural to consider the quantity 1

NE~(F
in
N , Rin

~,N)2 since the square of the “distance”

E~ between symmetric N -particle densities (quantum and classical) grows linearly
with the particle number N .

2.3. From the N-Body Schrödinger Equation to the N-Body Liouville
Equation. As a by-product of the methods introduced to prove Theorems 2.5
and 2.6, we establish the validity of the classical limit of the N -body Schrödinger
equation to the N -body Liouville equation as ~ → 0, i.e. the left vertical arrow in
the diagram of section 1. This limit is of course well known for each N ≥ 1 (see for
instance Theorem IV.2 in [18]); the novelty in the approach presented here is that
this limit is proved to be uniform as N → ∞. More precisely, we seek to compare
the evolved density operator R~,N(t) defined by (10) in the previous section 2.2,
and the solution FN (t,XN ,ΞN ) of the Liouville equation

(11)





∂tFN +
N∑

k=1

ξk · ∇xk
FN − 1

N

N∑

k,l=1

∇V (xk − xl) · ∇ξkFN = 0 ,

FN

∣∣
t=0

= F in
N .

In other words

(12)

{
∂tFN + {HN , FN}N = 0 ,

FN

∣∣
t=0

= F in
N ,

where

(13) HN(XN ,ΞN ) :=

N∑

j=1

1
2 |ξj |2 + 1

2N

N∑

j,k=1

V (xj − xk)

and where {·, ·}N is the N -particle Poisson bracket on (Rd ×Rd)N defined by

{xj , xk}N = {ξj , ξk}N = 0 , {ξj , xk}N = δjk , j, k = 1, . . . , N .

We obtain a uniform (in N) bound for the quantity

1

N
E~(FN (t), R~,N (t))2

in terms of its value for t = 0. For n = 1, . . . , N , let Fn

N be the n-th marginal of
FN , as in the statement of Theorem 2.6.

Theorem 2.7. Let V be an even, real-valued function of class C1,1 on Rd with
bounded gradient. Denote by L the Lipschitz constant of ∇V and let Λ = 1 +
max(4L2, 1). Let Rin

~,N ∈ Ds(HN ) and let R~,N(t) be given by (10) for each t ≥ 0.

Let F in
N be a symmetric probability density on (Rd ×Rd)N such that

∫

(Rd×Rd)N
(|XN |2 + |ΞN |2)F in

N (XN ,ΞN )dXNdΞN <∞ ,
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and let FN be the solution of the N -body Liouville equation (11) with initial data
F in
N .
Then, for all t ≥ 0 and all n = 1, . . . , N ,

1

n
E~(F

n

N (t), Rn

~,N (t))2 ≤ 1

N
E~(F

in
N , Rin

~,N)2eΛt .

In particular,

1

n
distMK,2(F

n

N (t), W̃~[R
n

~,N(t)])2 ≤ 1

N
E~(F

n

N (t), Rn

~,N (t))2eΛt + 1
2d~.

Moreover if Rin
~,N = OPT

~
((2π~)dNµin

N ) where µin
N is a symmetric Borel probability

measure on (Rd ×Rd)N , then

1

n
distMK,2(F

n

N (t), W̃~[R
n

~,N (t)])2

≤
(

1

N
distMK,2(F

in
N , µin

N )2 + 1
2d~

)
eΛt + 1

2d~ ,

for all t ≥ 0 and each n = 1, . . . , N . In the particular case where µin
N = F in

N , one
finds that

1

n
distMK,2(F

n

N (t), W̃~[R
n

~,N(t)])2 ≤ 1
2d~(1 + eΛt)

for all t ≥ 0 and each n = 1, . . . , N .

Together with Theorem 2.4 in [9], Theorem 2.7 shows that both the upper hor-
izontal and left vertical arrows in the diagram of section 1 correspond to uniform
limits. This uniformity explains why the mean-field, large N limit and the classical,
small ~ limit can be taken simultaneously in the quantum N -body problem, in the
case of interaction potentials with Lipschitz continuous gradient.

2.4. Remarks. Before starting with the proofs of Theorems 2.5, 2.6 and 2.7, it
is perhaps interesting to mention that the arguments used in these proofs can be
adapted to the case where the Hamiltonian under consideration includes an external
(i.e. noninteracting) potential acting on each individual particle. For instance, our
analysis in the proof of Theorem 2.6 can be adapted to the case where the quantum
N -body Hamiltonian is

H~,N :=

N∑

j=1

(− 1
2~

2∆xj
+W (xj)) +

1

2N

N∑

j,k=1

V (xj − xk) ,

assuming that W is a real-valued function with bounded and Lipschitz continuous
gradient such that − 1

2~
2∆ + W defines a self-adjoint operator on L2(Rd). The

resulting Vlasov equation would be, in that case

∂tf + { 1
2 |ξ|2 +W (x) + V ⋆x ρf (t, x), f} = 0

instead of (3). The convergence rate in Theorem 2.6 would include the Lipschitz
constant of the gradient of the external potential W .

For applications to physically realistic situations, it would be important to ex-
tend the results above to the case of singular interaction potentials. The Coulomb
potential is of course the most relevant singular interaction for applications to
atomic physics or quantum chemistry. One approach to this question would be
to start with a mollified potential, and to remove the mollification as the particle
number N → ∞. This is the approach used for instance in [11, 15] — see also the
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references therein. Mollifying the Coulomb potential can be understood in some
sense as replacing point particles with spherical particles with some positive radius
that vanishes in the large N limit. The arguments in the present paper should be
rather easily adapted to truncations of this type assuming that the particle radius
vanishes slowly enough as N → ∞ — for instance, if the particle radius is of order
≫ C/

√
lnN for some C > 0. With this type of truncation one can hope to derive

the Vlasov-Poisson equation following the line of Theorem 2.6. This truncation
amounts to considering point particle systems so rarefied that the probability of
observing such configuration in the spatial domain vanishes as N → ∞. For the
mean-field limit in classical mechanics, more satisfying results have been obtained
recently, with much more realistic dependence of the particle radius in terms of N
(see [11, 15, 14]). Whether these results can be generalized to the quantum set-
ting considered here remains an open question and would most likely require some
additional new ideas.

We conclude this section with a few words on the method used in the proof
of Theorems 2.5, 2.6 and 2.7. The key idea is2 “to double the system size by
considering two kinds of particles, half of them being classical, the other half being
quantum”. Then one writes a “transport equation” for the joint dynamics of these
two kinds of particles, whose projections in the classical (resp. the quantum) part of
the space is the governing equation for the classical (resp. the quantum) system of
particles: see equations (15) and (18) below. The estimates on the pseudo-distance
E~ between the quantum and the classical densities in Theorems 2.5, 2.6 and 2.7
are then obtained by considering appropriate “moments” of the solution of the
transport equations (15) and (18) involving the cost function c~.

3. Proof of Theorem 2.4

3.1. Proof of the general lower bound. Set Aj = (xj−yj) and Bj = ξj+i~∂yj
;

both Aj and Bj are self-adjoint unbounded operators on H, and one has

A2
j +B2

j = (Aj + iBj)
∗(Aj + iBj) + i[Bj, Aj ] ≥ i[Bj , Aj ] = i(−i~) = ~

for each j = 1, . . . , d. Thus

c~(x, ξ) =
1
2

d∑

j=1

(A2
j +B2

j ) ≥ 1
2d~ .

In particular, for each Q ∈ C(p,R), one has
∫

Rd×Rd

trace(Q(x, ξ)c~(x, ξ))dxdξ ≥ 1
2d~

∫

Rd×Rd

trace(Q(x, ξ))dxdξ = 1
2d~ .

Minimizing the left hand side of this inequality over C(p,R) leads to the announced
inequality.

3.2. Proof of (1). We shall use the following intermediate result.

Lemma 3.1. Let p be a probability density and µ a Borel probability measure
on Rd × Rd, and let q be a coupling for p and µ. Then q is a measurable map

2In the words of one of the referees.
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(x, ξ) 7→ q(x, ξ) defined a.e. on Rd × Rd with values in the set of positive Borel
measures on Rd ×Rd, and the map

Q~ : (x, ξ) 7→ OPT
~ ((2π~)

dq(x, ξ))

belongs to C(p,OPT
~
((2π~)dµ)).

In other words, for each coupling q of p and µ, the Töplitz operator

Q~(x, ξ) = OPT
~ ((2π~)

dq(x, ξ)) belongs to C(p,OPT
~ ((2π~)

dµ)) .

Therefore

E~(p,OPT
~ ((2π~)

dµ))2 ≤
∫

Rd×Rd

trace(c~(x, ξ)OPT
~ ((2π~)

dq(x, ξ)))dxdξ .

For each z ∈ Rd, consider the quadratic polynomial

y 7→ γ(z, y) := 1
2 |z − y|2 .

Then

c~(x, ξ) = γ(x, y) + γ(ξ,−i~∇y) ,

and applying formula (7) shows that

trace(c~(x, ξ)OPT
~ ((2π~)

dq(x, ξ)))=

∫

Rd×Rd

(γ(x, y)+γ(ξ, η))µ(dydη)+ 1
2~∆γ(z, ·)

=

∫

Rd×Rd

(γ(x, y) + γ(ξ, η))µ(dydη) + 1
2d~ .

Hence

E~(p,OPT
~ ((2π~)

dµ))2 ≤
∫

Rd×Rd

(γ(x, y) + γ(ξ, η))µ(dydη) + 1
2d~

for each q ∈ Π(p, µ), and minimizing the right hand side of this inequality as q runs
through Π(p, µ) leads to the announced inequality.

It remains to prove Lemma 3.1. This is a variant of Lemma 4.1 in [9].

Proof of Lemma 3.1. First, we observe that, for each φ ∈ Cb(R
d ×Rd)

∣∣∣∣∣

∫∫

Ω×(Rd×Rd)

φ(y, η)q(dxdξdydη)

∣∣∣∣∣ ≤ ‖φ‖L∞

∫∫

Ω

p(x, ξ)dxdξ = 0

if Ω is Lebesgue-negligible in Rd × Rd. Hence, for each φ ∈ Cb(R
d × Rd), the

bounded Borel measure on Rd ×Rd defined by

Ω 7→
∫∫

Ω×(Rd×Rd)

φ(y, η)q(dxdξdydη)

is absolutely continuous with respect to the Lebesgue measure on Rd × Rd. By
the Radon-Nikodym theorem, this Borel measure has a density with respect to the
Lebesgue measure on Rd ×Rd which is precisely

(x, ξ) 7→
∫

Rd×Rd

φ(y, η)q(x, ξ, dydη)

where q(x, ξ, ·) is the sought map.
Since q(x, ξ) is a probability measure for a.e. (x, ξ) ∈ Rd ×Rd, one has

Q~(x, ξ) = OPT
~ ((2π~)

dq(x, ξ)) = OPT
~ ((2π~)

dq(x, ξ))∗ = Q~(x, ξ)
∗ ≥ 0 ,
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and

trace(Q~(x, ξ)) = trace(OPT
~ ((2π~)

dq(x, ξ))) =

∫

Rd×Rd

q(x, ξ, dydη) = p(x, ξ) .

On the other hand∫

Rd×Rd

Q~(x, ξ)dxdξ =

∫

Rd×Rd

OPT
~
((2π~)dq(x, ξ))dxdξ

=OPT
~

(
(2π~)d

∫

Rd×Rd

q(x, ξ)dxdξ

)
= OPT

~ ((2π~)
dµ) .

Hence Q~ ∈ C(p,OPT
~ ((2π~)

dµ)). �

3.3. Proof of (2). Let a, b ∈ Cb(R
d ×Rd) satisfy

(14) a(x, ξ) + b(y, η) ≤ 1
2 (|x− y|2 + |ξ − η|2) =: Γ(x, ξ, y, η)

for each x, y, ξ, η ∈ Rd. Then

a(x, ξ)OPT
~ (1) + OPT

~ (b) ≤ OPT
~ (Γ(x, ξ, ·, ·)) = c~(x, ξ) +

1
2d~IH ,

where the last equality follows from formulas (5).
Then, for each Q ∈ C(f,R)

∫

Rd×Rd

trace(c~(x, ξ)Q(x, ξ))dxdξ

≥
∫

Rd×Rd

a(x, ξ)f(x, ξ)dxdξ + trace(OPT
~
(b)R)− 1

2d~

=

∫

Rd×Rd

a(x, ξ)f(x, ξ)dxdξ +

∫

Rd×Rd

b(y, η)W̃~[R](y, η)dydη − 1
2d~ ,

where the last equality follows from formula (6).
Minimizing the left-hand side of this inequality overQ ∈ C(f,R), and maximizing

over all a, b ∈ Cb(R
d ×Rd) satisfying (14), one has

E~(f,R)
2 + 1

2d~

≥ sup
a⊗1+1⊗b≤Γ

a,b∈Cb(Rd×Rd)

(∫
a(x, ξ)f(x, ξ)dxdξ +

∫
b(y, η)W̃~[R](y, η)dydη

)

= distMK,2(f, W̃~[R])
2 ,

where the last equality follows from Kantorovich duality (Theorem 1 in chapter 1
of [24]).

3.4. Proof of (3). SinceW~[R~] → µ in S ′(Rd×Rd), one has W̃~[R~] → µ weakly
in the sense of probability measures on Rd ×Rd as ~ → 0, by Theorem III.1 (1) in
[18]. Statement (2) implies that

lim
~→0

E~(f,R~) ≥ lim
~→0

distMK,2(f, W̃~[R~])
2

and Remark 6.12 in [25] implies that

lim
~→0

distMK,2(f, W̃~[R~])
2 ≥ distMK,2(f, µ)

2 .
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4. Proof of Theorem 2.5

The proof is based on the same idea of an Eulerian variant of the Dobrushin
estimate [8] for the mean-field limit as in [9].

4.1. Step 1: Growth of the Moments of f .

Lemma 4.1. Let f in be a probability density on Rd ×Rd such that
∫∫

Rd×Rd

(|x|2 + |ξ|2)f in(x, ξ)dxdξ <∞ ,

and let f be the solution of the Cauchy problem (3). Then, for each t ≥ 0, one has
∫∫

Rd×Rd

1
2 (|x|

2 + |ξ|2)f(t, x, ξ)dxdξ

≤ et
(∫∫

Rd×Rd

1
2 (|x|

2 + |ξ|2)f in(x, ξ)dxdξ + ‖V ‖L∞

)
.

Proof. First we recall the conservation of energy for solutions of the Vlasov equa-
tion:

d

dt

(∫∫

Rd×Rd

1
2 |ξ|

2f(t, x, ξ)dxdξ + 1
2

∫∫

Rd×Rd

V (x− y)ρf (t, x)ρf (t, y)dxdy

)
= 0,

so that∫∫

Rd×Rd

1
2 |ξ|

2f(t, x, ξ)dxdξ ≤
∫∫

Rd×Rd

1
2 |ξ|

2f in(x, ξ)dxdξ + ‖V ‖L∞

for each t ≥ 0.
On the other hand

d

dt

∫∫

Rd×Rd

1
2 |x|

2f(t, x, ξ)dxdξ =

∫∫

Rd×Rd

ξ · xf(t, x, ξ)dxdξ

so that

m2(t) :=

∫∫

Rd×Rd

1
2 (|x|

2 + |ξ|2)f(t, x, ξ)dxdξ

satisfies

m2(t) ≤ m2(0) + ‖V ‖L∞ +

∫ t

0

m2(s)ds .

The conclusion follows from Gronwall’s lemma. �

4.2. Step 2: a Dynamics for Couplings of f and R~. For allQin
~

∈ C(f in, Rin
~
),

let Q~ ≡ Q(t, x, ξ) be the solution of the Cauchy problem
(15)


∂tQ~+(ξ · ∇x−∇V ⋆x ρf (t, x) · ∇ξ)Q~+

[
− 1

2 i~∆y+
i

~
V ⋆ ρ[R~](t, y), Q~

]
=0 ,

Q~

∣∣
t=0

= Qin
~
.

Let us briefly recall how the solution of (15) is obtained. Denoting z = (x, ξ), let
t 7→ Z(t, s, z) ∈ Rd ×Rd be the integral curve of the time-dependent vector field
(ξ,−∇V ⋆ ρf (t, x)) passing through (x, ξ) at time t = s. Let t 7→ M(t, s) be the
time-dependent unitary operator on H such that

i~∂tM~ +
1
2~

2∆yM~ − V ⋆ ρ[R~](t, y)M~ = 0 , M~

∣∣
t=0

= IH .
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Then
Q~(t, z) =M~(t)Q

in
~ (Z(0, t, z))M~(t)

∗

(see [7], especially Proposition 4.3).

Lemma 4.2. Let Qin
~

∈ C(f in, Rin
~
). Then Q~(t) ∈ C(f(t), R~(t)) for each t ≥ 0.

Proof. Since M(t) is unitary

trace(Q~(t, z)) = trace(M~(t)Q
in
~
(Z(0, t, z))M~(t)

∗)

= trace(M~(t)
∗M~(t)Q

in
~
(Z(0, t, z)))

= trace(Qin
~
(Z(0, t, z))) = f in(Z(0, t, z)) = f(t, z) ,

while ∫

Rd×Rd

Q~(t, z)dxdξ =M~(t)

(∫

Rd×Rd

Qin
~
(Z(0, t, z))dxdξ

)
M~(t)

∗

=M~(t)R
in
~ M~(t)

∗ = R~(t) ,

since the measure dxdξ is invariant under the Hamiltonian flow Z(s, t, ·) for all
s, t ∈ R. �

4.3. Step 3: the Eulerian Estimate for the Second Order Moment of Q~.
We define

E~(t) :=
∫

Rd×Rd

trace(c~(z)Q~(t, z))dxdξ .

Since Q~ is a solution of (15), one has

dE~
dt

(t) =

∫

Rd×Rd

trace(Q~(t, z){ 1
2 |ξ|

2 + V ⋆ ρf (t, x), c~(z)})dxdξ

+

∫

Rd×Rd

trace

(
Q~(t, z)

[
− 1

2 i~∆y +
i

~
V ⋆ ρ[R~](t, y), c~(z)

])
dxdξ .

We shall need the following auxiliary computations. First

{ 1
2 |ξ|

2, c~(z)} = ξ · (x − y) ,

while
[− 1

2 i~∆y, c~] =− 1
2 i~[∇y, c~] · ∇y − 1

2 i~∇y · [∇y, c~]

=− 1
2 i~(y − x) · ∇y − 1

2 i~∇y · (y − x) ,

so that

{ 1
2 |ξ|

2, c~(z)} −
[
1
2 i~∆y, c~(z)

]
= 1

2 (x− y) · (ξ + i~∇y) +
1
2 (ξ + i~∇y) · (x− y) .

Likewise

{V ⋆ ρf (t, x), c~(z)} = −∇V ⋆ ρf(t, x) · (ξ + i~∇y) ,

while [
c~(z),

i

~
V ⋆ ρ[R~](t, y)

]
=− 1

2∇V ⋆ ρ[R~](t, y) · (ξ + i~∇y)

− 1
2 (ξ + i~∇y) · ∇V ⋆ ρ[R~](t, y) ,

so that

{V ⋆ ρf (t, x), c~(z)}+
i

~
[V ⋆ ρ[R~](t, y), c~(z), ]

= 1
2 (∇V ⋆ ρ[R~](t, y)−∇V ⋆ ρf (t, x)) · (ξ + i~∇y)

+ 1
2 (ξ + i~∇y) · (∇V ⋆ ρ[R~](t, y)−∇V ⋆ ρf (t, x)) .
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Hence

dE~
dt

(t)=

∫

Rd×Rd

trace(Q~(t, z)
1
2 ((x− y)·(ξ+i~∇y)+(ξ+i~∇y)·(x− y)))dxdξ

+

∫

Rd×Rd

trace(Q~(t, z)
1
2 (∇V ⋆ ρ[R~](t, y)−∇V ⋆ ρf (t, x)) · (ξ + i~∇y))dxdξ

+

∫

Rd×Rd

trace(Q~(t, z)
1
2 (ξ + i~∇y) · (∇V ⋆ ρ[R~](t, y)−∇V ⋆ ρf (t, x)))dxdξ .

At this point, we recall that, if A,B are self-adjoint, possibly unbounded opera-
tors on H, and if R ∈ L(H) satisfies R = R∗ ≥ 0, then

(16) trace(R(AB +BA)) ≤ trace(R(A2 +B2)) ,

since
trace(R(A−B)2) ≥ 0 .

(If T is an unbounded, self-adjoint nonnegative operator on H, we define trace(RT )
as an element of [0,+∞] by the formula trace(RT ) := trace(R1/2TR1/2), even if
RT is not a trace-class operator on H.)

Hence∫

Rd×Rd

trace(Q~(t, z)
1
2 ((x− y) · (ξ + i~∇y) + (ξ + i~∇y) · (x − y)))dxdξ ≤ E~(t) ,

and ∫

Rd×Rd

trace(Q~(t, z)
1
2 (∇V ⋆ ρ[R~](t, y)−∇V ⋆ ρf(t, x)) · (ξ + i~∇y))dxdξ

+

∫

Rd×Rd

trace(Q~(t, z)
1
2 (ξ + i~∇y) · (∇V ⋆ ρ[R~](t, y)−∇V ⋆ ρf (t, x)))dxdξ

≤
∫

Rd×Rd

trace(Q~(t, z)
1
2 |∇V ⋆ ρf (t, x)−∇V ⋆ ρ[R~](t, y)|2)dxdξ

+

∫

Rd×Rd

trace(Q~(t, z)
1
2 |ξ + i~∇y|2)dxdξ .

Next ∫

Rd×Rd

trace(Q~(t, z)
1
2 |∇V ⋆ ρf (t, x)−∇V ⋆ ρ[R~](t, y)|2)dxdξ

≤
∫

Rd×Rd

trace(Q~(t, z)|∇V ⋆ ρf (t, x) −∇V ⋆ ρ[R~](t, x)|2)dxdξ

+

∫

Rd×Rd

trace(Q~(t, z)|∇V ⋆ ρ[R~](t, x)−∇V ⋆ ρ[R~](t, y)|2)dxdξ .

Observe that
|∇V ⋆ ρ[R~](t, x)−∇V ⋆ ρ[R~](t, y)|

=

∣∣∣∣
∫

Rd

(∇V (x − z)−∇V (y − z))ρ[R~](t, z)dz

∣∣∣∣

=

∫

Rd

|∇V (x − z)−∇V (y − z)|ρ[R~](t, z)dz

≤ Lip(∇V )|x− y|
∫

Rd

ρ[R~](t, z)dz

≤ Lip(∇V )|x− y| .



SCHRÖDINGER IN MEAN-FIELD AND SEMICLASSICAL REGIME 19

Hence
∫

Rd×Rd

trace(Q~(t, z)|∇V ⋆ ρ[R~](t, x) −∇V ⋆ ρ[R~](t, y)|2)dxdξ

≤ Lip(∇V )2
∫

Rd×Rd

trace(Q~(t, z)|x− y|2)dxdξ .

Summarizing, we have proved that

dE~
dt

(t) ≤ E~(t) +
∫

Rd×Rd

|∇V ⋆ ρf (t, x)−∇V ⋆ ρ[R~](t, x)|2f(t, x, ξ)dxdξ

+

∫

Rd×Rd

trace(Q~(t, z)(
1
2 |ξ + i~∇y|2 + Lip(∇V )2|x− y|2))dxdξ .

Observe that

∇V ⋆ ρf (t,X)−∇V ⋆ ρ[R~](t,X)

=

∫

Rd×Rd

∇V (X − x)f(t, x, ξ)dxdξ −
∫

Rd

∇V (X − y)ρ[R~](t, y)dy

=

∫

Rd×Rd

∇V (X − x)f(t, x, ξ)dxdξ − trace(∇V (X − ·)R~)

=

∫

Rd×Rd

trace((∇V (X − x) −∇V (X − y))Q~(t, x, ξ))dxdξ

so that, by the Cauchy-Schwarz inequality,

|∇V ⋆ ρf (t,X)−∇V ⋆ ρ[R~](t,X)|2

≤
∫

Rd×Rd

trace(|∇V (X − x)−∇V (X − y)|2Q~(t, x, ξ))dxdξ

≤ Lip(∇V )2
∫

Rd×Rd

trace(|x− y|2Q~(t, x, ξ))dxdξ .

Hence

dE~
dt

(t) ≤ E~(t) + Lip(∇V )2
∫

Rd×Rd

trace(|x − y|2Q~(t, x, ξ))dxdξ

+

∫

Rd×Rd

trace(Q~(t, z)(
1
2 |ξ + i~∇y|2 + Lip(∇V )2|x− y|2))dxdξ ,

or, in other words,

dE~
dt

(t) ≤ (1 + max(4 Lip(∇V )2, 1))E~(t) .

Therefore

E~(f(t), R~(t))
2 = E~(t) ≤ eΛtE~(0) , for all t ≥ 0 .

Minimizing the left hand side of the inequality above as Qin
~

runs through
C(f in, Rin

~
), we conclude that

E~(f(t), R~(t))
2 ≤ eΛtE~(f

in, Rin
~ )2 , for all t ≥ 0 .
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4.4. Step 4: Convergence Rate and Monge-Kantorovich Distances. First,
we apply statement (2) in Theorem 2.4 to the left-hand side of the inequality above.
One finds that

distMK,2(f(t), W̃~[R~(t)])
2 ≤E~(f(t), R~(t))

2 + 1
2d~

≤eΛtE~(f
in, Rin

~ )2 + 1
2d~ , for all t ≥ 0 .

In addition, if Rin
~

= OPT
~
((2π~)dµin) where µin is a Borel probability measure on

Rd, we apply statement (3) in Theorem 2.4 to the right-hand side of the previous
inequality, to find that

distMK,2(f(t), W̃~[R~(t)])
2 ≤ eΛt

(
distMK,2(f

in, µin)2 + 1
2d~
)
+ 1

2d~

for all t ≥ 0.

5. Proof of Theorem 2.6

5.1. Step 1: a Dynamics for Couplings of f⊗N and R~,N . Consider an arbi-
trary coupling Qin

~,N ∈ C((f in)⊗N , Rin
~,N ), satisfying the symmetry condition

(17) Qin
~,N(σ ·XN , σ · ΞN ) = U∗

σQ
in
~,N(XN ,ΞN )Uσ .

The set of all such couplings is denoted Cs((f in)⊗N , Rin
~,N).

Let Q~,N ≡ Q~,N(t,XN ,ΞN ) be the solution of the Cauchy problem

(18)

∂tQ~,N(t,XN ,ΞN ) +

N∑

j=1

(ξj · ∇xj
−∇V ⋆x ρf (t, xj) · ∇ξj )Q~,N(t,XN ,ΞN )

+
i

~
[H~,N , Q~,N(t,XN ,ΞN )]N = 0 ,

with initial data

(19) Q~,N(0, XN ,ΞN ) = Qin
~,N(XN ,ΞN ) .

Here, we denote by [·, ·]N the commutator between operators on HN , and we recall
that the quantum Hamiltonian H~,N is defined in formula (9).

Lemma 5.1. Let Q~,N be a solution of (18) with initial data (19) satisfying the
symmetry (17). Then

(a) one has

Q~,N(t) ∈ C(f(t)⊗N , R~,N(t)) for each t ≥ 0 ;

(b) for each σ ∈ SN and each t ≥ 0, one has

Q~,N(t, σ ·XN , σ · ΞN ) = U∗
σQ~,N(t,XN ,ΞN )Uσ .

In other words, Q~,N(t) ∈ Cs(f(t)⊗N , R~,N(t)) for all t ≥ 0.

In particular, statement (a) implies that trace(Q~,N (t)) = f(t)⊗N . This factor-
ization property is of considerable importance for the proof of Theorem 2.6 — in
particular for the consistency part of Step 4 below.

Proof. For each (XN ,ΞN ) ∈ (Rd)N × (Rd)N , let t 7→ ZN(t, s,XN ,ΞN ) be the
integral curve of the time-dependent vector field

(20) (ξ1, . . . , ξN ,−∇V ⋆x ρf (t, x1), . . . ,−∇V ⋆x ρf (t, xN ))
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passing through (XN ,ΞN ) at time t = s. Then

Q~,N(t,XN ,ΞN ) = e−itH~,N/~Qin
~,N(ZN (0, t,XN ,ΞN ))eitH~,N/~ .

Thus

trace(Q~,N (t,XN ,ΞN )) = trace(Qin
~,N (ZN(0, t,XN ,ΞN ))

= (f in)⊗N (ZN (0, t,XN ,ΞN )) =

N∏

j=1

f(t, xj , ξj) ,

while ∫

(Rd)N×(Rd)N
Q~,N(t,XN ,ΞN )dXNdΞN

= e−itH~,N/~

(∫

(Rd)N×(Rd)N
Qin

~,N(YN , HN )dYNdHN

)
eitH~,N/~

= e−itH~,N/~Rin
~,Ne

itH~,N/~ = R~,N (t) ,

since the flow ZN leaves the Lebesgue measure of (Rd)N × (Rd)N invariant. This
proves (a).

As for (b), observe that Q̃~,N(t,XN ,ΞN ) := UσQ~,N(t, σ ·XN , σ ·ΞN )U∗
σ satisfies

(18), because UσH~,N = H~,NUσ while the vector field (20) is invariant under the

transformation (XN ,ΞN ) 7→ (σ ·XN , σ · ΞN ). On the other hand Q̃~,N(0) = Qin
~,N

according to (17). By uniqueness of the solution of the Cauchy problem for (18),

one has Q̃~,N(t) = Q~,N(t) for all t ≥ 0. This identity obviously holds for each
σ ∈ SN . �

5.2. Step 2: Coupling BBGKY Hierarchies. Instead of working directly with
the equation (18) for N -particle couplings, we look at the hierarchy of equations
for the n-particle marginals of Q~,N .

Definition 5.2. For each n = 1, . . . , N , we define the n-particle marginal of Q~,N ,
henceforth denoted Qn

~,N , as follows: for a.e. Xn,Ξn ∈ (Rd)n,

Qn

~,N(t,Xn,Ξn) :=

∫

(Rd×Rd)N−n

[Q~,N(t,XN ,ΞN )]ndxn+1dξn+1 . . . dxNdξN ,

where the n-particle marginal of the N -particle density Q~,N(t,XN ,ΞN ) has been
defined in (8).

Integrating with respect to x2, ξ2, . . . , xN , ξN and taking the 1st particle marginal
of both sides of (18) leads to the equation

∂tQ
1

~,N(t, x1, ξ1) + (ξ1 · ∇x1 −∇V ⋆x ρf (t, x1) · ∇ξ1)Q
1

~,N(t, x1, ξ1)

+
i

~

∫

(Rd×Rd)N−1

[H~,N , Q~,N(t,XN ,ΞN )]1Ndx2dξ2 . . . , dxNdξN = 0 .

Then

[H~,N , Q~,N(t,XN ,ΞN )]
1

N =[− 1
2~

2∆y1 , Q~,N(t,XN ,ΞN )1]1

+
1

N

N∑

j=2

[V (y1 − yj), Q~,N(t,XN ,ΞN )]1N .
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At this point, we integrate further in x2, ξ2, . . . , xN , ξN , and find that
∫

(Rd×Rd)N−1

[H~,N , Q~,N(t,XN ,ΞN )]
1

N dx2dξ2 . . . , dxNdξN

=

[
− 1

2~
2∆y1 ,

∫

(Rd×Rd)N−1

Q~,N(t,XN ,ΞN )1dx2dξ2 . . . , dxNdξN

]

1

+
1

N

N∑

j=2

∫

(Rd×Rd)N−1

[V (y1 − yj), Q~,N(t,XN ,ΞN )]1Ndx2dξ2 . . . , dxNdξN .

Using the symmetry relation (b) in Lemma 5.1, we observe that

[V (y1 − yj), Q~,N (t,XN ,ΞN )]1N = [V (y1 − y2), Q~,N (t, σ ·XN , σ · ΞN )]1N

where σ is the permutation exchanging 2 and j and leaving all the other indices
invariant. Hence∫

(Rd×Rd)N−1

[H~,N , Q~,N(t,XN ,ΞN )]
1

N dx2dξ2 . . . , dxNdξN

= [− 1
2~

2∆y1 , Q
1

~,N(t, x1, ξ1)]1

+
N − 1

N

∫

Rd×Rd

[V (y1 − y2), Q
2

~,N(t, x1, x2, ξ1, ξ2)]
1

2dx2dξ2 .

Eventually, we arrive at the equation for Q1

~,N , which is

(21)
∂tQ

1

~,N(t, x1, ξ1)

+(ξ1 · ∇x1 −∇V ⋆x ρf (t, x1) · ∇ξ1)Q
1

~,N(t, x1, ξ1)− 1
2 i~[∆y1 , Q

1

~,N(t, x1, ξ1)]1

+
i

~

∫

Rd×Rd

[N−1
N V (y1 − y2), Q

2

~,N (t, x1, x2, ξ1, ξ2)]
1

2dx2dξ2 = 0 .

This equation couples the first particle marginals of Q~,N , and is not in closed
form, as it involves the 2-particle marginal Q2

~,N . Therefore, this equation can be
regarded as coupling the first equation in the BBGKY hierarchy for the N -particle
Schrödinger equation with the Vlasov equation.

Remark 5.3. Proceeding in the same way, one could also write the analogous
equation coupling the n-th equation in the BBGKY hierarchy for the N -particle
Schrödinger equation with the equation satisfied by the n-fold tensor product of the
Vlasov solution:
(22)

∂tQ
n

~,N(t,Xn,Ξn) +

n∑

j=1

(ξj · ∇xj
−∇V ⋆x ρf (t, xj) · ∇ξj )Q

n

~,N (t,Xn,Ξn)

+


− 1

2 i~

n∑

j=1

∆yj
+

i

2N~

n∑

j,k=1

V (yj − yk), Q
n

~,N(t,Xn,Ξn)



n

+
i

~

n∑

j=1

∫

Rd×Rd

[N−n
N V (yj − yn+1), Q

n+1

~,N (t,Xn+1,Ξn+1)]
n

n+1dxn+1dξn+1 = 0 .

For n = N , this equation obviously coincides with the original equation (18), with

the convention QN+1

~,N := 0. Analogously, we recall that the last equation in the
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BBGKY equation coincides with the N -particle Liouville, or von Neumann equa-
tion.

In the course of the proof, we shall use only the first equation (21) in the hierarchy
of equations (22) for n = 1, . . . , N − 1, together with the original equation (18).
Equations (21) and (18) are used for two different purposes in the proof. We shall
return to this later.

5.3. Step 3: On Moments and Symmetries of Q~,N(t). Henceforth we denote

c~,j(x, ξ) :=
1
2 (|x − yj|2 + |ξ + i~∇yj

|2) , j = 1, . . . , N .

Define

D~,N (t) :=

∫

(Rd×Rd)N

1

N

N∑

j=1

traceHN
(c~,j(xj , ξj)Q~,N (t,XN ,ΞN ))dXNdΞN .

Lemma 5.4. For each n = 1, . . . , N and each t ≥ 0, one has

D~,N (t) =

∫

(Rd×Rd)n

1

n

n∑

j=1

traceHn
(c~,j(xj , ξj)Q

n

~,N (t,Xn,Ξn))dXndΞn

Proof. By statement (b) in Lemma 5.1, one has
∫

(Rd×Rd)N
traceHN

(c~,j(xj , ξj)Q~,N(t,XN ,ΞN ))dXNdΞN

=

∫

(Rd×Rd)N
traceHN

(U∗
σc~,1(xj , ξj)UσQ~,N(t,XN ,ΞN ))dXNdΞN

=

∫

(Rd×Rd)N
traceHN

(c~,1(x1, ξ1)UσQ~,N(t, σ ·XN , σ · ΞN )U∗
σ)dXNdΞN

=

∫

(Rd×Rd)N
traceHN

(c~,1(x1, ξ1)Q~,N(t,XN ,ΞN ))dXNdΞN

if σ is the permutation exchanging the indices 1 and j, and leaving the other indices
invariant. Therefore

D~,N(t) =

∫

(Rd×Rd)N
traceHN

(c~,1(x1, ξ1)Q~,N(t,XN ,ΞN ))dXNdΞN

=

∫

Rd×Rd

traceH(c~,1(x1, ξ1)Q
1

~,N (t, x1, ξ1))dx1dξ1 ,

and by the same token

D~,N(t) =

∫

(Rd×Rd)N

1

n

n∑

j=1

traceHN
(c~,j(xj , ξj)Q~,N (t,XN ,ΞN ))dXNdΞN

=

∫

(Rd×Rd)n

1

n

n∑

j=1

traceHn
(c~,j(xj , ξj)Q

n

~,N (t,Xn,Ξn))dXndΞn

for all n = 1, . . . , N . �
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5.4. Step 4: a Differential Inequality for D~,N (t). The most important step
in the proof of Theorem 2.6 is to obtain a differential inequality controlling the
convergence rate of R~,N to f in some appropriate sense. This control involves two
different arguments, referred to as “stability” and “consistency” by analogy with
the Lax equivalence theorem [13] in numerical analysis.

5.4.1. Stability. Multiplying both sides of (21) by c~,1(x1, ξ1), integrating in x1, ξ1
and taking the trace of both sides of the resulting equality, we arrive at the following
identity:

dD~,N

dt
(t)

=

∫

Rd×Rd

traceH(Q
1

~,N (t, x1, ξ1)(ξ1 ·∇x1c~,1(x1, ξ1)− 1
2 i~[∆y1 , c~,1(x1, ξ1)])dx1dξ1

−
∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)∇V ⋆x ρf (t, x1) · ∇ξ1c~,1(x1, ξ1))dx1dξ1

+
i

~

N − 1

N

∫

Rd×Rd

trace(Q2

~,N (t,X2,Ξ2)[V (y1 − y2), c~,1(x1, ξ1)]2)dx2dξ2 .

We shall use the following auxiliary computations:

ξ1 · ∇x1c~,1(x1, ξ1) = ξ1 · ∇x1

1
2 |x1 − y1|2 = ξ1 · (x1 − y1) ,

while

− 1
2 i~[∆y1 , c~,1(x1, ξ1)] =− 1

2 i~∇y1 · [∇y1 ,
1
2 |x1 − y1|2]

− 1
2 i~[∇y1 ,

1
2 |x1 − y1|2] · ∇y1

=− 1
2 i~∇y1 · (y1 − x1)− 1

2 i~(y1 − x1) · ∇y1

so that

(ξ1 · ∇x1c~,1(x1, ξ1)− 1
2 i~[∆y1 , c~,1(x1, ξ1)]

= 1
2 (ξ1 + i~∇y1) · (x1 − y1) +

1
2 (x1 − y1) · (ξ1 + i~∇y1) .

Likewise

−∇V ⋆x ρf (t, x1) · ∇ξ1c~,1(x1, ξ1) = −∇V ⋆x ρf (t, x1) · ∇ξ1
1
2 |ξ1 + i~∇y1 |2

= −∇V ⋆x ρf (t, x1) · (ξ1 + i~∇y1) ,

while

i

~
[V (y1 − y2), c~,1(x1, ξ1)]2 =

i

~
[V (y1 − y2),

1
2 |ξ1 + i~∇y1 |2]2

= − i

2~
(ξ1 + i~∇y1) · [(ξ1 + i~∇y1), V (y1 − y2)]2

− i

2~
[(ξ1 + i~∇y1), V (y1 − y2)]2 · (ξ1 + i~∇y1)

= 1
2 (ξ1 + i~∇y1) · ∇V (y1 − y2) +

1
2∇V (y1 − y2) · (ξ1 + i~∇y1) .
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Hence

dD~,N

dt
(t) = 1

2

∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)(ξ1 + i~∇y1) · (x1 − y1))dx1dξ1

+ 1
2

∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)(x1 − y1) · (ξ1 + i~∇y1))dx1dξ1

−
∫

Rd×Rd

traceH(Q
1

~,N (t, x1, ξ1)∇V ⋆x ρf(t, x1) · (ξ1 + i~∇y1))dx1dξ1

+
N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)(ξ1 + i~∇y1) · ∇V (y1 − y2))dX2dΞ2

+
N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)∇V (y1 − y2) · (ξ1 + i~∇y1))dX2dΞ2 .

Using the inequality (16) with A = x1 − y1 and B = ξ1 + i~∇y1 shows that

dD~,N

dt
(t) ≤ D~,N(t)

−
∫

(Rd×Rd)2
traceH2(Q

2

~,N (t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

−N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)(ξ1 + i~∇y1) · W(X2, Y2))dX2dΞ2

−N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)W(X2, Y2) · (ξ1 + i~∇y1))dX2dΞ2 ,

with the notation

V(t, x1, x2) := ∇V ⋆x ρf (t, x1)− N−1
N ∇V (x1 − x2)

and

W(X2, Y2) := ∇V (x1 − x2)−∇V (y1 − y2) .

Using again inequality (16) with A = W(X2, Y2) and B = ξ1 + i~∇y1 shows that

dD~,N

dt
(t) ≤ D~,N (t)

−
∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

+
N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N (t,X2,Ξ2)|ξ1 + i~∇y1 |2)dX2dΞ2

+
N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)|W(X2, Y2)|2)dX2dΞ2 .
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Hence

dD~,N

dt
(t) ≤ D~,N(t)

−
∫

(Rd×Rd)2
traceH2(Q

2

~,N (t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

+ 1
2

∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)|ξ1 + i~∇y1 |2)dx1dξ1

+L2

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)(|x1 − y1|2 + |x2 − y2|2))dX2dΞ2

= D~,N(t)

−
∫

(Rd×Rd)2
traceH2(Q

2

~,N (t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

+ 1
2

∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)|ξ1 + i~∇y1 |2)dx1dξ1

+2L2

∫

Rd×Rd

traceH(Q
1

~,N (t, x1, ξ1)|x1 − y1|2)dx1dξ1 ,

where the inequality follows from the Lipschitz continuity of ∇V and the equality
from the fact that Q~,N is symmetric.

Eventually, we arrive at the inequality

dD~,N

dt
(t) ≤ (1 + max(1, 4 Lip(∇V )2))D~,N (t)

−
∫

(Rd×Rd)2
traceH2(Q

2

~,N (t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2 .

5.4.2. Consistency. The consistency part of the proof is the control of the term

∫

(Rd×Rd)2
traceH(Q

2

~,N(t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

on the right hand side of the inequality above.
At this point, we undo the symmetry reduction leading to equation (21), and

distribute the interaction of particle 1 with particle 2 evenly into interactions of
particle 1 with particles 2, . . . , N . In other words

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

=

∫

(Rd×Rd)N
traceHN

(Q~,N(t, σ ·XN , σ · ΞN )V(t, x1, xj) · (ξ1 + i~∇y1))dXNdΞN

=

∫

(Rd×Rd)N
traceHN

(Q~,N(t,XN ,ΞN )UσV(t, x1, xj) · (ξ1 + i~∇y1)U
∗
σ)dXNdΞN

=

∫

(Rd×Rd)N
traceHN

(Q~,N (t,XN ,ΞN )V(t, x1, xj) · (ξ1 + i~∇y1))dXNdΞN
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for all j = 2, . . . , N , where σ is the permutation exchanging 2 and j and leaving all
the other indices invariant. Therefore

∫

(Rd×Rd)2
traceH(Q

2

~,N(t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

=

∫

(Rd×Rd)N
traceHN


Q~,N

1
N−1

N∑

j=2

V(t, x1, xj) · (ξ1 + i~∇y1)


 dXNdΞN .

Applying inequality (16) with

A = 1
N−1

N∑

j=2

V(t, x1, xj) , B = ξ1 + i~∇y1

shows that

∫

(Rd×Rd)2
traceH2(Q

2

~,N (t,X2,Ξ2)V(t, x1, x2) · (ξ1 + i~∇y1))dX2dΞ2

≤ 1
2

∫

(Rd×Rd)N
traceHN


Q~,N

∣∣∣∣∣∣
1

N−1

N∑

j=2

V(t, x1, xj)

∣∣∣∣∣∣

2

 dXNdΞN

+ 1
2

∫

(Rd×Rd)N
traceHN

(Q~,N |ξ1 + i~∇y1 |2)dXNdΞN .

Since Q~,N(t, x, ξ) acts on the YN variables only and traceHN
(Q~,N(t)) = f(t)⊗N

(see Lemma 5.1 (a), and the remark thereafter), one has

∫

(Rd×Rd)N
traceHN


Q~,N

∣∣∣∣∣∣
1

N−1

N∑

j=2

V(t, x1, xj)

∣∣∣∣∣∣

2

 dXNdΞN

=

∫

(Rd×Rd)N
f(t)⊗N (XN ,ΞN )

∣∣∣∣∣∣
1

N−1

N∑

j=2

V(t, x1, xj)

∣∣∣∣∣∣

2

dXNdΞN

=

∫

(Rd)N

∣∣∣∣∣∣
1

N−1

N∑

j=2

V(t, x1, xj)

∣∣∣∣∣∣

2

ρf (t)
⊗N (XN )dXN ,

where the last equality follows from the fact that the potential V is independent of
the momentum variable ξ.
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This last term is mastered as follows (see Lemma 3.3 in [9] in the case p = 2 for
more details):

∫

(Rd)N

∣∣∣∣∣∣
1

N−1

N∑

j=2

V(t, x1, xj)

∣∣∣∣∣∣

2

ρf (t)
⊗N (XN )dXN

=
1

(N − 1)2

∫

(Rd)2

N∑

j=2

|V(t, x1, xj)|2ρf (t, x1)ρf (t, xj)dx1dxj

+
N − 2

N − 1

∫

Rd

(∫

Rd

V(t, x1, x2)ρf (t, x2)dx2
)2

ρf (t, x1)dx1

≤ 2

N − 1
(2‖∇V ‖L∞)2 .

Finally, we have proved that

dD~,N

dt
(t) ≤(1 + max(1, 4 Lip(∇V )2))D~,N (t)

+ 1
2

∫

(Rd×Rd)N
traceHN

(Q~,N |ξ1 + i~∇y1 |2)dXNdΞN

+ 1
2

∫

(Rd)N

∣∣∣∣∣∣
1

N−1

N∑

j=2

V(t, x1, xj)

∣∣∣∣∣∣

2

ρf (t)
⊗N (XN )dXN

≤(2 + max(1, 4 Lip(∇V )2))D~,N (t) +
(2‖∇V ‖L∞)2

N − 1
.

By Gronwall’s inequality

D~,N(t) ≤ D~,N(0)eΓt +
(2‖∇V ‖L∞)2

N − 1

eΓt − 1

Γ
.

5.5. Step 5: Conclusion. Observe that, for each n = 1, . . . , N

Qn

~,N(t) ∈ C(f(t)⊗n, Rn

~,N (t)) , for each t ≥ 0 .

Indeed

traceHn
Qn

~,N(t,Xn,Ξn)

= traceHn

∫

(Rd×Rd)N−n

[Q~,N(t,XN ,ΞN )]ndxn+1dξn+1 . . . dxNdξN

=

∫

(Rd×Rd)N−n

traceHN
Q~,N(t,XN ,ΞN )dxn+1dξn+1 . . . dxNdξN

=

∫

(Rd×Rd)N−n

f⊗N (t,XN ,ΞN )dxn+1dξn+1 . . . dxNdξN

= f⊗n(t,Xn,Ξn) ,

while ∫

(Rd×Rd)n
Qn

~,N(t,Xn,Ξn)dXndΞn

=

[∫

(Rd×Rd)N
Q~,N(t,XN ,ΞN )dXNdΞN

]n
= Rn

~,N(t) .
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Besides, specializing the symmetry in Lemma 5.1 (b) to the case where σ(k) = k
for each k = n+ 1, . . . , N shows that

(23) Qn

~,N(t) ∈ Cs(f(t)⊗n, Rn

~,N(t)) , for each t ≥ 0 .

By definition of the pseudo-distance E~, one has

1

n
E~(f(t)

⊗n, Rn

~,N(t)) ≤ D~,N(0)eΓt +
(2‖∇V ‖L∞)2

N − 1

eΓt − 1

Γ

for each n = 1, . . . , N and each t ≥ 0. Minimizing the right hand side of the
inequality above as the initial Qin

~,N runs through Cs((f in)⊗N , Rin
~,N) , we arrive at

the inequality

1

n
E~(f(t)

⊗n, Rn

~,N(t)) ≤ 1

N
E~((f

in)⊗N , Rin
~,N )eΓt +

(2‖∇V ‖L∞)2

N − 1

eΓt − 1

Γ
.

(Indeed
∫

(Rd×Rd)N
traceHN

(c~,j(xj , ξj)Q
in
~,N(XN ,ΞN ))dXNdΞN

=

∫

(Rd×Rd)N
traceHN

(c~,1(x1, ξ1)UσQ
in
~,N(σ ·XN , σ · ΞN )U∗

σ)dXNdΞN

if σ is the transposition exchanging 1 and j, and therefore

(24)

∫

(Rd×Rd)N

1

N

N∑

j=1

traceHN
(c~,j(xj , ξj)Q

in
~,N (XN ,ΞN ))dXNdΞN

=

∫

(Rd×Rd)N

1

N

N∑

j=1

traceHN
(c~,j(xj , ξj)Q

in,sym
~,N (XN ,ΞN ))dXNdΞN

where

Qin,sym
~,N (XN ,ΞN ) =

1

N !

∑

σ∈SN

UσQ
in
~,N(σ ·XN , σ · ΞN )U∗

σ ,

so that there is no loss of generality in assuming that Qin
~,N satisfies the symmetry

(17).)
By statement (2) in Theorem 2.4

1

n
distMK,2(f(t)

⊗n, W̃~[R
n

~,N(t)])2

≤ 1

N
E~((f

in)⊗N , Rin
~,N )eΓt +

(2‖∇V ‖L∞)2

N − 1

eΓt − 1

Γ
+ 1

2d~ .

If Rin
~,N is a Töplitz operator, more precisely if Rin

~,N = OPT
~ ((2π~)

dNµin
N ) for some

symmetric Borel probablity measure µin
N on (Rd)N , one has

1

n
distMK,2(f(t)

⊗n, W̃~[R
n

~,N (t)])2

≤
(

1

N
distMK,2((f

in)⊗N , µin
N )2 + 1

2d~

)
eΓt +

(2‖∇V ‖L∞)2

N − 1

eΓt − 1

Γ
+ 1

2d~ .

Remark 5.5. The argument in Step 4 can be summarized as follows: the first
equation in the BBGKY hierarchy at the level of couplings (i.e. equation (21))
is used in the stability part of the convergence analysis, while the last equation in
the BBGKY hierarchy, or equivalently the N -particle equation (18) at the level
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of couplings, is used in the consistency part of the proof. None of the intermediate
equations in the BBGKY hierarchy is used in the proof. In view of this remark, it is
interesting to compare the method used in the proof of Theorem 2.6 with the abstract
argument for hierarchies outlined in [3], which is based on a Cauchy-Kovalevska
argument.

6. Proof of Theorem 2.7

The proof of Theorem 2.7 is similar to the proofs of Theorems 2.5 and 2.6. We
only sketch the argument, and insist on the differences with the proofs of Theorems
2.5 and 2.6.

Let Qin
~,N ∈ Cs(F in

N , Rin
~,N), and let (t,XN ,ΞN ) 7→ Q~,N(t,XN ,ΞN ) be the solu-

tion of the Cauchy problem

(25)




∂tQ~,N + {HN , Q~,N}N +

i

~
[H~,N , Q~,N ]N = 0 ,

Q~,N

∣∣
t=0

= Qin
~,N ,

where the classical HamiltonianHN is defined in (13) and the quantum Hamiltonian
H~,N in (9). By the same argument as in Lemma 5.1, we see that

Q~,N (t) ∈ Cs(FN (t), R~,N (t)) , for each t ≥ 0 .

Set

D~,N (t) =
1

N

∫

(Rd×Rd)N
traceHN


Q~,N(t,XN ,ΞN )

N∑

j=1

c~,j


 dXNdΞN

=

∫

(Rd×Rd)N
traceHN

(
Q1

~,N(t, x1, ξ1)c~,1
)
dx1dξ1 .

as in Lemma 5.4 with n = 1.
Multiplying each side of (25) by c~,1, taking the trace and integrating in (x1, ξ1),

we get

Ḋ~,N (t) =

∫

Rd×Rd

traceH(Q
1

~,N (t, x1, ξ1){ 1
2ξ1, c~,1(x1, ξ1)})dx1dξ1

+

∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)[− i
2~∆y1 , c~,1(x1, ξ1)])dx1dξ1

+

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2){N−1
N V (x1 − x2), c~,1(x1, ξ1)})dX2dΞ2

+

∫

Rd×Rd

i

~
traceH2(Q

2

~,N(t,X2,Ξ2)[
N−1
N V (y1 − y2), c~,1(x1, ξ1)])dX2dΞ2 .

One has

{ 1
2ξ1, c~,1(x1, ξ1)} = ξ1 · ∇x1c~,1(x1, ξ1) = ξ1 · (x1 − y1) ,

while

[− i
2~∆y1 , c~,1(x1, ξ1)] = − 1

2 i~∇y1 · (y1 − x1)− 1
2 i~(y1 − x1) · ∇y1 .

Likewise

{N−1
N V (x1 − x2), c~,1(x1, ξ1)} = −N−1

N ∇V (x1 − x2) · (ξ1 + i~∇y1) ,



SCHRÖDINGER IN MEAN-FIELD AND SEMICLASSICAL REGIME 31

while

i

~
[N−1

N V (y1 − y2), c~,1(x1, ξ1)] = − i

~

N−1
N [c~,1(x1, ξ1), V (y1 − y2)]

= − i

~

N−1
N

(
1
2 (ξ1 + i~∇y1) · i~∇V (y1 − y2) +

1
2 i~∇V (y1 − y2) · (ξ1 + i~∇y1)

)

= N−1
N

(
1
2 (ξ1 + i~∇y1) · ∇V (y1 − y2) +

1
2∇V (y1 − y2) · (ξ1 + i~∇y1)

)
.

Thus

Ḋ~,N(t) =

∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)
1
2 (ξ1 + i~∇y1) · (x1 − y1))dx1dξ1

+

∫

Rd×Rd

traceH(Q
1

~,N(t, x1, ξ1)
1
2 (x1 − y1) · (ξ1 + i~∇y1))dx1dξ1

−N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)(ξ1 + i~∇y1) · W(X2, Y2))dX2dΞ2

−N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)W(X2, Y2) · (ξ1 + i~∇y1))dX2dΞ2

≤ D~,N (t) +
N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)|ξ1 + i~∇y1 |2)dX2dΞ2

+
N − 1

2N

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)|W(X2, Y2)|2)dX2dΞ2 ,

with

W(X2, Y2) := (∇V (x1 − x2)−∇V (y1 − y2)) .

Denoting again L := Lip(∇V ), one has

|W(X2, Y2)| ≤ L(|x1 − y1|+ |x2 − y2|)
and therefore

Ḋ~,N (t) ≤ D~,N (t) + 1
2

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)|ξ1 + i~∇y1 |2)dX2dΞ2

+ 1
2L

2

∫

(Rd×Rd)2
traceH2(Q

2

~,N(t,X2,Ξ2)(|x1 − y1|+ |x2 − y2|)2)dX2dΞ2

≤ D~,N(t) + 1
2

∫

Rd×Rd

traceH(Q
1

~,N (t, x1, ξ1)|ξ1 + i~∇y1 |2)dx1dξ1

+2L2

∫

(Rd×Rd)2
traceH(Q

1

~,N(t, x1, ξ1)|x1 − y1|2)dx1dξ1

≤ (1 + max(1, 4L2))D~,N (t) .

Hence, for all t ≥ 0 and all n = 1, . . . , N , one has

1

n
E~(F

n

N (t), Rn

~,N (t))2 ≤ D~,N (t) ≤ D~,N (0)eΛt .

Minimizing over the initial coupling Qin
~,N ∈ Cs(F in

N , Rin
~,N), and arguing as in (24),

one finds that

inf
Qin

~,N
∈Cs(F in

N
,Rin

~,N
)
D~,N (0)2 =

1

N
E~(F

in
N , Rin

~,N)2 .
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Thus, for all t ≥ 0 and all n = 1, . . . , N ,

1

n
E~(F

n

N (t), Rn

~,N (t))2 ≤ 1

N
E~(F

in
N , Rin

~,N)2eΛt .

We conclude following the end of the proof of Theorem 2.6, Section 5.5.
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