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g upon periodic elasto-plastic porous materials. The aim is to understand the evolution of the underlying 
id embedded in a cubic unit-cell. Periodic finite element (FEM) calculations are carried out under a finite 
e value of the stress triaxiality and the Lode angle con-stant during the cycle. As a result of the applied 
olume and shape, change significantly leading to porosity and void shape ratcheting. The void shape 
e leading to a markedly asymmetric cyclic response of the material. This, in turn, results in an observed 
 cycles. In addition, even though the average applied strains are relatively small, the local strains near the 
 significant localization of the deformation. Finally, several initial void shape configurations are also 
, the void evolves into a crack-type shape in the direction of the minimum absolute stress. This, in turn, is 
o a crack subjected to a mode I cyclic loading.
1. Introduction

Cyclic loading of metallic materials has always attracted a lot of
attention in the scientific and industrial community due to its
impact in the numerous low and high cycle fatigue applications. A
priori, the response of a metal under cyclic loading conditions is a
multi-scale problem and several mechanisms at the microscale
(e.g., dislocation structures at the scale of 1e10 mm) andmeso-scale
(e.g., hard precipitates and pores or cracks) lead to damage at
different scales and finally initiate fatigue of the material at the
macroscale. This makes the analysis and modeling of cyclic loading
a very tedious work in the sense that to-date it is very difficult to
propose a micromechanics-based model that spans the fatigue
mechanisms in all the scales. Nonetheless, a lot of studies have been
made at several length scales andmany of the mechanisms in cyclic
loadings have been identified.

In the high cycle regime that plasticity is strongly confined,
Dang Van (1971) (see also Papadopoulos (1987) and Constantinescu
et al. (2003)) proposed pressure dependent fatigue criteria based
.fr (A. Mbiakop), andrei.
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on a combined homogenization and phenomenological approach.
Numerical modeling of the two scale approach (Bertolino et al.,
2007; Hofmann et al., 2009; Guerchais et al., 2014) shows that
the pressure is the footprint of the residual stress created by the
localized plasticity at the grains scale. In turn, in the low cycle
regime, where plasticity is more spread at numerous grains, only
phenomenological and statistically-based fatigue criteria have been
proposed (see for example Amiable et al. (2006a,b) and Tabibian
et al. (2013b)). Mean stress effects on high strength steels have
been discussed already by Koh and Stephens (1991) and Kondo
et al. (2003). Recently, Morel and Bastard (2003) and Maitournam
et al. (2011) for high-cycle fatigue and Tabibian et al. (2013a) for
low-cycle fatigue have experimentally shown the effect of multi-
axial loading effects, and particularly of pressure, upon the cyclic
response of steels and aluminum alloys and have introduced
similar parameters for taking into account the mean stress effect.
The fact that fatigue criteria, which are based on strong experi-
mental evidence, include pressure dependence, is in striking
contradiction with the common modeling of such materials using
pressure-independent plasticity laws, both crystal plasticity and
isotropic plasticity with or without kinematic hardening.

More specifically, advances in imaging techniques (SEM and
tomography) have revealed the presence of voids in metals. In a
recent study, Limodin et al. (2014) and Wang et al. (2014) have



Fig. 1. (a) The original uniaxial tension specimen with effective diameter D ¼ 5.13 mm. (b) Cylindrical volume taken from the original specimen from the effective area for X-ray
tomographic observation. (c) Voids of sizes ranging between 50�500 mm. The two arrows show voids with average aspect ratios w1 z w2 z 2 (prolate ellipsoidal shape) and
w1 z w2 z 1 (average spherical shape). Courtesy of N. Limodin and E. Charkaluk.
obtained 3D tomographic images (see Fig. 1) for aluminum alloys
obtained by lost-foam-casting fabrication techniques. As shown in
Fig. 1c, voids of several sizes and shapes (spherical, ellipsoidal but
also non-canonical) are observed. In the same figure, the different
colors indicate families of voids of similar shapes (but not size or
orientation), while two representative voids are pointed out by
arrows. One is an almost spherical void (with aspect ratios
w1 z w2 z 1 and the other is a prolate void with average shape
w1 z w2 z 2 (see Fig. 5a for a detailed definition of void aspect
ratios). It is further noted that the size of the voids ranges between
50�500 mm with grain size in the order of 50�100 mm.

Motivated by the tomographic image in Fig. 1, a more physics-
based way to include such pressure dependence at the material
level is the use of void microstructures1 embedded in an otherwise
plastically incompressible matrix phase. These voids or cracks,
which could be present in the material ab initio or be nucleated
around precipitates and particles in the course of deformation
(Essmann et al., 1981), could be smaller, equal or larger than the size
of the grains. The voids therefore can have sizes from a fewmicrons
(e.g., 1e10 mm) to hundreds of microns (larger than 200 mm). The
presence of the pore, in turn, gives rise to a compressible response
of the composite material in the plastic region, and hence to
pressure dependence. This is achieved by transforming the mean
stress applied at the macroscale to a local shearing of the matrix
material near the void surface.

As a consequence, the material is now viewed as a two-phase
composite system comprising the void phase and the matrix
phase. The matrix phase, depending on which scale we refer to,
could be the grain or an ensemble of grains. In the first case, that the
voids lie inside the grain or the cracks are in the scale of grains, it
was shown that the strain-gradient effects with (Niordson and
Legarth (2010), Vernerey et al. (2007) or without (Monchiet and
Kondo (2013)) crystal plasticity can have a significant impact on
material responseMiehe et al. (1999);Watanabe et al. (2010). In the
second case, where the voids are larger than the size of the grains,
standard isotropic plasticity could be used to model the response of
the material, which is the case in the present study.

While the idea of using porous materials to study ductile frac-
ture of metallic materials subjected to monotonic loading condi-
tions has been used extensively in the literature, very few studies
have been carried out in the domain of cyclic response of such
materials.
1 To avoid any misunderstanding with the different communities in mechanics
and material science, we precise here that the word “microstructure” refers,
henceforth, to the voids.
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Specifically, in the context of monotonic loading conditions,
nonlinear homogenization models and micromechanical models
(such as the well-known model of Gurson (1977) for elasto-plastic
porous materials) have been used for the prediction of pressure
dependent material behavior. In the context of nonlinear homog-
enization techniques, Ponte Casta~neda (1991) (see also Michel and
Suquet (1992) for a parallel development using a different
approach) has proposed a linear comparison composite method
initially applied to isotropic porous materials. In a later stage, these
techniques have been extended to include in an accurate manner
general ellipsoidal void shapes (see for instance the recent works of
Danas and Ponte Casta~neda (2009a) and Danas and Aravas (2012)).
In a parallel development, extensions of the Gurson model either
for isotropic void shapes (see for instance Tvergaard (1984) and
Mear and Hutchinson (1985)) or spheroidal (Gologanu et al., 1993;
Benzerga and Besson, 2001; Monchiet et al., 2006) and ellipsoidal
(Madou and Leblond, 2013) void shapes have been proposed. Such
material systems have also been analyzed very early using nu-
merical finite element methods (see for instance the seminal work
of Koplik and Needleman (1988)), and are still addressed by recent
works (see for instance Tvergaard (2011); Nielsen and Tvergaard.
(2011, 2012); Tekoglu et al. (2012)). In these works, the pressure
dependence has been studied via the stress triaxiality, denoted here
by XS and defined as the ratio of the mean stress to the von Mises
equivalent or effective deviatoric stress. More recently, the Lode
angle q, which is directly related to the third invariant of the
deviatoric stress tensor, has been identified experimentally
(Barsoum and Faleskog, 2007a) as an important loading parameter,
especially at low stress triaxialities. Numerical simulations (Zhang
et al., 2001) and analytical micromechanical models have been
proposed in this regard (Nahshon and Hutchinson, 2008; Danas
and Ponte Casta~neda, 2012).

Nevertheless, most of the above studies have been carried out in
the context of monotonic loading conditions. Even though the
material is initially the same, the evolution of the void size and
shape in cyclic loading conditions is markedly different than in the
context of monotonic loadings. Yet, much less has been done in the
context of cyclic loading conditions. Specifically, Monchiet et al.
(2008b) have used a micromechanical model for porous materials
to explain the mean stress effect in high cycle fatigue. Furthermore,
Devaux et al. (1997), Besson and Guillemer-Neel (2003) and Rabold
and Kuna (2005) have explored numerically the cyclic response of
porous materials at small and moderate number of cycles with a
main emphasis on axisymmetric loading states at large strains.
Their analysis has mainly focused on the prediction of porosity
ratcheting, whereby the underlying void shape changes have not
been studied in detail. In a similar study, Ristinmaa (1997) has



carried out finite-strain unit-cell computations, but for a small
number of cycles, concluding that void shape effects have very little
effect on porosity ratcheting.

In a slightly different context, Pirondi et al. (2006) and
Hommel and Meschke (2010) have used the Gurson (1977) and
the Leblond et al. (1995) models, respectively, to investigate the
low cycle fatigue response of metallic structures. Rather inter-
estingly, the later found that by including void shape effects
(contrary to the first who used Gurson model that includes no
void shape effects) could dramatically improve their predictions,
even though a large number of additional fitting parameters had
to be used. Similar observations regarding the importance of void

shape effects upon the cyclic response of porous materials have
also been made recently by Carpiuc (2012) who used the model
of Danas and Aravas (2012), which includes general ellipsoidal
void shapes and orientations. In that study, it was found that void
shape changes tend to accumulate in each cycle thus leading to
ellipsoidal void shapes and consequently to porosity ratcheting,
contrary to the Gurson model that predicts no porosity ratchet-
ing (see Devaux et al. (1997) for more details). Nonetheless, all
these homogenization and micromechanical models contain only
partial information about the void shape changes (up to a perfect
ellipsoidal shape) and as we will see in the following they need
to be re-assessed first via numerical calculations such as the

Fig. 2. (a) A three-dimensional specimen at the macroscopic scale made-up of a periodic porous material. (b) A periodic porous material with cubic symmetry at the micron scale.
(c) Geometry of a single cubic unit-cell with a void at the center and (d) mesh of the 1/8 cut of the unit-cell geometry.

Fig. 3. (a) Schematic representation of the principal stress (s1,s2,s3) cartesian system and the (sm,seq,q) cylindrical system. (b) Components of the normalized stress 3si/2seq, i ¼ 1,2,3
as a function of the Lode angle q in the case of XS ¼ 3

Fig. 4. Schematic explanation of the application of the cyclic loading and the corresponding qualitative values of (a) the applied displacement u, (b) the applied stress triaxiality XS

and (c) the applied Lode angle q as a function of time for one cycle.
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Fig. 5. (a) Schematic representation of 1/8 of the surface of a perfect ellipsoidal void
defined by three semi-axes ai (i ¼ 1,2,3). (b) Cross-section of the void surface in the
x1�x2 plane where a representative difference between the actual void shape and an
ideal ellipsoid shape having the same aspect ratios.
present study and ultimately be used to compare with
experiments.

1.1. Scope of this study

The scope of the present study is to investigate the effect of
cyclic loading conditions and finite deformations upon micro-
structure evolution and material softening/hardening using finite
element (FEM) periodic unit-cell calculations with 3D geometry at
small and large number of cycles. The matrix material is described
by isotropic J2 plasticity considering the case, described previously,
of the voids being much larger than the grain size but smaller than
the specimen size. Nonetheless, the results obtained in the present
study could still be valid, at least in a qualitativemanner, in the case
of materials with large, but not strongly anisotropic (e.g., FCC)
grains comprising intragranular voids that are not of a nanometer
size (Monchiet and Kondo, 2013).

Furthermore, it is worth to impress upon the fact that in the
fatigue community, a large majority of studies in the context of
cyclic loadings is done using small strain calculations, in order to
increase numerical efficiency, and therefore neglect any changes of
the underlyingmicrostructure (including void shape effects). As we
will see in this work, however, the local strains can be in excess of
50% due to strong localization of the deformation around voids,
even if the overall applied strains are small (in the order of a few
percent). For that reason and in agreement with the aforemen-
tioned micromechanical studies (Devaux et al., 1997; Besson and
Guillemer-Neel, 2003; Rabold and Kuna, 2005), it is also critical
that a finite deformation analysis is carried out in the present work.

Specifically, in Section 2, we describe the unit-cell geometry and
the applied loading states at the scale of the microstructure,
defined here by the presence of a void in an homogeneous elasto-
plastic matrix. Furthermore, we identify the variables used to
analyze the cyclic response of the periodic porous medium and the
void geometry changes. Next, in Section 3, we present the cyclic
response of the unit-cell at small and large number of cycles where
we identify the principal micro-deformation mechanisms that lead
to an overall softening of the porous material. In the following, in
Section 4, we carry out a parametric study in order to investigate
the effect of the loading and the initial void shape, respectively,
upon the cyclic response of the unit-cell. It should be mentioned
here that the above described sections are devoted to a plastically
incompressible matrix phase with purely isotropic hardening.
However, in Section 5 preliminary calculations with coupled
nonlinear isotropic-kinematic hardening will also be considered
showing similar qualitative characteristics with the purely isotropic
hardening case. Finally, we conclude with a brief discussion of the
main results and perspectives of this study.
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2. Problem formulation

In this section, we define a periodic porous medium with cubic
unit-cell geometry as well as the loading conditions used in this
study. The interest in this work is the analysis of a cubic periodic
unit-cell comprising a spherical void positioned at the center. The
unit-cell is subjected to periodic average cyclic loading conditions
with a constant amplitude of average stress triaxiality and average
Lode angle. A critical aspect of the present study is the use of a finite
strain analysis contrary to the more common small strain analysis
used when studying cyclic loading conditions. This will allow for
the evolution of the void geometry due to the local large strains at
the current configuration. In this regard, one needs to identify the
relevant parameters that are necessary to describe the evolution of
the void geometry, in general.

2.1. Geometry of the unit-cell

In order to set the stage of the following analysis we first
attempt to separate the relevant length-scales of the problem at
hand. In this regard, let us consider a three-dimensional specimen
as shown in Fig. 2a. It is common practice to consider that the
material is homogeneous and is described by phenomenological
constitutive laws (e.g., J2 plasticity, anisotropic plasticity, etc). In
reality, however, this specimen is heterogenous and in several cases
of practical interest comprises defects, e.g., impurities, cracks and/
or pores at the micron scale (see Fig. 1) at a scale which is bigger
than the scale of the size of the grains but much smaller than the
size of the specimen and the scale of variation of the externally
applied loading conditions. Furthermore, such a specimen is usu-
ally subjected to general loading conditions (such as traction, tor-
sion or a combination of both, etc), whereas at the local level, one
finds a rather complicated stress and strain loading state due to the
nonlinear macroscopic geometry, which involves both shears and
hydrostatic stress states. As already stated in the previous section, it
has long been acknowledged that the effect of pressure is primor-
dial in cyclic loading conditions, yet such materials are modeled
very often as plastically incompressible. In this work, in order to
include (physically) this pressure dependence, we consider that the
underlying material that makes up the notched specimen is a pe-
riodic medium comprising initially spherical voids distributed with
cubic symmetry as shown in Fig. 2b, whereas the two scales e

specimen scale and material scale e are well separated. Even
though the choice of a cubic symmetry is an idealized choice, the
use of a small initial void volume fraction (i.e., <5%) together with
overall low strains (i.e., 1%) allows for a sufficiently general quali-
tative analysis without any significant interactions between
neighboring voids, as wewill see in the following, at least until very
late where void shapes evolve significantly and mesh distortion is
prohibitive for further numerical analysis. In addition, the use of a
periodic medium allows for a full-field numerical analysis of the
material response due to the fact that only one cubic unit-cell
(Fig. 2c) with appropriately defined periodic boundary conditions
is needed (Michel et al., 1999). This single unit-cell can then
generate by periodic repetition the entire microstructure of the
composite (Fig. 2b).

More specifically, the presence of voids will immediately give
rise to an average hydrostatic stress dependence of the periodic
medium at the plastic range since the voids are compressible and
hence the average (plastic) strain in the unit-cell will have a non-
zero hydrostatic component (i.e., it exhibits compressible plas-
ticity). In order to keep the analysis tractable as well as to simplify
our numerical calculations, wewill further restrict attention to only
triaxial loading states aligned with the symmetries of the unit-cell,
thus analyzing only one-eighth of the cube, as shown in Fig. 2d. This



Table 1
Ordering of the principal stresses for different Lode angles. The relevant directions
implies that the underlying void will evolve in volume and in shape
when finite strains are applied at the level of the unit-cell, but not
in orientation.2

Finally, in this study, we attempt to make no direct coupling
between the several scales, i.e., the specimen scale (Fig. 2a) and the
material scale (Fig. 2b) but mainly to understand the effect of a
triaxial stress state upon the cyclic response of a periodic porous
material. This, of course, implies further that we cannot carry out
any direct comparisonwith experiments since these require the use
of a geometry, such as the one in Fig. 2a.

On the other hand, this analysis has as a focus to analyze and
understand the basic microstructural deformation mechanisms so
that (less time-consuming) analytical homogenization models for
porous materials (Monchiet et al., 2008a; Danas and Aravas, 2012;
Madou and Leblond, 2013) and phenomenological pressure-
dependent criteria (Dang Van, 1971; Constantinescu et al., 2003;
Monchiet et al., 2008b) can be re-assessed.

2.2. Periodic boundary conditions and cyclic loads

We consider a cubic unit-cell occupying a volume V with side
length of 2L and boundary vV that comprises a spherical void at the
center, as shown in Fig. 2c. The matrix phase is described by an
isotropic elasto-plastic constitutive law as described later in this
section.

The unit-cell is subjected to triaxial periodic boundary condi-
tions, so that the velocity field _u (the superposed dot denotes time
derivative) can be split into an affine part D,x and a correction _u*,
i.e., (Michel et al., 1999; Miehe et al., 1999)

_uðxÞ ¼ D$x þ _u*ðxÞ; _u*periodic: (1)

The second-order tensor D, characterizing the affine part, cor-
responds to the average strain-rate field in the periodic medium
(i.e., the actual strain-rate field of the unit-cell if it were homoge-
neous) and is defined via the local field ~D which admits the
following decomposition.

~DðxÞ ¼ Dþ D*ðxÞ; D ¼ 1
V

Z
V

~DðxÞdV ; 1
V

Z
V

D*ðxÞdV ¼ 0:

(2)

The average strain ε at a given time t in the unit-cell is expressed
by.

εðtÞ ¼
Zt

0

DðtÞdt: (3)

In turn, the average stress s (i.e., the actual stress field of the
unit-cell if it were homogeneous) is defined formally in terms of the
local stress field ~s via.

s ¼ 1
V

Z
V

~sðxÞdV ; (4)

where ~s satisfies the following equilibrium equations and periodic
boundary conditions, i.e.,

div ~s ¼ 0 in V ; ~s$n�# on vV : (5)
2 Orientation effects can readily be included by considering the entire unit-cell
but this is left for a future study since this would introduce a large number of
additional set of parameters to be investigated and would make the present work
too lengthy.
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In this expression, n denotes the normal to the exterior faces of
the unit cell and �# is used to denote that the traction is opposite
on opposite sides of the unit-cell. Henceforth, the use of the
quantities s, D and ε (and of any other quantity resulting from
those) refers unambiguously to the average (or macroscopic) stress,
strain-rate and strain fields in the unit-cell.

As a consequence of the presence of the void, the average
response of the unit-cell depends upon the average hydrostatic
pressure (or mean average stress) as well as the deviatoric part of
the average stress tensor. Thus, it is useful to define at this point the
average stress triaxiality, XS, and average Lode angle, q, in the unit-
cell as measures of the average stress state in the unit-cell, such
that.

XS ¼ sm

seq
; cosð3qÞ ¼ 27

2
det

�
s0

seq

�
; sm ¼ 1

3
skk; seq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
s0 : s0

r
;

(6)

with s'¼s � smI denoting the stress deviator and I the second-
order identity tensor. Using the definitions in equation (6), one
can write the principal components of the stress field as a function
of XS and q, via

3
2seq

fs1;s2;s3g¼
n
cosq;�cos

�
qþp

3

�
;�cos

�
q�p

3

�o
þ3
2
XSf1;1;1g:

(7)

The graphical illustration of the above relations is shown in
Fig. 3. The (sm,seq,q) coordinates define a cylindrical coordinate
system oriented along the hydrostatic axis sm, as shown in Fig. 3a.
In Fig. 3b the normalized stress components, 3si/2seq are depicted
as a function of the Lode angle q for a stress triaxiality XS ¼ 3. Note
that due to the p/3 periodicity of the functions used in relation (7),
the three principal stresses exhibit similar periodicity. For later use,
we also show explicitly in Table 1 the order of the stress compo-
nents for three representative Lode angles that will be used in the
following sections. Note that in the case of an initially non-spherical
shape a larger range of Lode angles (i.e., q > 60o) could be consid-
ered. However, for the sake of brevity, we will restrict attention
only to the aforementioned Lode angles.

In the following, we focus on purely triaxial loading conditions
aligned with the symmetry planes of the cubic unit-cell and the
underlying void microstructure. This allows for numerical
simplicity while keeping essential features of the void geometry
changes. This leads to the following Dirichlet-type boundary
conditions.

8<
:

u1ð0; x2; x3Þ ¼ 0; u1ðL; x2; x3Þ ¼ U1ðtÞ;
u2ðx1;0; x3Þ ¼ 0; u2ðx1; L; x3Þ ¼ U2ðtÞ;
u3ðx1; x2;0Þ ¼ 0; u3ðx1; x2; LÞ ¼ U3ðtÞ:

(8)

with u* ¼ 0 on vV. This implies that the external faces of the unit-
cell remain straight (Michel and Suquet, 1994; Garajeu et al., 2000)
and hence only 1/8 of the unit cell may be considered, as shown in
Fig. 2d. In turn, the void surface is traction free.

Before we define the cyclic loading in terms of the displace-
ments Ui(t) (i ¼ 1,2,3), we discuss, first, the methodology for the
are shown in Fig. 2d while their relevant magnitude and graphical representation is
shown in Fig. 3b.

q ¼ 0� q ¼ 30� q ¼ 60�

js1j> js2j ¼ js3j js1j> js2j> js3j js1j ¼ js2j> js3j



application of a constant stress triaxiality and Lode angle during a
given deformation process. This methodology has been originally
proposed by Barsoum and Faleskog (2007b) (see also Dunand and
Mohr (2014)) and is further discussed here for completeness of
the present manuscript. As a consequence of the applied periodic
boundary conditions and the symmetry of the problem at hand, the
average deformation in the unit-cell is entirely described by the
three displacements on its exterior surfaces (c.f. equation (8)),
denoted compactly as.

U ¼ fU1ðtÞ;U2ðtÞ;U3ðtÞg: (9)

Recalling that the average strain-rate and stress tensors involve
only three non-zero components due to the applied triaxial loading,
they can be expressed in vectorial form (i.e., using the Voigt nota-
tion) as.

D ¼
8<
:

U1
_

L1 þ U1
;

U2
_

L2 þ U2
;

U3
_

L3 þ U3

9=
;; s ¼ fs1;s2; s3g: (10)

To proceed further, we rewrite the strain-rate tensor as.

D ¼ Q�1$ _U; Q ¼ diagðL1 þ U1; L2 þ U2; L3 þ U3Þ; (11)

where Q is diagonal matrix of dimension three.
We, next, define an external fictitious node,3 whose generalized

force, PG, and generalized displacement, pG, vectors, respectively,
take the form (see also Lin et al. (2006) for equivalent formulations)

PG ¼
n
PG1 ðtÞ;0;0

o
; pG ¼

n
pG1 ðtÞ; pG2 ðtÞ; pG3 ðtÞ

o
: (12)

The stress state in the unit-cell is then controlled via a time-
dependent kinematic constraint (Michel et al., 1999) obtained by
equilibrating the rate of work in the unit-cell with the rate of work
done by the fictitious node on the unit-cell at time t, such that

_W ¼ Vs$D ¼ PG$ _pG: (13)

Next, in order to control the loading path in the stress space, we
couple the average stress s in the unit-cell with the generalized
force vector associated with the fictitious node PG via the constraint
equation.

V s ¼ C$PG; C ¼
�

c1
jc1j

;
c2
jc2j

;
c3
jc3j

�T

; C�1 ¼ CT ; (14)

where C is a non-dimensional proper orthogonal matrix since ci
(i ¼ 1,2,3) are three dimensional vectors that form an orthogonal
basis set. The vectors ci (i ¼ 1,2,3) depend on the three components
of the average stress s, such that

c1 ¼ fs1; s2;s3g; c2 ¼
n
s1s3; s2s3;�

�
s21 þ s22

�o
;

c3 ¼ f � s2; s1;0g:
(15)

The above expressions for the vectors ci (i ¼ 1,2,3) together with
the definitions (7) further imply that the matrix C in equation (14)
is only a function of the stress triaxiality XS and the Lode angle q but
not of the equivalent stress seq. By substitution of equations (11)
and (14) in (13), one gets.

_U ¼ Q$C$ _pG: (16)
3 The fictitious node introduced in the present study has no specific physical
interpretation, but serves only as a mathematical tool to apply the required
boundary conditions at the unit-cell.
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The above expression provides the kinematic constraints be-
tween the degrees of freedom corresponding to the sides of the
unit-cell (i.e., U) and the degrees of freedom of the fictitious node
(i.e., pG). These nonlinear constraints are applied in the finite
element software ABAQUS (ABAQUS, 2009) by use of the multi-
point constraint user subroutine (MPC).

Using the above definitions, we divide each cycle in four steps.
In each step of each cycle, as shown in Fig. 4a, we control the
average strain in the unit-cell, by setting uðtÞ=L≡pG1 ðtÞ.4 This
quantity, u/L, initially increases from O to A (step 1), unloads from A
to B (step 2), reversely loads from B to C (step 3) and unloads from
C to D (step 4) defining thus an entire cycle. Then, the average
strain-rate D is evaluated such that the stress triaxiality XS and
Lode angle q remain constant in each step as discussed previously
and as shown in Fig. 4b and c. Note in these figures that in order to
obtain full stress reversibility during the cycle, XS has to change
sign and q has to jump to q þ p between A-D. For convenience,
hereafter, the notations XS and q are used to denote unambiguously
the absolute value of the stress triaxiality (i.e., XS≡jXSj) and the
minimum value of the Lode angle (i.e., q≡cos�1

��cosq��) in each cycle
AeD.

In the following calculations, thematrix phase is described by an
elasto-plastic constitutive relation. The elastic part is defined via
the Young's modulus E and the Poisson ratio n. In turn, standard J2
plasticity theory is used to describe the plastic behavior of the
matrix together with an isotropic strain hardening law (except in
Section 5where a nonlinear kinematic hardening law is also added)
given by a power-law form, which reads

sy ¼ s0

�
1þ ε

p

ε0

�1=N

; ε0 ¼ s0=E: (17)

Here, s0 and ε0 denote the initial yield stress and yield strain of
the matrix material, N is the hardening exponent and ε

p is the
accumulated plastic strain in the matrix phase defined in the usual
way. In this study, we focus on realistic values of the elastic moduli,
e.g., Young's modulus, E ~ 1000s0 (for instance s0 ~ 200 MPa cor-
responding to steel), Poisson's ratio, n ¼ 0.3 and hardening expo-
nent, N ¼ 10. Nonetheless, one should point out that particularly in
cyclic loading conditions, the effect of elasticity and hardening
could be important as already discussed in Devaux et al. (1997), and
such an analysis is detailed in Appendix A.
2.3. Evolution of void geometry

In this section, we introduce the variables used to characterize
the evolution of the change in volume and shape of the void. More
specifically, the porosity (i.e., the volume fraction of the void in the
unit-cell) is defined as.

f ¼ Vv=V ¼ 1� Vm=V ; V ¼ Vm þ Vv; (18)

where Vv, Vm and V are the volume of the void, the matrix and the
total volume of the unit-cell, respectively. Here Vm is calculated as
the sum of each volume element, while the unit-cell volume V is
evaluated using the coordinates of the corner nodes of the cubic
unit-cell since due to symmetry of the void and the purely triaxial
loading conditions the external faces of the cell remain straight. As
a consequence of the finite deformations considered in this study,
significant changes in the pore shape are also observed. Therefore,
appropriate geometrical quantities need to be introduced in order
4 Note that the functional form of pG1 ðtÞ is irrelevant since the problem is time-
independent.



to evaluate such pore shape changes. As a first-order measure, the
void shape is characterized by two aspect ratios

w1 ¼ a3=a1; w2 ¼ a3=a2 (19)

where 2ai (with i ¼ 1,2,3) denote the current lengths of the axes of
the void that intersect with the coordinate axes xi (with i ¼ 1,2,3),
respectively, as shown on Fig. 5a. However, such a measure will be
shown in the following to be insufficient since the void obtains
markedly non-ellipsoidal shapes due to the cyclic loadings as
opposed to the purelymonotonic loadings where almost ellipsoidal
shapes are observed (Srivastava and Needleman, 2012, 2013). In
this regard then, as an additional measure of the pore geometry
change, we have also defined the ellipsoidicity ratio. This ratio has
been introduced as a measure of the divergence of the void ge-
ometry from an equivalent perfect ellipsoid, as depicted in Fig. 5b.
While a large number of options can be used to identify this dif-
ference, use is made here of a simple measure. First, we set the axes
of the ideal ellipsoid equal to the length of the actual void axes.
Then, the volume of the ideal ellipsoid, Ve, will in general be
different from that of the actual void Vv due to the nonlinearity of
the matrix phase, the interactions of the neighboring voids of the
periodic composite and more importantly due to the cyclic loading
conditions. Therefore, the ellipsoidicity ratio, εl defined via

εl ¼ Ve=Vv (20)

gives the difference of the actual void shape from that of a perfect
ellipsoid. Consequently, when the ellipsoidicity ratio takes values
close to unity, the void shape remains almost an ellipsoid.

The above microstructural variables will be used in the
following to analyze themicromechanisms that lead to thematerial
softening/hardening due to the applied cyclic loading conditions. It
should be noted here that due to the cubic symmetry of the unit-
cell and the purely triaxial loading conditions no void rotations
are obtained.
3. Cyclic response and microstructure evolution

In this section, we discuss the results obtained by the previously
described loading conditions. The cyclic loading conditions are
parametrized by the use of two different values of the stress
triaxiality XS ¼ 2/3,3 and three different values of the Lode angle
q ¼ 0�,30�,60� are used.5 For the low triaxiality XS ¼ 2/3, we set the
average strain amplitude u/L ¼ 5% and for the high triaxiality
XS ¼ 3, we set the average strain amplitude u/L¼ 1%. The difference
in amplitudes has been introduced for convenience with the
calculation time needed to observe significant void geometry
changes and/or localization of the strain at certain region of the
unit-cell. Two sets of computations have been carried out: (i) for a
small number of cycles, e.g., 5 cycles and (ii) for a large number of
cycles, e.g., z50 cycles.

Moreover, for convenience with the meshing, we use an initial
porosity f ¼ 1%, which corresponds to a void radius a/L ¼ 0.2673,
and a maximum of 32 � 104 degrees of freedom, which leads to an
average of 2.5 h computational time per cycle on a 12-cpu parallel
computation. A detailed discussion of dependency of the results
upon the mesh size is carried out in the Appendix B.

In order to clarify further the results in the following sections,
we include Fig. 6, where for a given variable A (e.g., porosity, aspect
ratios, ellipsoidicity, etc), an average quantity per cycle is defined as
5 Recall that the notation XS ¼ 2/3 and q ¼ 0� , for instance, corresponds to jXSj ¼
2=3 and q ¼ cos�1

��cos q�� according to the discussion made in the context of Fig. 4.
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the arithmetic mean of the maximum and the minimum value per
cycle. In the same figure, the flat, horizontal part of the curves
corresponds to elastic unloading. On the other hand, the average
von Mises stress per cycle is evaluated at the end of the first step of
each cycle, as those are defined in the context of Fig. 4.

3.1. Small number of cycles

In Fig. 7, we consider stress-strain results for 5 cycles, a low
stress triaxiality XS ¼ 2/3 and Lode angle q ¼ 0� (with u/L ¼ 5%).
Specifically, we show two normalized average principal stresses, (a)
s1/s0 and (b) s2/s0, in the unit-cell as functions of the average
components of the strains, ε1 and ε2, respectively.We focus on these
two stress components since Lode angle q ¼ 0� corresponds to an
axisymmetric stress state case (see Table 1) and hence the third
stress component is equal to the second one. In Fig. 7a, we observe a
common stress-strain cyclic response where in the first cycle a
hardening is obtained in both tension and compression. This
hardening tends to saturate rather fast due to the low hardening
exponent used in this case, as observed by the use of the notation
C1, C2, C3, C4, C5 which serve to identify each of the 5 cycles. In
Fig. 7b, the second average stress-strain response is similar to the
first one but with a different sign of the strain due to the plastic
incompressibility of the matrix. Note however that the average
plastic response of the unit-cell is not incompressible due to the
presence of the void, however, due to the low stress triaxiality in
this example, this is only slightly visible by noting the small
asymmetry of the curve in Fig. 7b with respect to the average strain
ε2.

In Fig. 8, we consider stress-strain results for 5 cycles, a low
stress triaxiality XS ¼ 3 and Lode angle q ¼ 0� (with u/L ¼ 1%).
Similarly, we show two normalized average principal stresses, (a)
s1/s0 and (b) s2/s0, in the unit-cell as functions of the average
components of the strains, ε1 and ε2, respectively. As observed in
Fig. 8a, the material significantly softens during the cycle when ε1 is
(positive) tensile while it hardens when ε1 is (negative) compres-
sive. As will be seen next, this is due to the evolution of the porosity
(i.e., void volume fraction), which increases for ε1 > 0 and decreases
for ε1 < 0. This leads, in turn, to a significant asymmetry of the
stress-strain response between positive and negative stress tri-
axialities (i.e., between tension and compression) which is mark-
edly different than the corresponding stress-strain response at the
lower stress triaxiality of XS ¼ 2/3 of the previous figure. Note that
the observed asymmetry is not due to a Bauschinger effect but is
strongly related to the evolution of the void geometry as will be
seen in the following. This asymmetry has also been identified in
the context of uniaxial yielding by Cazacu et al. (2014) as a possible
cause of swift effect Swift (1947) i.e. the occurrence of inelastic axial
effects. On the other hand, in Fig. 8b, we observe a strong asym-
metry in the strain axis. This is due to the high triaxiality loading
used in this case (XS ¼ 3), resulting to a highly compressible plastic
response of the unit-cell.

In Fig. 9, we discuss the evolution of the porosity f for the two
afore-mentioned stress triaxialities, i.e., for (a) XS ¼ 2/3 and (b)
XS¼ 3 with q¼ 0� as a function of the average strain ε1. As shown in
Fig. 9a, only a minor porosity ratcheting is observed if one observes
the extremities of the cyclic curves at positive strains. In addition, as
already stated previously, f increases for ε1 > 0 and decreases for
ε1 < 0, as intuitively expected. On the contrary, porosity evolution is
much more significant for XS ¼ 3, as observed in Fig. 9b, where
porosity grows by almost 50% (note the crossing of the f curves at
ε1¼0) after only 5 cycles. This can explain the observed asymmetry
of the stress-strain curve with respect to the strain ε2 in Fig. 8b.

At this point, it is worth noting that the observed effect of stress
triaxiality upon the above-discussed stress-strain responses and



porosity ratcheting, for a matrix with purely isotropic hardening, is
in full qualitative agreement with the results presented by Rabold
and Kuna (2005) in the context of combined isotropic and kine-
matic hardening. This, further, implies that the hardening charac-
teristics of the matrix phase affect only quantitatively, but not
qualitatively, the evolution of the void volume and shape. This
observation is further confirmed in Section 5.

Fig.10 shows the evolution of the void shape via the evolution of
the aspect ratio w1 for the two stress triaxialities (a) XS ¼ 2/3 and
(b) XS¼ 3with q¼ 0� as a function of the average strain ε1. Note that
the second aspect ratio w2 ¼ 1, since for q ¼ 0� the loading is
axisymmetric along x1 (i.e., js2j ¼ js3j). More specifically, in Fig.10a,
we observe that for the lower stress triaxiality XS ¼ 2/3, the void

aspect ratio exhibits only a small ratcheting. Interestingly, as the
number of cycles increases, the void shape tends to become oblate
(i.e., w1 > 1, a1 < a3 ¼ a2) even though js1j> js2j ¼ js3j and the
aspect ratio decreases in the first step of C1, as intuitively expected.
However, the very small porosity and aspect ratio ratcheting in this
low triaxiality case leads to an almost symmetric stress-strain curve
in Fig. 7. On the other hand, in Fig. 10b, a significantly asymmetric
void shape change with respect to ε1 is observed. Moreover, as a
result of the high stress triaxiality, the void tends to become oblate
(w1 > 1, a1 < a3 ¼ a2) from the very first loading step even though
js1j> js2j ¼ js3j. This counterintuitive effect has been attributed to
the strong nonlinearity of the matrix and the high triaxiality
loading (see Budiansky and Hutchinson (1980) and Fleck and

Fig. 6. Qualitative description of the cyclic response of a variable A (e.g., plastic strain, porosity, void shape change) as a function of the number of cycles Nr. The minimum,
maximum and average values of A are extracted by the corresponding cyclic response.

Fig. 7. (a) Normalized average stress s1/s0 as a function of the average strain ε1 and (b) normalized average stress s2/s0 as a function of the average strain ε2 at 5 cycles in the case of
u/L ¼ 5%, XS ¼ 2/3, q ¼ 0� . The notation C1, C2, C3, C4, C5 represents the first, second, third, fourth and fifth cycle, respectively.

Fig. 8. (a) Normalized average stress s1/s0 as a function of the average strain ε1 and (b) normalized average stress s2/s0 as a function of the average strain ε2 at 5 cycles in the case of
u/L ¼ 1%, XS ¼ 3, q ¼ 0� . The notation C1, C2, C3, C4, C5 represents the first, second, third, fourth and fifth cycle, respectively.
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Fig. 9. Evolution of porosity f as a function of the average first principal strain at 5 cycles in the cases of (a) u/L ¼ 5%, XS ¼ 2/3, q ¼ 0� and (b) u/L ¼ 1%, XS ¼ 3, q ¼ 0� . The notation C1,
C2, C3, C4, C5 represents the first, second, third, fourth and fifth cycle, respectively.
Hutchinson (1986)). More importantly, the oblate shape persists as
the number of cycles increases. This is due to the asymmetric
response of the unit-cell between ε1 > 0 and ε1 < 0. More specif-
ically, we find that the rate of the void shape change is more sig-
nificant in the ε1 < 0 (i.e., in compressive loads) rather than in the
ε1 > 0 (i.e., in tensile loads). This asymmetry can be qualitatively
observed by the difference in the slopes of the w1-ε1 curves in the
ε1 > 0 and ε1 < 0 regimes. In turn, this asymmetry in the void shape
evolution leads to a permanent irreversible void shape change from
the very first cycle (i.e., after the first cycle the void is not spherical),
which in turns produces the porosity ratcheting and the asym-
metric average stress-strain response in Fig. 8. At this point it is
worth mentioning that the void shape irreversibility and conse-
quently porosity ratcheting are present also for different hardening
exponents (including N / ∞ which corresponds to an ideally-
plastic response) not shown here for the sake of a reasonable set
of parameters investigated.

3.2. Large number of cycles

In the previous section, it has been shown that the cyclic
behavior of the material, and especially the porosity ratcheting as
well as the asymmetric void shape evolution have a strong effect
upon the average stress-strain response of the unit-cell. Thus, in
order to isolate the effect of porosity evolution and the influence of
Fig. 10. Evolution of the aspect ratio w1 as a function of the average strain ε1 at 5 cycles in th
C2, C3, C4, C5 represents the first, second, third, fourth and fifth cycle, respectively. Due to
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the void shape change in the cyclic response of the material, a unit-
cell geometry with a spherically constrained void shape is further
added in our study. It is further clarified here that the spherically
constraint void does allow the evolution of the void volume (i.e.,
void growth) and porosity change but constraints the change of the
void shape to remain spherical. This is achieved by imposing a
nonlinear kinematic constraint in spherical coordinates allowing a
uniform radial displacement of the nodes at the void surface,
ur¼ cst and arbitrary displacement in the orthoradial directions (i.e.
uf1

and uf2
are arbitrary where r, F1 and F2 denote the spherical

coordinates).
The cases of a spherically “constrained” and a totally “uncon-

strained” void geometry are compared in the following for a large
number of cycles. In the results that are shown subsequently, we
stop the calculations at 50 cycles since after this point we observe
strong localization of the deformation and the numerical solution
diverges significantly. Amore detailed discussion about this point is
carried out in the Appendix B.

In Fig. 11, we show (a) the normalized average equivalent von
Mises stress per cycle seq/s0 and (b) the porosity f per cycle as a
function of the number of cycles Nr for triaxiality XS ¼ 3, amplitude
u/L ¼ 1% and Lode angle q ¼ 0� for the unconstrained void shape
and the spherically constrained void shape cases. As we can observe
in Fig. 11a, seq/s0 exhibits a maximum value for the unconstrained
void shape (filled square on the curve indicated the position of this
e cases of (a) XS ¼ 2/3 (u/L ¼ 5%) and (b) XS ¼ 3 (u/L ¼ 1%) with q ¼ 0� . The notation C1,
the axisymmetric loading (q ¼ 0�) w2 ¼ 1 during the entire deformation process.



Fig. 11. (a) Normalized average von Mises stress seq/s0 and (b) porosity f as a function of the number of cycles Nr for an unconstrained void (continuous line) and a spherically
constrained void (dashed line) in the case of XS ¼ 3 and q¼0� (u/L ¼ 1%). The filled square (-) on the graphs indicates the points where maximum equivalent stress is observed.
maximum) whereas the spherically constrained void calculation
exhibits a continuous hardening as a function of Nr. In order to
explain this rather interesting difference between the uncon-
strained and the constrained void shape calculations, we look into
the porosity evolution in Fig. 11b. In this figure, we observe that the
increase of porosity, albeit significant, cannot (by itself) explain the
softening response observed in the unconstraint void shape
calculation in Fig. 11a, since both the unconstrained void case as
well as the spherically constrained void case predict almost the
same evolution of the porosity as a function of the number of cycles
Nr, but only the first exhibits a maximum in the seq/s0. (The point
where the maximum in seq/s0 curve is observed is denoted with a
filled square in Fig. 11b.) The fact that the spherically constrained
case exhibits also porosity ratcheting can be partially explained by
the presence of elasticity and the loading-unloading response of
the unit-cell, as discussed in detail in Devaux et al. (1997). In fact, in
the spherically constrained void shape case porosity ratcheting is
even more pronounced than in the unconstrained void shape case.

This obviously indicates that void shape effects are critical for
the understanding of the cyclic response of such unit-cells. In this
regard, in Fig.12, we show the evolution (a) of the void aspect ratios
w1 and w2 and (b) of the ellipsoidicity ratio εl. While w2 x 1 due to
the axisymmetric loading along direction 1 (see Table 1 for q ¼ 0�),
w1 evolves significantly as a function of the number of cyclesNr. The
constrained void shape curve is also shown for clarity (i.e.,
w1 ¼ w2 ¼ 1 during the deformation process). Perhaps more
importantly, the ellipsoidicity ratio εldwhich serves tomeasure the
deviation of the void shape from an ideal ellipsoidal shape-
dincreases significantly as a function of Nr, in Fig. 12b. This
Fig. 12. Evolution of (a) the aspect ratiosw1 and w2 and (b) the ellipsoidicity ratio εl as a func
void in the case of XS ¼ 3 and q ¼ 0� (u/L ¼ 1%). The filled square (-) on the graphs indic
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indicates that not only the void becomes non-spherical but also
deviates significantly from an ellipsoidal shape. Detailed contours
of the underlying void geometry will be shown in the following.
Thus, void geometry appears to be of crucial importance in the
cyclic response of such unit-cells. This further suggests that small
strains calculations may be insufficient for the analysis of cyclic
loadings, at least in the present context where we attempt to
analyze the effect of the underlying microstructure upon the
average cyclic response of the unit-cell.

4. Effect of the loading and the initial void shape

In this section, we carry out a parametric study in order to
investigate the influence of the loading conditions, i.e. the stress
triaxiality and the Lode angle, as well as the effect of the initial void
shape on the cyclic behavior of the periodic porous material. In the
following results, the hardening exponent is set to N ¼ 10, the
Young's modulus E ¼ 1000s0 and the Poisson ratio n ¼ 0.3.

4.1. Effect of the stress triaxiality and the Lode angle

Fig. 13 shows the normalized average equivalent von Mises
stress per cycle seq as a function of the number of cycles Nr for
triaxiality (a) XS ¼ 2/3 (and amplitude u/L¼ 5%) and (b) XS ¼ 3 (and
u/L ¼ 1%) as well as for three Lode angles q ¼ 0,30,60�. The two
cases of an unconstrained void and a spherically constrained void
are also considered here. The main observation in the context of
Fig. 13 is that the effect of stress triaxiality XS upon the seq/s0
response is very significant, whereas the effect of the Lode angle is
tion of the number of cycles Nr for an unconstrained void and a spherically constrained
ates the points where maximum equivalent stress is observed.



Fig. 13. Normalized maximum average equivalent von Mises stress evolution for unconstrained void/spherically constrained void in the case of (a) u/L ¼ 5%, XS ¼ 2/3 and (b) u/
L ¼ 1%, XS ¼ 3 as a function of the number of cycles Nr. The filled square (-) on the graphs indicates the point where maximum stress is observed.
less important (at least at the range of cycles considered here) but
still non-negligible. In particular, the average stress seq/s0 exhibits
no softening for the lower stress triaxiality XS ¼ 2/3 (Fig. 13a)
contrary to the high stress triaxiality XS¼3 (Fig. 13b). In addition, in
Fig. 13b, for XS ¼ 3 and an unconstrained void shape (continuous
line), we find that the seq/s0 response for q ¼ 0� depicts a more
pronounced decrease than the two other cases, i.e., q ¼ 30� and
q ¼ 60�. Again the spherically constrained void case shows no
softening for any of the Lode angles considered here. These results
indicate that primarily the stress triaxiality and secondary the Lode
angle affect critically the average stress-strain response of the unit-
cell.

In order to address the role of the stress triaxiality and Lode
angle upon the evaluation of seq/s0, we show in Fig.14 the porosity f
as a function of the number of cycles Nr for the same set of stress
triaxialities and Lode angles for both the unconstrained void and
the spherically constrained void shape. In Fig. 14a, for XS ¼ 2/3, we
observe that even though the porosity evolves weakly (quantita-
tively) as a function of Nr for all Lode angles considered, it tends to
increase for the unconstrained void while decrease for the spher-
ically constrained void, exhibiting a markedly different qualitative
response in these two cases. On the other hand, for XS ¼ 3 in
Fig. 14b we observe a very important increase of f (almost three
times more that its initial value) but a less pronounced dependence
on the Lode angle q. Moreover, due to the fact that the porosity
evolution for XS ¼ 3 is quite similar for both unconstrained and
constrained void shapes, we deduce again that the increase of
porosity is not the only reason for the softening response observed
in the unconstrained void shape calculation in Fig. 13b.
Fig. 14. Porosity evolution for unconstrained void/spherically constrained void in the case of
The filled square (-) on the graphs indicates the point where maximum stress seq/s0 is ob
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Next we examine the void geometry changes as a function of the
stress triaxiality XS and the Lode angle q. More specifically, Fig. 15
shows the evolution of the aspect ratios w1 and w2, as a function
of the number of cycles Nr for the same set of stress triaxialities and
Lode angles considered previously. Obviously, there is no evolution
of these quantities for spherically constrained void. The main
observation in the context of Fig. 15 is that the evolution of the
aspect ratios w1 and w2 becomes significant with increasing
number of cycles. It is, in fact, observed that due to the applied finite
deformations, the shape of the void changes from the very first
cycle and it tends to grow further as the number of cycles increases.
Evenmore interestingly, the largest change in the void shape occurs
for higher stress triaxialities, i.e., XS ¼ 3, as shown in Fig. 15b,
contrary to the case of XS ¼ 2/3 where both aspect ratios increase
but inweaker manner. This result is not intuitive if one extrapolates
the knowledge obtained in the context of monotonic loadings (see
for instance Danas and Ponte Casta~neda (2009a), Danas and Aravas
(2012) and Srivastava and Needleman (2012)), where the largest
void shape changes occur for lower stress triaxialities.

At this point, we note that the evolution of the void shape does
not describe adequately the deformationmechanisms near the void
surface. In fact, for most of the computations presented here
(except for the case of q ¼ 60�) significant localization of the
deformation occurs at the surface of the void. To illustrate this, we
show, in Fig. 16 contours of the deformed unit-cell at 40 cycles for
Lode angles q ¼ 0,30,60� and stress triaxiality (aec) XS ¼ 2/3 and
(def) XS ¼ 3. To emphasize further the relative magnitude of each
of the stress components jsij (i ¼ 1,2,3), we explicitly show them at
the top corner of the displayed unit-cell. In particular, we observe a
(a) u/L ¼ 5%, XS ¼ 2/3 and (b) u/L ¼ 1%, XS ¼ 3 as a function of the number of cycles Nr.
served.



Fig. 15. Evolution of the aspect ratios w1 (�), w2 (��) for unconstrained void/spherically constrained void in the case of (a) u/L ¼ 5%, XS ¼ 2/3 and (b) u/L ¼ 1%, XS ¼ 3 as a function
of the number of cycles Nr. The filled square (-) on the graphs indicates the point where maximum stress seq/s0 is observed.

6 Hereafter, the superscript “0” in w0
i is used to denote initial values.
strong localization of the deformation (strains exceeding 60%) in a
small zone of the void surface whose size depends upon the mesh
size. While for q ¼ 0�, the localization strains lie in the plane 2�3
since the applied stress is axisymmetric along the 1-direction, for
q ¼ 30� the localization zone is smaller (see for instance Fig. 16e)
but still lying mainly in the plane 2�3. We should mention at this
point that even though we have observed no maximum equivalent
stress for the lower stress triaxiality XS ¼ 2/3 (see 13a), the defor-
mation localization is more than present (Fig. 16a,b) and a critical
event is expected to occur in these cases. Unfortunately, due to this
strong localization of deformation the numerical calculation had to
be stopped due to convergence issues as discussed further in the
Appendix B, while a more appropriate formulation perhaps using
non-local constitutive models (e.g., strain gradient plasticity
models Forest et al. (2011), Danas et al. (2012), Nielsen and
Niordson (2013, 2014) or even more general non-local criteria
Feld-Payet et al. (2011)) are needed in this case (see for instance
Feld-Payet et al. (2011)). Those models should then to be combined
with appropriate remeshing techniques but such a study is beyond
the scope of the present work.

This same type of localization has been observed in all compu-
tations, i.e. for XS ¼ 2/3 and XS ¼ 3 except for q ¼ 60�. In this last
case, Figs. 16c and f show that the void elongates significantly along
the x3 axis, i.e., along the direction of the minimum absolute stress
component (since for q ¼ 60�, js1j ¼ js2j> js3j). It should be noted
here that the observed localization affects only a small region of the
void surface and inevitably leads to strong mesh dependence at the
local level after localization occurs. As is detailed in the Appendix B,
however, this mesh dependence affects local quantities (such as the
aspect ratio and ellipsoidicity) and not average quantities such as
the average stress and strain in the unit-cell, as well as the porosity
evolution.

It is worth noting at this point that recent experiments by
continuous X-ray tomography (Hosokawa et al., 2012, 2013) have
revealed the effect of stress triaxiality upon void shape and growth,
albeit in monotonic loading conditions. As suggested by the present
numerical calculations, the void shape changes under cyclic load-
ings are very different when compared to those obtained for
monotonic loadings (Danas and Ponte Casta~neda, 2009b; Srivastava
and Needleman, 2012). Hence, a study similar to that of Hosokawa
et al. (2012), but in cyclic loading conditions, could in fact shed light
to the observed void shape effects.

To assess further the effects of the localization upon the void
shape changes, we show in Fig. 17, the ellipsoidicity ratio εl as a
function of the number of cycles Nr. We recall here that as εl de-
viates from unity the void tends to diverge from an ideal ellipsoidal
shape. In these graphs, the ellipsoidicity ratio reaches high values
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(εla1:5) for the cases XS ¼ 2/3, q¼ 0 and XS ¼ 3, q¼ 0, respectively,
as a result of the corresponding deformation localization around
the pore surface. The same remark can be made for XS ¼ 2/3 and
q ¼ 30� but with somewhat lower values of the ellipsoidicity, in the
order of εl(1:3. In contrast, the ellipsoidicity is the smallest (and
less than 1.2) for the combination q¼ 30� and XS¼ 2/3 as well as for
q ¼ 30,60 and XS ¼ 3. This is in agreement with the contours of
Fig.16c,e,f, where the void shape does not deviate significantly from
an ellipsoidal shape.

4.2. Effect of initial void shape

In this section, we investigate the effect of the initial void shape
on the material cyclic response for initial porosity f0 ¼ 0.01, triax-
iality XS ¼ 3, amplitude u/L ¼ 1%, Lode angle q ¼ 0�,60� and N ¼ 10.
In the following, only calculations with unconstrained void shapes
will be shown.

Fig. 18 shows evolution curves of (a) the average equivalent
stress seq/s0 and (b) the porosity f as a function of the number of
cycles for three different void geometries, i.e.
w0

1 ¼ w0
2 ¼ 1;w0

1 ¼ 1=3<w0
2 ¼ 1;w0

1 ¼ 3>w0
2 ¼ 1.6 The initial void

shapes that are different than a sphere have been chosen such that
they remain axisymmetric during the deformation process, i.e.,
w0

1 ¼ 1=3;w0
2 ¼ 1 is a prolate void and w0

1 ¼ 3;w0
2 ¼ 1 is an oblate

void, whose symmetry axis remains aligned with the maximum
principal stress s1 in this case. As observed in Fig. 18a, the average
seq/s0 of the unit-cell exhibits a maximum only for the initially
spherical void (w0

1 ¼ w0
2 ¼ 1) but not for the two other cases.

Moreover, the unit-cell with w0
1 ¼ 1=3;w0

2 ¼ 1 is the stiffest of all
three cases considered here. In Fig. 18b, the effect of the initial void
shape upon the porosity evolution is also significant. It is worth
emphasizing that the initially spherical void case (w0

1 ¼ w0
2 ¼ 1)

shows the weaker porosity growth as a function of Nr even though
it is the only case that exhibits a maximum in the seq/s0 curve.

Similarly, Fig. 19 shows evolution curves of (a) the average
equivalent stress seq/s0 and (b) the porosity f as a function of the
number of cycles for three different values of the initial shape, i.e.,
w0

1 ¼ w0
2 ¼ 1; w0

1 ¼ w0
2 ¼ 1=3; w0

1 ¼ w0
2 ¼ 3 and for XS ¼ 3 and

q ¼ 60�. The initial void shapes have also been chosen to remain
axisymmetric during the entire deformation process, such as their
symmetry axis remains aligned with the minimum principal stress
s3 in this case. For this configuration, in Fig. 19a, a maximum seq/s0
is observed for two out of three cases, i.e. for the initially spherical
case (w0

1 ¼ w0
2 ¼ 1) and the initially prolate case (w0

1 ¼ w0
2 ¼ 3). In



Fig. 16. Contours of the maximum principal logarithmic strain at 40 cycles in the case of XS ¼ 2/3 (u/L ¼ 5%) for (a) q ¼ 0� and (b) q ¼ 30� and (c) q ¼ 60� and in the case of XS ¼ 3 (u/
L ¼ 1%) for (d) q ¼ 0� and (e) q ¼ 30� and (f) q ¼ 60� .
Fig. 19b the evolution of porosity f is less sensitive upon the initial
void shape with that for w0

1 ¼ w0
2 ¼ 1 being the strongest among

the three cases considered here contrary to the previous case of
q ¼ 0 in Fig. 18.

In order to assess in a more visual and comprehensive way the
evolution of the void shape geometry, Fig. 20 shows initial and final
(at 50 cycles) void shapes for the same set of initial void geometries
used in the previous figures of this section. The main observation in
the context of this figure is that for stress triaxiality XS ¼ 3, the void
tends to elongate in the direction of the minimum applied principal
stress, i.e. js2j ¼ js3j for q¼ 0� and js3j for q¼ 60 , except in the case
of q¼ 60� andw0

1 ¼ w0
2 ¼ 1=3 (initially prolate case) where the void
Fig. 17. Ellipsoidicity ratio εl for an unconstrained void and a spherically constrained void in
of cycles Nr. The filled square (-) on the graphs indicates the point where maximum equi
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elongates along the direction of the maximum applied stress
js1j ¼ js2j. This effect should not be confusedwith the similar effect
observed for monotonic loadings and high stress triaxialities, since
it is attributed to the fact that, in each cycle, the void shape evolves
faster during the compressive step (XS � 0) than the tensile step
(XS � 0), as already discussed in the context of Fig. 10 and is present
also in lower stress triaxialities. At this point, it is worth noting that
the direction of the void elongation is consistent (except for q¼ 60�

and w0
1 ¼ w0

2 ¼ 1=3) with a mode I loading of a crack. In other
words, the voids tend to give a crack-type shape, as observed more
clearly, in Fig. 20a,c and e, where a rather sharp crack tip starts to
form in a direction perpendicular to the maximum applied average
the case of (a) XS ¼ 2/3 (u/L ¼ 5%) and (b) XS ¼ 3 (u/L ¼ 1%) as a function of the number
valent stress is observed.



Fig. 18. (a) Normalized average equivalent von Mises stress seq/s0 and (b) porosity f for several initial values of void shapes (w0
1 ¼ w0

2 ¼ 1, w0
1 ¼ 1=3 andw0

2 ¼ 1, w0
1 ¼ 3 and w0

2 ¼ 1)
in the case of XS ¼ 3 (u/L ¼ 1%) and q ¼ 0� as a function of the number of cycles Nr. The filled square (-) on the graphs indicates the point where maximum equivalent stress is
observed.
stress in the unit-cell, i.e., as if they voids were under a mode I
loading state. This observation simply indicates that the introduc-
tion of a pressure dependent defect (such as a pore) even if this
defect is initially smooth (spherical or ellipsoidal), tends to diverge
rapidly to a crack-type geometry and is expected to lead to themore
common fatigue crack growth at larger number of cycles. Unfor-
tunately at this level, severe mesh distortion did not allow us to
continue further our calculation due to the strong localization of
deformation. Remeshing of the final geometry together with non-
local constitutive laws (Feld-Payet et al., 2011) might be required
to proceed to higher number of cycles, however, such a calculation
is beyond the scope of this work and is not pursued here.

At this point it is worth mentioning that while in monotonic
loadings and under large triaxialities, the voids tend to grow rather
uniformly and finally coalesce (see for instance Thomason (1985);
Pardoen and Hutchinson (2000); Gologanu et al. (2001);
Benzerga (2002)), in the present case of cyclic loading conditions
coalescence of neighboring pores is not really due to void growth
but rather due to crack initiation and propagation, which is also
present at lower stress triaxialities. As observed in Figs. 16 and 20,
the voids do not grow uniformly but rather a crack is created in a
very thin localized zone for both stress triaxialities analyzed in this
work. This crack is then expected to propagate and coalesce with
the neighboring pores but such an analysis is highly mesh depen-
dent and not pursued further here as discussed previously. As a
result in the context of cyclic loadings, the localization of plastic
strain does not take place within horizontal ligaments spanning the
size of the pore and the spacing of the neighboring pores as in the
Fig. 19. (a) Normalized maximum average equivalent von Mises stress evolution for several
XS ¼ 3, q ¼ 60� and (b) Porosity evolution for several initial void shape (w0

1 ¼ w0
2 ¼ 1;w0

1 ¼
number of cycles Nr. The filled square (-) on the graphs indicates the point where maxim
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usual studies of coalescence in monotonic loadings (Pardoen and
Hutchinson, 2000) but rather in a confined thin region around a
small portion of the void surface.

5. Preliminary results on combined isotropic-kinematic
hardening

At this point, it would be constructive to for a matrix material
following combined isotropic and nonlinear kinematic hardening.
The range of parameters needed to investigate in a full extent the
effect of kinematic hardening upon the cyclic response of the unit-
cell is large and thus prohibitive for the present work and will be
presented elsewhere in a subsequent study. Nonetheless, as wewill
see below the introduction of nonlinear kinematic hardening in the
matrix phase does not alter the qualitative character of the defor-
mation zone and localization around the void but only the quan-
titative aspects.

More specifically, let us consider the same isotropic hardening
presented in equation (17) together with a nonlinear kinematic
hardening with two-backstresses X(1) and X(2) (c.f. Nouailhas et al.,
1985), i.e.,

_X
ð1Þ ¼ qhC1D

p
M; _X

ð2Þ ¼ qhC2D
p
M � g2Dε

pXð2Þ;

Xð1Þ ¼ Xð2Þ ¼ 0 at t ¼ 0:
(21)

In this expression, Dp
M is the second-order plastic strain-rate

tensor in the matrix phase (the subscript M has been used to
explicitly distinguish between strain-rate in the matrix phase and
initial void shapes (w0
1 ¼ w0

2 ¼ 1;w0
1 ¼ w0

2 ¼ 1=3;w0
1 ¼ w0

2 ¼ 3) in the case of u/L ¼ 1%,
w0

2 ¼ 1=3;w0
1 ¼ w0

2 ¼ 3) in the case of u/L ¼ 1%, XS ¼ 3, q ¼ 60� as a function of the
um stress is observed.



Fig. 20. Cross-sections of undeformed (continuous line) and deformed (dashed lines) void geometries at 50 cycles and stress triaxiality XS ¼ 3 in the case of q ¼ 0 with initial void
shape (a) w0

1 ¼ w0
2 ¼ 1 and (b) w0

1 ¼ 1=3; w0
2 ¼ 1 and (c) w0

1 ¼ 3; w0
2 ¼ 1 in the case of q ¼ 60 with initial void shape (d) w0

1 ¼ w0
2 ¼ 1 and (e) w0

1 ¼ w0
2 ¼ 3 and (f) w0

1 ¼ w0
2 ¼ 1=3.
the average strain-rate in the unit-cell) and ε
p is the accumulated

plastic strain defined in the context of equation (17). Furthermore,
motivated by the choices made in Besson and Guillemer-Neel
(2003), we set the values C1 ¼ 2.5 � 10�2s0, C2 ¼ 10C1 and
g2 ¼ 10. These values correspond to a rather week kinematic
hardening at the level of thematrix phase but as will be shown next
they already lead to a strong quantitative (but not qualitative) effect
upon the cyclic response of the unit-cell. The qh serves to param-
etrize the relative effect of kinematic hardening with respect to the
isotropic hardening and takes here three values qh ¼ 0,0.5,1 (with
qh ¼ 0 corresponding to the case of no kinematic hardening).

As a representative result in the context of combined isotropic/
kinematic hardening, we have chosen the case of high stress
triaxiality XS ¼ 3 (u/L ¼ 1%) and Lode angle q ¼ 0�. In Fig. 21, we
show contours of the maximum principal strain for (a) qh ¼ 0 at
Nr ¼ 40 cycles (no kinematic hardening), (b) qh ¼ 0.5 at Nr ¼ 60
cycles and (c) qh ¼ 1 at Nr ¼ 100 cycles. The main observation in the
context of this figure is that the deformation localization locus is
the same with or without kinematic hardening, i.e., the strain lo-
calizes in the same position at the void surface in an attempt to
create a mode-I crack-type geometry, as discussed in the previous
sections. The difference however is quantitative, i.e., with the
addition of kinematic hardening this deformation localization oc-
curs at much larger number of cycles as shown in Fig. 21. In other
words, the addition of a rather small value of kinematic hardening
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does not alter the character of the deformation localization in the
zone around the void, but rather changes the number of cycles
needed to reach this localized state. In a sense, it “decelerates” the
localization procedure, thus having a beneficiary effect upon the
cyclic response of the material.

It should be further pointed out that similar effects have been
found for other values of the stress triaxiality and the Lode
parameter but are not shown here for brevity. These preliminary
results call for an in-depth quantitative analysis of the effect of
kinematic hardening upon the cyclic response of such unit-cells
and will be presented in a future work.

6. Discussion

In this work we have investigated the effects of cyclic loading
conditions upon microstructure evolution and material softening/
hardening using a cubic periodic unit-cell comprising a single
spherical (or ellipsoidal) void at the center with volume fraction 1%
that is subjected to triaxial finite deformations such that the stress
triaxiality and the Lode angle are kept constant during each step of
the cycle. It has been found that the void shape changes are
asymmetric when subjected to positive and negative stress tri-
axialities. This is exhibited by a permanent irreversible void shape
change from the very first cycle, which in turn leads to porosity
ratcheting and an asymmetric average stress-strain response. It



Fig. 21. Contours of the maximum principal logarithmic strain in the case of XS ¼ 3 (u/L ¼ 1%) and q ¼ 0� for (a) qh ¼ 0 at Nr ¼ 40 cycles (no kinematic hardening), (b) qh ¼ 0.5 at
Nr ¼ 60 cycles and (c) qh ¼ 1 at Nr ¼ 100 cycles.
should be noted that this asymmetry does not lead to a Bauschinger
effect but is strongly related to the evolution of the underlying void
volume and shape. Furthermore, we have observed that both the
stress triaxiality and the Lode angle can have strong effects upon
the cyclic response of the unit cell. It has been found that for
initially spherical voids the average stress in the unit-cell exhibits a
maximum as a result of the critical void shape changes at high
stress triaxialities, but not due to porosity ratcheting alone. To
establish this conclusion, we have carried out additional calcula-
tions on the same unit-cell but constraining the shape of the void to
remain spherical during the entire deformation process. In this
case, we have also obtained significant porosity ratcheting (very
similar and even larger than that of the unconstraint void), but no
maximumwas observed in the average stress response of the unit-
cell. This suggests that void shape changes are critical in the cyclic
response of the unit-cell.

In addition, the observed void shape changes have led to sig-
nificant localization of the deformation near the void surface.
Strains larger than 50% have been observed near the void surface
evenwhen the average strain amplitude in the unit-cell has been of
the order of 1%. This result further revealed the importance of
carrying out the cyclic analysis under a finite deformation frame-
work. Moreover, we have investigated the effect of initially non-
spherical (i.e., ellipsoidal) voids on the cyclic response of the
unit-cell. The main outcome of this parametric analysis has been
that the void tends to elongate in the direction of the minimum
absolute applied stress. This observation has been different only in
a few distinct cases where the void shape was positioned in a
significantly non-optimal directionwith respect to amode I loading
direction. This void elongation, in turn, leads to a crack-shape
microstructure subjected to mode I cyclic loading state and to
eventual coalescence for both lower and higher stress triaxialities.
Nevertheless, the strain fields in that late stage of coalescence are
very different from those observed in the context of monotonic
loading states and high triaxialities. In the context of cyclic loads,
the localization zone is confined in a very thin region around a
small portion of the void surface.

Finally, as discussed before, the cyclic behavior of materials
exhibits different stages where isotropic and/or kinematic hard-
ening (Nouailhas et al., 1985; Chaboche, 2008) are the main cyclic
mechanisms. The present study provides a partial perspective upon
the cyclic response of a periodic porous material by considering
mainly isotropic hardening and only a test case with combined
nonlinear isotropic and kinematic hardening. A complete study
that analyzes the relative importance of isotropic and kinematic
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hardening upon the cyclic response of the unit-cell should be
considered further. One should also mention that anisotropy of the
matrix phase (e.g., crystal plasticity) is also expected to have an
effect upon the cyclic response of such porous unit-cells. None-
theless, the above-presented preliminary calculations show that,
for instance, the presence of kinematic hardening exhibits similar
qualitative behavior with the case of no kinematic hardening but
tends to decelerate the initiation of localization of deformation
around the void surface. Such work is in progress and will be re-
ported elsewhere.
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Appendix A. Effect of the matrix hardening exponent

In this section, we discuss the effect of the hardening exponent N
on the cyclic response of thematerial as defined in equation (17). For
convenience and brevity, we restrict attention to stress triaxiality
XS¼ 3, amplitude u/L¼ 1%, Lode angle q¼ 60�, and a set of hardening
exponentsN¼ 5,10,∞ (where the last one corresponds to the perfect
plasticity case). Initially, we discuss the effect of the hardening
exponent for a realistic value of the elastic moduli, e.g., Young's
modulus, E ~ 1000s0 (for instance s0 ~ 200 MPa corresponding to
steel) and thenwe also present a brief result of porosity ratcheting for
E/s0 ¼ 50,000 in order to address the observations made by Devaux
et al. (1997) in the limit of vanishing elasticity (i.e., E/s0 /∞).

As we can observe in Fig. 22a, the average equivalent von Mises
stress per cycle seq/s0 decreases monotonically with respect to N. In
particular, for the case of the unconstrained void shape, it exhibits a
maximumvalue for seq/s0 for N¼ 10 but not for N¼ 5, at least up to
50 cycles where the calculations are terminated. On the other hand,
as expected, seq/s0 shows nomaximum for the N¼ 5 and N¼ 10 for
the spherically constrained shape. For the case of perfect plasticity,



i.e. N/∞, both the unconstrained and the constrained void shape
exhibit a softening from the very first cycle.

In Fig. 22b, however, the evolution of the porosity exhibits non-
monotonic dependence upon N as a function of the number of
cycles Nr. The evolution of f is higher for N¼ 10 and lower for N¼ 5,
with the one corresponding to N ¼ ∞ intersecting the other two
curves at about 10 cycles. As we will see below this intersection
could be attributed to the localization of deformationwhich is more
pronounced in the case of N ¼ ∞, but this point should further be
studied in the future.

In Fig. 23, we show evolution curves for (a) the aspect ratios
w1¼w2 (for q¼ 60�) and (b) for the ellipsoidicity as a function of the
number of cycles Nr for the same set of hardening exponents used
before (N ¼ 5,10,∞). The evolution of the aspect ratios in Fig. 23a are
shown to be almost independent of N as N � 10, while they tend to
evolve slower for larger N ¼ 5. In contrast the evolution of ellipsoi-
dicity in Fig. 23b exhibits a non-monotonic dependence on N espe-
cially at large number of cycles taking the largest values for N ¼ 10.

Finally, in Fig. 24, we consider the case of vanishing elasticity,
i.e., E/s0 ¼ 50,000 and record porosity ratcheting under the same
loading state and the same set of hardening exponents (N ¼ 5,
10,∞). One observes that all results confirm (up to a given nu-
merical accuracy since the Young's modulus is not infinity) the
results by Devaux et al. (1997), i.e., there is no porosity ratcheting
effect in the absence of elasticity. Rather interestingly, porosity
ratcheting also becomes negligible forN¼ 5,10. But this is related to
the rather small macroscopic strain amplitude considered here as
well as to the specific cyclic loading conditions, i.e., cyclic loads
around zero average straining. Thus, if one compares these results
with the previous ones (which correspond to E ¼ 1000s0) then the
effect of elasticity is critical for porosity ratcheting.
Fig. 22. (a) Normalized maximum average equivalent von Mises stress evolution for several
(b) Porosity evolution for several values of hardening exponent (N ¼ 5,10,∞) in the case of

Fig. 23. (a) Evolution of the aspect ratiosw1 (�), w2 (��) for several values of hardening exp
several values of hardening exponent (N ¼ 5,10,∞) in the case of u/L ¼ 1%, XS ¼ 3, q ¼ 60�
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Appendix B. Mesh dependence

In this section, we discuss the dependence of mesh size upon
the cyclic response of the periodic unit-cell. As we have observed
on several calculations with q ¼ 0,30� (see Fig. 16), a localization of
deformation appears in a small region of the void surface and thus,
leads to strong mesh dependence at this zone. This led to non-
convergence of the elasto-plastic computations beyond 50 cycles.
In Fig. 25, we show representative results for a loading u/L ¼ 1%,
XS ¼ 3, q ¼ 30� and for three different mesh sizes at the pore sur-
face, i.e., 0.052a, 0.037a and 0.026a (where a is the radius of the
initially spherical pore), corresponding to 5 � 104, 15 � 104 and
32 � 104 degrees of freedom (dof), respectively. Fig. 25a shows the
evolution of the maximum average equivalent vonMises stress as a
function of the number of cycles Nr for the same loading and the
aforementioned three different mesh sizes. It is evident from
Fig. 25a,b that the evolution of the average stress seq/s0 (as well as
the positionwhere maximum is attained) and the porosity f (which
is a direct measure of the hydrostatic average plastic strain) as a
function of Nr is not sensitive to themesh size. On the other hand, in
Fig. 25c,d we observe that the aspect ratios w1 and w2 are much
more sensitive to the mesh size. In particular, even though the
evolution of w1 and w2 tend to converge for Nr < 20, the curves
diverge after this point as a result of the strong deformation
localization observed in those cases. In addition, it is interesting to
note that there is a monotonic decrease of the aspect ratios with
increasing mesh size. Consequently, we can conclude that the mesh
dependence affects more the local quantities (such as the aspect
ratio) but not average quantities such as the average stress or strain,
and the porosity evolution, which depends on the hydrostatic part
of the average strain in the unit-cell.
values of hardening exponent (N ¼ 5,10,∞) in the case of u/L ¼ 1%, XS ¼ 3, q ¼ 60o and
u/L ¼ 1%, XS ¼ 3, q ¼ 60� as a function of the number of cycles Nr.

onent (N ¼ 5,10,∞) in the case of u/L ¼ 1%, XS ¼ 3, q ¼ 60� and (b) Ellipsoidicity ratio for
as a function of the number of cycles Nr.



Fig. 24. Porosity evolution for several values of hardening exponent (N ¼ 5,10,∞) in the case of E ¼ 50,000s0, u/L ¼ 1%, XS ¼ 3, q ¼ 60� as a function of the number of cycles Nr.

Fig. 25. (a) Normalized average equivalent von Mises stress seq/s0, (b) porosity f, (c) aspect ratio w1 and (d) aspect ratio w2 for 5 � 104, 105 and 3 � 105 degrees of freedom (dof) in
the case of XS ¼ 3 and q ¼ 30� as a function of the number of cycles Nr.
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