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ear mechanical behavior. This study pro-poses a biaxial dynamic mechanical analysis (DMA) 
onlinearity. This phenomenon has already been observed for uniaxial tests, revealing an 
ulus with prestrain. The novelty proposed here is to investigate the problem under biaxial 
ratus and an appropriate specimen have been designed. Strains and stresses have been 
pared with measurements from digital image correlation and finite element computations. 
pellant specimen, for different values of biaxial prestrain. The material is a highly filled 
restrain on the global visco-elastic behavior. The results exhibit increasing amplitude of the 

 as in uniaxial experiments. Moreover, the dependence can be char-acterized using the 
elastic behavior is modeled using a closed-form spectrum of relaxation times.
1. Introduction

The combined stiffness and damping behavior of filled
elastomers are at the origin of their spread in various
application areas. Therefore, they have received high in-
terest as a research subject both in terms of experiments
and modeling. Several models have been proposed to
describe the nonlinear behavior of reinforced elastomers
under large or small strains, monotonic or cyclic loading.
There are the models constructed using homogenization
theory and applied, for example, to propellants as discussed
in [1]. Other models will be phenomenological taking into
account damage to be finally compared with experimental
observations, as in [2]. In [3] or [4], hyper viscoelastic
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models are considered under monotonic large strain
loading and optimal numerical integration schemes are
discussed in detail. Under a cyclic loading regime, one can
often observe that viscoelastic behavior of filled elastomers
depends on the amplitude of the load during Dynamical
Mechanical Analysis (DMA) tests, a phenomenon also
known as the Payne effect and discussed, for example, in
[5] or [6]. This effect is a consequence of the interactions
between fillers and the matrix. An experimental study of
the influence of the viscoelastic compressive stress state of
the matrix inside filled rubber is reported in [7] and [8].
Recently, an experimental exploration of the outcome of a
uniaxial and biaxial prestrain on the viscoelastic properties
of highly filled elastomers has been proposed (see [9] and
[10]).

The result of the study showed a logarithmic increase of
the complex modulus with considerable stiffening once the
prestrain exceeds approximatively 1%. In [9], uniaxial
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experiments have been described using a simple
phenomenological model. The model was able to represent
the measured logarithmic evolution of the complex
modulus using a generalized Maxwell model. Using an
adaptive method, viscous elements were added to the
model with increasing prestrain and were able to repro-
duce the increasing stiffness. Later, in [10] a biaxial pre-
strained DMA experiment was proposed where one of the
axial directions of the cruciform specimenwas blocked at a
given prestrain level, and DMA tests were performed in the
orthogonal direction. In this paper, we present biaxial DMA
experiments superimposed on a fully biaxial prestrain.
Moreover, we show that a viscoelastic model constructed
using the continuous spectrum of relaxation times accu-
rately describes the experimental results.

The material under scrutiny is a propellant. These ma-
terials are classified as being in the family of highly filled
elastomers and are used for solid propulsion of rockets and
launchers. Propellants are constituted, up to 70% of their
volume, by fillers bonded together by a viscoelastic matrix
[11]. Their functioning during the oxidation-reduction re-
action of the fillers releases pressurized gases inside a
confined chamber which are then ejected through a nozzle
and propel the structure [12]. The energetic properties of
the propellant guarantee the efficiency of the engine,
whereas the mechanical properties govern structural per-
formances such as stability and integrity. In spite of the
small volume fraction of the polymeric matrix, its intrinsic
behavior will induce viscoelastic behavior of the composite
solid propellant. Moreover, the high volume fraction of
fillers will induce strong nonlinearities [13]. Recently, a
complete characterization of the uniaxial prestrain influ-
ence has been performed for a solid propellant in [14]. The
nonlinear viscoelastic model has been represented by the
spectrum of relaxation times of the material and the
properties have been assessed using both relaxation and
DMA experiments.

The aim of this paper is to revisit the topic of prestrain
induced nonlinearities on the viscoelastic properties dur-
ing DMA tests. The prior results are extended both in term
of experimental complexity and modeling. On the one
hand, the experiment discussed here imposes a prestrain
Fig. 1. Micrography of solid propellant, fillers (in black) bonded by the
matrix (in gray).
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and applies biaxial cyclic loads on both directions of the
specimen; on the other hand, the results are interpreted
using a model of the relaxation spectrum of the viscoelastic
material depending on the applied prestrain level. The
proposed model can then be transformed into a General-
ized Maxwell model and the associated Prony series.
However, this expansion will not be presented here.

This paper starts with a description of the material and
is followed by a review of a suitable uniaxial prestrain
dependent model of the relaxation spectrum represented
by a closed-form expression. Next, the biaxial test machine
and the measurement method are presented. Finally, the
results of the biaxial DMAwith prestrain are discussed and
compared with preceding results from uniaxial measure-
ments. The analysis is based on the closed-form expression
of the relaxation spectrum.

2. Material

The material used here is propellant, a highly filled
elastomer with complex nonlinear behavior. The nonline-
arity is due to the extremely high filler fraction and the
consequence of an extremely thin binder region between
the filler particles. More precisely, the propellant consists of
a cross-linked elastomeric matrix based on hydroxy-
terminated polybutadiene (HTPB) in which the fillers
composed of ammonium perchlorate and aluminum par-
ticles are included (see Fig. 1 and described in detail, for
example, in [15]). The mechanical properties of the com-
posite will inherit the viscoelasticity of the matrix and
stiffness of the inclusions. Fillers constitute up to 70e80% of
the volume, placing propellants at the higher end of highly
filled elastomers, far beyond rubber where carbon black
fillers will only add up to 30e50% of the volume (in tires for
example). Moreover, due to the high volume fraction of the
fillers, the manufacturing process will induce an over
reticulated HTPB matrix. Two phases can be distinguished
in the polymeric matrix: a principal cross-linked network
connecting and fastening the fillers, and free polymer
chains floating inside the network, which are neither
linked to the filler nor to the principal network. A detailed
analysis of the physical bases of this assumption is given
and already discussed in [16], [17]. A schematic represen-
tation of the explanation is displayed in Fig. 2. The physical
and mechanical interactions between the fillers and the
binder or between the phases of the polymeric matrix are
at the origin of the observed mechanical nonlinearities at
the scale of the composite. These relations between the
physical interactions and the macroscopic properties as a
function of different input parameters have been exten-
sively discussed in [15].

3. Model

The aim of the paper is analyze the viscoelastic material
behavior. Moreover, we consider for the sake of simplicity,
without restraining the generality of the approach, the
deformation of material only in the small strain range and
under the constraint of incompressibility.

Viscoelasticity can be expressed in the time or the fre-
quency domain, as classically explained, for example, in the



Fig. 2. Schematic representation of solid propellant.

Fig. 3. Relaxation time spectrum of solid propellant H(t), identified in [14].
The smaller panel described the contributions of the three terms. The sec-
ond contribution H2(t) contains prestrain dependent exponent.

Fig. 4. Biaxial apparatus used for biaxial prestrain DMA experiments with
the cruciform shape specimen in the center.
textbook [18]. In the time domain, viscoelasticity is
described by the time dependent relaxation modulus E(t),
which is directly measured during a relaxation test [19]. In
the frequency domain, the viscoelasticity is described by
the frequency dependent dynamic modulus E*(u),
measured during a DMA test [20]. The relaxation and the
dynamic moduli are related to a unique relaxation time
spectrum H(t) depending on the time t. The spectrum H
completely characterizes the viscoelastic material behavior
[21]. For polymers, consisting of long molecular chains, this
spectrum can be interpreted as the statistical distribution
of the molecular mobility of the polymer chains [22].
Several algorithms have been proposed in the literature to
identify the relaxation function H, either from the
measured relaxation modulus as in [23], or from the
measured components of the complex dynamicmodulus as
in [24].

The constitutive law is written in the frequency domain
as:

s*ðuÞ ¼ E*ðuÞε*ðuÞ (1)

where s*(u) and ε
*(u) denote the Fourier transform of the

stresses and strains as a function of frequency u, respec-
tively. Moreover, by definition, the complex modulus is
expressed as a function of the relaxation time spectrum
H(t):

E*ðuÞ ¼
Zþ∞

�∞

HðtÞ iut
1þ iut

d lnðtÞ (2)

In a recent study [14], the spectrum for solid propellant
was identified from both time domain and frequency
domain results. The following additive representation of
the relaxation spectrum H(t) has been proposed:
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¼ H1ðtÞ þ H2ðtÞ þ H3ðtÞ (3)

where (Egi, bi, ti)i ¼ 1,3 are adjustable parameters and G is the
Euler Gamma function. More precisely, the spectrum is the
sum of three terms. Each term corresponds to a specific
component of the polymeric network representing the
binder. The evolution of the spectrum H and of its three
components as a function of time t is represented in Fig. 3.
The first term, denoted with the subscript “1”, is the
3

viscoelastic relaxation signature of the molecular mobility
of the principal network. The second term, denoted with
the subscript “2”, is the signature of the molecular mobility
of the unlinked polymer chains. The third term, denoted by
subscript “3”, represents the signature of the long time
molecular mobility of polymer. This additive decomposi-
tion, as well as the relations with the phases of the polymer
network, is coherent with the previous observations and
measurements done in [16]. One can observe that the first
two families have significant importance on the distribu-
tion of H, whereas the last one is visible only when
compared to the values at long times.

As discussed in previous work [14], a series of uniaxial
prestrained DMA experiments were used to identify the
parameters of the preceding model (3). More precisely, it
has been shown that we can correlate the influence of the
prestrain with a variation of exponent b2. The exponent
characterizes the signature of the molecular mobility of the
unlinked polymer chains. This chain will float between
islands of the polymer network and the fillers. When a
prestrain is applied, fillers will close up and the unlinked
polymer chains will be restricted in their movement. The
relation between b2 and the axial prestrain εs1 (see Fig. 9)



Fig. 5. Schematic representation of the specimen. (Ui, Si, Fi) are the
displacement, surface and force at the end of the arms of the specimen. ε
and s are the strain and stress in the central area of the specimen.

Fig. 7. Digital Image Correlation performed on the specimen during a biaxial
experiment. It permits to compare the measured microscopic strain with the
computed microscopic strain using the transfer function.
obtained as a result of the uniaxial prestrained DMA
experiment is displayed in Fig. 12.

One can further remark that the model proposed here is
different from the model developed in [9] or [10] where
elements are added step by step in a Generalized Maxwell
model, as a function of the increasing prestrain. The model
here is described by the continuous spectrum H(t) with
only one prestrain dependent parameter, and is not directly
related to a Generalized Maxwell model [25]. However, the
relaxation spectrum presented previously can be dis-
cretized a posteriori into a Generalized Maxwell Model and
described by a Prony series [26].

The next objective is to explore the influence of an
orthogonal prestrain εs2 superimposed on an axial prestrain
εs1 on the viscoelastic properties as represented by E*.
Fig. 6. Elastic Finite Element Analysis of the specimen driving to the
computation of the microscopic strain and stress in the center of the spec-
imen from the macroscopic strain and stress of each termination.

4

4. Biaxial experimental setup

The biaxial DMA tests under biaxial prestrain have been
performed using a biaxial tensile testing setup. The ma-
chine was constructed from independent parts following
the design proposed in [27] or [28]. The set-up consists of
four electric actuators fixed on a rigid rectangular frame.
The actuators will finally form a cross on the frame. The
biaxial machine is pictured in Fig. 4. The actuators are high
precision electric motors NTM-207with a linear movement
transformer ISOMOVE 50 manufactured by SNT [29]. The
displacements of the four actuators are measured by four
Fig. 8. Comparison between strain computed by the transfer function and
strain measured by DIC in the center of the specimen in function of the
macroscopic displacement U1 and U2 ¼ 0.



Fig. 9. Evolution of the imposed strain in the X1 and X2 direction as a
function of time. A first prestrain is imposed in the X1 direction followed by
the prestrain in the direction X2. Finally a sinusoidal strain is superimposed
prestrain in both the X1 and the X2 direction to measure the dynamic
modulus.

Fig. 11. Phase angle evolution in function of the second invariant of the
prestrain for a frequency equal to 5 Hz. Uniaxial (blue circles) ([14]) and
biaxial (violet square) results are given. The evolution is the same for the
two kind of tests. The model (black solid line) reproduces this evolution, but
tends to over estimate the experiments. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
WA-T Linear Variable Differential Transformer sensors
provided by HBM [30]. The maximal measured displace-
ment range is 30 mm. The force acting in each axis is
measured by a force transducer U9B manufactured by HBM
[30]. Finally, the loading and measurement range of the
applied force lies between 0 and 1kN.
Fig. 10. Amplitude of the dynamic modulus as a function of the second
invariant of the prestrain at frequency of 5 Hz, measured in uniaxial (blue
circles) ([14]) and biaxial (violet square) experiments and compared with
predictions from model. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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An important feature for biaxial testing is the precise
shape of the specimen. The optimal specimen should be
free of stress or strain singularities and needs a large central
area where the material is under biaxial strain. For metallic
specimens, this is achieved by creating a thinner circular
area in the middle of the specimen, as discussed in [31] for
a cruciform specimen. A thinner central zone results in
better control of the strain and stress in the center. Taking
into account the manufacturing process of the propellant,
one cannot create a thinner central area in order to achieve
Fig. 12. Evolution of the parameter b2 as a function of the second invariant
of the prestrain.



this goal. As a consequence, alternative solutions are
needed to solve the problem. Many authors have looked for
a special geometry specimen which optimizes the biaxial
strain and stress fields. Specimens with an optimized
blending radius are proposed to reduce the stress locali-
zations in [32]. A solution consisting of elongated holes
along both axis of the cruciform specimen has been pro-
posed in [33]. This specimen reduces the stress concen-
tration, by keeping a simple specimen geometry.

In the present study, as in [10], the specimen will keep
its cruciform shape (see a schematic view displayed in
Fig. 5). However, the small radii are replaced by large radius
and the effect on the stress and strain distribution has been
discussed in [10]. Each end termination of the arms of the
cross is glued to a grip, which is finally fixed to the actuator.

The displacements (U1, U2) and the forces (F1, F2) are
directly measured at the end of the arms of the specimen
using specific gauges. Knowing the distances (l1, l2) and the
surfaces (S1, S2), the strain e ¼ (e1, e2)T and stress
S ¼ ðS1;S2Þ T can be computed as:

Si ¼ Fi
Si

ei ¼ Ui

li

�
i ¼ 1;2

�
(4)

For the material determination, the objective is to have
local information of the biaxial strains ε and stresses s in
the central area from the global strain and stresses
measured before, without measuring or computing the
complete heterogeneous fields over the specimen.

In order to recover the local fields, we follow the
approach proposed in [10] which is based on the assump-
tion of a linear relation between global and local fields.
Therefore, the relations are reduced to knowledge of two
matrixes, denoted as strain and the stress transfer functions
(Lε and Ls respectively). The relation between measured
and computed quantities is given by the expressions:

ε ¼ L
ε
e s ¼ LsS (5)

The transfer functions are determined from finite
element solutions, under the assumption of elastic material
behavior (see Fig. 6). The transfer functions are computed
from strain and stress values in the center of the specimen
and the values at the end section by minimizing the least
squares distance. The approximation has been validated up
to strain of 10%. A subsequent assumption, already verified
in [10], is that the transfer function computed with the
elastic solution will be equally valid in the viscoelastic
domain.

Next, we enhance the prior validation of the transfer
functions using the strain field from Digital Image Corre-
lation (DIC). DIC was performed using a CorrelManuV [34]
software package (see Fig. 7). The pixel size was
6 � 6 mm2 and the image was recorded over an area of
3 � 3 cm2. On the left panel, we displayed the results of the
finite element computation and on the right panel the
measured strain field. One can observe the good match
between computations and measurements.

For comparison, Fig. 8 presents the experimental
values of the strain ε1 measured by DIC in the center of
the specimen, and the corresponding strain computed
using the transfer function for a macroscopic imposed
6

displacement U1. The displacement in the X2 direction is
blocked (U2 ¼ 0). The match is good and can be char-
acterized by a relative error of 2±1 %. As a consequence,
hereafter, we shall make systematic use of the values of
strain and stress computed with the transfer function.

Another result of the finite element computations con-
cerns the tensorial form of strains and stresses in the cen-
tral zone of the specimen. The computations show that
strains and stresses are diagonal and that principal axes are
oriented along the directions of the cross, as expected in a
biaxial experiment. Moreover, the incompressibility
assumption permits computation of the strain in the third
direction ε3. As a final consequence, one can state that the
strain and stress transfer functions depend only on the
geometry of the specimen.

Recalling that the goal of this work is to measure the
dynamic modulus E*(u) under biaxial prestrain, and taking
into account the arguments of the preceding discussion,
the complete experimental procedure including the
imposition of the prestrain will be defined in the next
steps:

1. Impose a prestrain εs1 in the X1 direction.
2. Impose a prestrain εs2 in the X2 direction.
3. Under the biaxial prestrain state (εs1, εs2), superimpose a

sinusoidal strain in the X1 direction taking the form
ε1(t) ¼ εs1 þ εd sin(ut) maintaining ε2 ¼ εs2. The sinu-
soidal stress s1(t) in the X1 direction is recorded.

4. Under the biaxial prestrain state (εs1, εs2), superimpose a
sinusoidal strain now in the X2 direction taking the form
ε2(t) ¼ εs2 þ εd sin(ut) maintaining ε1 ¼ εs1. The sinu-
soidal stress s2(t) in the X2 direction is recorded.

A schematic representation of the procedure is dis-
played in Fig. 9. The experiments were performed for strain
amplitude of εd ¼ 0.4% with a pulsation u ¼ 2p f at a fre-
quency of f ¼ 5Hz.

One can remark that the order and the simultaneity of
imposing prestrain or the sinusoidal load does not affect
the final result. The order and the simultaneity do not affect
the measurement of the dynamic moduli but modify the
value of the various strain amplitudes.

The measurement of the viscoelastic properties is
performed in two steps: first, strains and stresses are
estimated in the center of the specimen and, second, the
dynamic modulus E*(u) is computed using the Fourier
Transform. Considering two sinusoidal signals εi and si
(with i ¼ 1,2), the dynamical amplitude of each signal is
defined by the maximum of the Fast Fourier transform
F ðεiÞ and F ðsiÞ, respectively. The phase angle between
the signals is set by the maximum of the ratio
F ðsiÞ=F ðεiÞ. A complete explanation of the Fast Fourier
Transforms analysis of two sinusoidal signals is exten-
sively explained, for example, in [35].

An analysis of the algorithm shows that, after the
third step, using the signals s1(t) and ε1(t), one can
compute the complex modulus E*1 corresponding to di-
rection X1. Then, after the forth step, using the signals
s2(t) and ε2(t), one can compute the complex modulus E*2
in the X2 direction.



Table 1
Identified parameters for the relaxation time spectrum (Equations (3) and (6)) describing the nonlinear viscoelastic behavior of solid propellant (Egi in [MPa],
ti in [s] and bi, εr, q dimensionless).

Eg1 t1 b1 Eg2 t2 b02 εr q Eg3 t3 b3

12191 3 � 10�12 0.333 91 3 � 10�5 0.312 0.045 2.1 6 1.27 0.07
The experimental procedure and the data processing
described so far provide, for each biaxial prestrain pair (εs1,
εs2), the dynamic moduli E*1 and E*2 corresponding to the
two directions.
Fig. 13. Comparison between experimental results (points) and model
prediction (surface) for the amplitude of the dynamic modulus, as a function
of the prestrain. The color of the point is the relative error in the scale
display on the right hand side of the plot. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version
of this article.)
5. Results and discussion

Let us recall that the studied material is isotropic.
Therefore, we expect to recover several symmetries on the
measured moduli. For any prestrain state, the dynamic
modulus is independent of the direction of the meas-
ure: E*1ðεs1; εs2Þ ¼ E*2ðεs1; εs2Þ. Moreover, the prestrains εs1

and εs2 are symmetrical, therefore the directions X1 and X2
can be interchanged and the measure of the dynamic
modulus provides the same result: E*1ðεs1; εs2Þ ¼ E*1ðεs2; εs1Þ.
As a consequence, we can consider that the dynamic
modulus depends only on the angular frequency u and on
the second invariant of the prestrain defined by:

ε
m
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 εs : εs

q
.

The previous assumptions permit now to compare
measured values of the complex modulus both from uni-
axial results, obtained in [14], and biaxial loadings. The
measurements of the amplitude and the phase angle of the
dynamic modulus and a model prediction are displayed in
Fig. 10 and Fig. 11 as a function of the second invariant of
the prestrain. We note that the dynamic modulus and the
phase angle in both uniaxial and biaxial experiments follow
close evolutions as a function of the second invariant of the
prestrain. The spread of the data is larger for the dynamic
modulus as it depends essentially on the measured strain,
whereas phase angle is related to the time shift in the
measured signal. Another source of the spread is small
heterogeneity of the mechanical properties of the
propellant.

Therefore, the spectrum of relaxation time Hðt; εms Þ de-
pends now on the time and on the second invariant of the
prestrain. The material parameters of the model Equation
(3) are identified using the nonlinear solver of Mathema-
tica® (NonLinearModelFit [36]). The model prediction in
Figs. 10 and 11 was obtained in following steps. The model
presented in Equation (3) is supposed to have a prestrain
dependent coefficient b2. Moreover, we define the
following expression:

b2

�
ε
m
s

� ¼ b0
2

1þ
�

ε
m
s
εr

�q (6)

Fig. 12 presents the comparison of experimental and
predicted values of b2 as a function of εms . The experiment
values are identified directly from axial and biaxial exper-
iments, and the model is the least square approximation
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obtained from Equation (6), where b02 ; εr; q have been
considered real parameters (see Table 1).

The predictions of the model match the different
experimental results. In Fig. 10 and Fig. 11, we note the
excellent prediction for the amplitude of the dynamic
modulus and a small underestimation of the phase angle.
The average relative error is 6±3 % for the amplitude of the
dynamic modulus and 8±4 % for the phase angle.

Fig. 13 presents the biaxial and uniaxial measurements
in terms of the amplitude of the dynamic modulus plotted
against the two values of prestrain (εs1, εs2). The points are
the experimental measurements and surface is obtained by
the model, as discussed previously. The height represents
the amplitude of the dynamic modulus. We obtain a good
match between the model predictions represented by the
surface and the biaxial measures displayed as points as in
Fig. 10. However, the maximal relative error is around 15%.
6. Conclusions

The viscoelastic material behavior of highly filled elas-
tomers under orthogonal prestrain embodies important
nonlinearities. This study presents a method of conducting
biaxial DMA experiments with orthogonal prestrain. The
prestrain was applied in two orthogonal directions and the
DMA experiments were performed in the same directions.
This represents a generalization of the setting discussed in
[10] but needed the complete design of a biaxial



experimental apparatus. The shape of the specimen and the
transfer functions used for the fast computation of the
stress and strain values in the center of the cross-shaped
specimen from measures at the end of the arms were
further validated using a comparison of finite element
computation with field measurements using digital image
correlation.

The viscoelastic material properties expressed as com-
plex elastic modulus as a function of prestrain of a pro-
pellant material were characterized using the present
experimental apparatus. The results exhibit a dependence
of the complex elastic modulus on the second invariant of
the prestrain. As a general result, it can be stated that the
amplitude of the modulus increases with respect to the
second invariant of prestrain, whereas the phase angle
decreases.

The material behavior was modeled using a closed-form
expression of the relaxation spectrum. One of the param-
eters in the closed-form expression was modified to ex-
press the dependence of the second invariant of prestrain.
The complete set of parameters of the relaxation spectrum
was identified from both uniaxial and biaxial experimental
results. The model predictions were a good match for the
experimental results.

This study opens new perspectives in the measurement
of the prestrain dependent properties of viscoelastic ma-
terials. The new measurements will challenge the theo-
retical constitutive models to take these results into
account in order to represent complete three-dimensional
behavior as needed in structural computations.
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