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Introduction

Quantum dots (QDs), or semiconductor nanocrystals, are nowadays inestimable tools for fundamental studies as well as for potential applications such as biological probes [START_REF] Zheng | Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots[END_REF][START_REF] Moussodia | Biocompatible and stable ZnO quantum dots generated by functionalization with siloxane-core PAMAM dendrons[END_REF], fluorescent biosensor [START_REF] Costa-Fernandez | The use of luminescent quantum dots for optical sensing[END_REF], light-emitting diodes (LEDs) [START_REF] Lim | Preparation of highly luminescent nanocrystals and their application to light-emitting diodes[END_REF] and solar cells [START_REF] Robel | Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO 2 films[END_REF]. Compared to conventional organic dyes, QDs possess unique properties including continuous absorption band, high photoluminescence (PL) quantum yields, photobleaching stability and tunability of the PL emission as a function of their size [START_REF] Jamieson | Biological applications of quantum dots[END_REF][START_REF] Aldeek | Enhanced optical properties of core/shell/shell CdTe/CdS/ZnO quantum dots prepared in aqueous solution[END_REF]. To date, two different routes have been reported for the synthesis of CdSe QDs, one being the most conventional organometallic approach [START_REF] Murray | Synthesis and characterization of nearly monodisperse CdE (E = S Se Te) semiconductor nanocrytallites[END_REF][START_REF] Peng | Green chemical approaches toward high-quality semiconductor nanocrystals[END_REF]. As prepared, the CdSe nanocrystals have remarkable properties such as narrow width of the PL spectrum, high PL quantum yield, negligible photobleaching and excellent size homogeneity. This non-aqueous synthesis of capped QDs requires high temperature (360 °C) [START_REF] Qu | Alternative routes toward high quality CdSe nanocrystals[END_REF], use of hydrophobic ligands [START_REF] Khanna | The processing of CdSe/polymer nanocomposites via solution organometallic chemistry[END_REF] and solubilization strategies for their direct use in biological systems [START_REF] Yu | Water-soluble quantum dots for biomedical applications[END_REF]. Alternatively, the aqueous synthesis route produces QDs with other advantages, including control of the size by the pH [START_REF] Spanhel | Photochemistry of colloidal semiconductors .20. Surface modification and stability of strong luminescing CdS particles[END_REF], water solubility, biological compatibility and stability [START_REF] Gaponik | Thiol-capping of CdTe nanocrystals: An aLernative to organometallic synthetic routes[END_REF][START_REF] Rogach | Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals[END_REF]. However, the aqueous method has several drawbacks such as lower emission efficiency and a wider PL spectrum compared to the organic method. The design and synthesis of high quality water-soluble CdSe QDs disclosing specific and tunable properties to target biochemical analytes or biomolecular systems is a major issue, mainly reached by the choice of the functionalizing ligand coupled to CdSe. For example, Xue et al. reported highly luminescent water-soluble CdSe QDs prepared using thioglycolic acid as a capping ligand, which were covalently coupled to bacteria [START_REF] Xue | Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria[END_REF].

Alternatively, particular capped CdSe QDs could be prepared at the polarizable interface between water and 1,2-dichloroethane electrolyte solutions by an electrochemical method [START_REF] Su | Adsorption and photoreactivity of CdSe nanoparticles at liquid/liquid interfaces[END_REF]. Triethanolamine-capped CdSe QDs were synthesized and used as fluorescent sensors for reciprocal recognition of mercury and iodide in aqueous solution [START_REF] Shang | Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury [II] and iodide in aqueous solution[END_REF] and CdSe nanocrystals incorporated in thin films were shown to interact with gazeous compounds such as benzylamine and triethylamine [START_REF] Nazzal | Photoactivated CdSe nanocrystals as nanosensors for gases[END_REF].

Here, we focus on the detection of cadmium ions, which is an extremely toxic metal widely found in plastics, fossil fuel combustion, phosphate fertilizers and other various chemicals [START_REF] Chaney | Cadmium in soils and plants[END_REF]. These sources of cadmium often lead to contaminations in water, soil and eventually in food [START_REF] Nordberg | Cadmium in the human environment[END_REF][START_REF] Friberg | World Health Organization Report[END_REF], causing serious environmental and health problems such as lung, prostate damage and kidney cancer [START_REF] Goyer | Cadmium and cancer of prostate and testis[END_REF][START_REF] Satarug | A global perspective on cadmium pollution and toxicity in nonoccupationally exposed population[END_REF]. In this study, we report the synthesis of thioglycerol-capped CdSe QDs and its interaction with cadmium in water. A facile preparation through a seed-assisted method at room temperature yields water-soluble CdSe QDs capped with thioglycerol (TG) which was used for the detection of Cd 2+ ion by UV-Visible spectroscopy. These CdSe functionalized nanoparticles are characterized by a simple and lowcost preparation and a remarkably high selectivity for Cd 2+ ions.

Experimental procedures

Synthesis of TG-capped CdSe QDs

We have followed the method previously described for the synthesis of CdS (cadmium sulfure) QDs capped with thiol derivatives [START_REF] Haj | Time resolved and temperature dependence of the radiative properties of thiolcapped CdS nanoparticles films[END_REF] with some modifications. The chemicals were purchased from Sigma, Aldrich and Fluka. Briefly, an aqueous solution was obtained by mixing cadmium acetate dehydrate with thioglycerol (TG) as the stabilizer in deionized water with continuous stirring under nitrogen atmosphere. The pH of the resultant mixture was adjusted to 11.2 with NaOH solution. Separately, an aqueous solution of Na 2 SeO 3 was prepared by introducing SeO 2 into a NaOH solution and injected into the pH-controled mixture of Cd 2+ and stabilizer under vigorous stirring. The molar ratio Cd 2+ /TG/Se 2-was set at 1/2/0.5. Then, a solution of the reducing agent NaBH 4 was injected with a syringe to the final solution under continuous stirring at 100 °C under N 2 until the solution became light yellow. The TG capped CdSe quantum dots were obtained at this stage. The particles were extracted by precipitation in isopropanol. The solution was stirred for one hour and the precipitate was filtered then dried in a desiccator under vacuum. Fig. 1 summarizes the mechanism of formation of TG-capped CdSe QDs.

Instrumentation

X-ray diffraction (XRD) powder spectra were taken by XPERT PRO MPD Panalytical X-ray generator using the Kα radiation of Cu at a wavelength of 1.542 Å whose integration time was monitored to improve the signal-to-noise ratio. The diffraction angle 2θ was scanned in the range 20 -70° with a speed of 0.02 °/s. To detect the presence of TG on the surface of QDs Fourier-transform infrared (FTIR) spectra were measured using a Perkin Elmer FTIR spectrophotometer in the range 600 -4000 cm -1 . For FTIR analysis, powder samples of QDs were mixed with anhydrous potassium bromide (KBr) pelletized.

For performing transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) we have employed a JEOL 2010 FEG apparatus. Point EDX measurement was performed in scanning TEM mode.

Optical measurements

The UV-visible absorption spectra were collected either on a DR 5000 Hach Lange UV-vis spectrophotometer or a Shimadzu UV-1700. Fluorescence experiments were carried out on a Cary Eclipse spectrometer and spectra were collected in the range 400 -800 nm with an excitation at λ ex = 360 nm. Absorption and emission spectra were measured at room temperature (20°C) by preparing a colloide solution of TG-CdSe quantum dots at 1.5 mg•L -1 in pH 8.6 buffer solution. To increase step-wise the concentration of cadmium or other transition metal ions from 1 to 24 µM, aliquots (2 -4 µL) of a stock solution (10 -3 M) were added into a volume of 2 mL of CdSe QDs solution and mixed thoroughly. The final dilution factor (1.024) was negligible. The temperature-dependent measurements (Supplementary Material) were carried out with a home-designed 1-mm cell holder connected to a circulating bath. The optical path-length of the quartz cuvette was 1 cm for fluorescence and 1 mm for absorption measurements. The pH measurements were carried out with a Model Hanna 8519N pH-meter and a combined glass electrode.

Results and discussion

Characterization of TG-capped CdSe QDs by X-ray and electronic microscopy

The XRD spectrum of TG-CdSe QDs (Fig. 2A) shows several diffraction peaks which appeared at 2θ = 25.20°, 41.90°, 49.70°, 67.96° and 77.09° corresponding to the diffraction planes (111), ( 220), (311), ( 331) and (422) respectively, according to the standard JCPDS data (card 19-0191) of bulk cubic CdSe. The peak broadening in the XRD pattern is due to a smaller size nanoparticles population. The average diameter D of the CdSe nanoparticle can be estimated from the full width at half maximum (FWHM) of the (111) diffraction peak by means of Debye-Scherrer's [START_REF] Deng | A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis[END_REF] formula:

D = 0.9λ / βcosθ (1)
where λ is the wavelength of the incident X-rays, β is the FWHM of the (111) peak in radians and θ is the Bragg diffraction angle. The average crystal size of the CdSe QDs thus estimated is 2.5 nm ± 0.02 nm.

An EDX analysis allowed to ascertain the composition of functionalized CdSe QDs whose spectrum (Fig. 2B Transmission electron microscopy (TEM) was employed to verify the morphology of the TG-CdSe QDs and to obtain a direct measurement of their size. The image (Fig. 3A) reveals a cluster of nanoparticles which are almost spherical and whose size population has a very small dispersion. The average diameter of nanoparticles was directly measured on high resolution TEM images (Fig. 3B) with the JEOL software and have a value of ~2.5 nm, remarkably close to the diameter calculated from the edge absorption spectrum and X-ray diffraction, which yielded 2.8 nm and 2.5 nm, respectively.

Characterization of TG-capped CdSe QDs by FT-IR and UV-visible spectroscopies

The bonding between the stabilizer thioglycerol molecules and CdSe QDs was confirmed by FT-IR measurement in the range 600 -4000 cm -1 (Fig. 4). The assignments of vibrational modes are given in Table 1. This spectrum is similar to that of thioglycerol except for the absence of the S-H vibration band which appears usually at 2557 cm -1 , indicating that thiolate functions are connected to the Cd 2+ sites of the CdSe nanocrystals surface [START_REF] Tang | Preparation and characterization of watersoluble US nanocrystals by surface modification of ethylene diamine[END_REF], as observed for core-shell CdSe/CdS QDs [START_REF] Silva | Shell thickness modulation in ultrasmall CdSe/CdS x Se 1-x /CdS core/shell quantum dots via 1-thioglycerol[END_REF], implying that thiol-assisted capping of CdSe quantum dots has occurred. We can thus infer the presence of the organic layer coating on CdSe on the basis of the FTIR spectrum.

The UV-vis absorption spectrum is similar to that obtained for a film of TG-CdSe QDs synthesized via an organic route [START_REF] Artemyev | Spectroscopic study of electronic states in an ensemble of close-packed CdSe nanocrystals[END_REF]. Both the absorption profile and first peak position (400 nm; 3.01 eV) depend upon the particle size [START_REF] Jasieniak | Re-examination of the Ssize-dependent absorption properties of CdSe quantum dots[END_REF] and readily indicate the small size of these CdSe nanocrystals. The absorption spectra and fluorescence spectra (Fig. 5) of TG-CdSe QDs differ from that of bulk CdSe, with an absorption edge around 400 nm clearly blue shifted as compared to CdSe (1.74 eV, 700 nm). These values indicate an increase in the band gap of the QDs after TG treatment and witness about the quantum confinement effect which becomes more pronounced when the particle size becomes less or equal to the Bohr radius of the exciton in the corresponding bulk material [START_REF] Cao | One-Pot Synthesis of high-quality zinc-blende CdS nanocrystals[END_REF].

The absorption edge threshold (λ thres ) of the UV-vis absorption spectrum has been correlated with the particle diameter (D) by Henglein's [START_REF] Spanhel | Photochemistry of colloidal semiconductors. 20. surface modification and stability of strong luminescing CdS particles[END_REF] whose experimental curve was described by an empirical relation [START_REF] Moffitt | Size control of nanoparticles in semiconductor-polymer composites. 1. control via multiplet aggregation numbers in styrene-based random ionomers[END_REF]:

D CdSe = [1.338 -0.002345 λ thres ] -1 in nm (2)
One must note that this relation, which is a fit of experimental data [START_REF] Moffitt | Size control of nanoparticles in semiconductor-polymer composites. 1. control via multiplet aggregation numbers in styrene-based random ionomers[END_REF], is valide only in the range ~1.5 -6.5 nm. The absorption edge threshold (λ thres ) is defined as the wavelength at the inflection point of the sharply decreasing side absorption (crossing of the spectrum and its tangent), as described in Fig. 5B. This yielded the value λ thres = 420 ± 1 nm, allowing to estimate the particles average diameter to be 2.83 ± 0.02 nm, very close to that calculated from the X-ray diffraction measurement (2.5 nm).

To estimate the band gap energy, the effective mass model can be used since the radius of the nanoparticles is lower than the Bohr radius of bulk exciton [START_REF] Brus | Electron-electron and electron-hole interactions in small semiconductor crytallites: the size dependence of the lowest excited electronic state[END_REF] (5.6 nm). If one neglects the energy of coulombic interaction between electron and hole which varies as 1/R, the band gap energy of QDs can be deduced from the following equation:

eff g E = E g + (h 2 /8µR 2 ) ( 3 
)
where R is the particle radius, μ the effective reduced mass, E g the bulk band gap energy (1.74 eV), the effective band gap energy and h is the Plank's constant. Since the effective mass of electron is much smaller than that of the holes ( = 0. 

Detection of cadmium ion and response of TG-capped CdSe nanoparticles

The optical response of TG-CdSe QDs in buffer solution (pH 8.6) has been evaluated as a function of cadmium concentration (Fig. 6A). The absorbance of the first band, initially located at 400 nm, increases with the addition of Cd 2+ ions together with a shift of its position to 409 nm. We also observed that the band located at 365 nm in the absence of Cd 2+ disappears as the concentration increases, while the long-tailed absorption (> 450 nm)

increases. This latter change is not due to scattering from particles since the absorption increase at 450 nm is larger than at 300 nm and does not follow the proportionality with 1/λ 4 .

This long-tailed absorption increase was also observed in the case of functionalized CdS QDs interacting with Co 2+ ions [START_REF] Gore | Highly Selective and sensitive recognition of cobalt[II] ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe: applications to environmental analysis[END_REF]. These spectral changes are a direct consequence of the metal ions interaction with TG-CdSe QDs. To visualize the real spectral evolution, we plotted the difference spectra at a given Cd 2+ concentration minus the spectrum in the absence of Cd 2+ (Fig. 6B) which reveals the appearance of an absorption band centered at 427 nm and the shift of the small band at 373 nm to 385 nm.

The enhancement of absorbance of TG-CdSe QDs varies linearly at 427 nm with the Cd 2+ ion concentration within the range 5.0 -22 μM with a slope of K = 0.0278 µM -1 (Fig. 7) yielding a limit of detection LOD = 0.32 µM (37 µg•L -1 of Cd 2+ ) defined as LOD = 3σ/K [START_REF] Chen | Functionalized US quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution[END_REF] where σ is the standard deviation. This value is very similar to that measured for the detection of Hg 2+ and I -by fluorescence quenching of triethanolamine-capped CdSe QDs [START_REF] Nazzal | Photoactivated CdSe nanocrystals as nanosensors for gases[END_REF] which, however, did not detect Cd 2+ , whereas the present TG-CdSe QDs do not interact with Hg 2+ , remarkably emphasizing the dependence of metal binding upon the nature of the capping chain.

The pH may affect the optical properties of functionalized QDs [START_REF] Skoog | Principles of instrumental analysis 7 th ed[END_REF]. We indeed observed the pH-dependence of the UV-vis absorption spectra of TG-CdSe QDs in the presence of 15 μM Cd 2+ ions over the pH range 2.0 -12 (Fig. 7A). These measurements were expressed as the difference in absorbance of the TG-CdSe QDs in the presence and absence of Cd 2+ at 400 nm. The maximum response A -A 0 at 400 nm was obtained at pH = 8.6 (Fig. 7A) whereas for pH < 6 the absorbance was too weak and vanished at pH = 2. This may be attributed to the dissociation of the TG modified CdSe nanoparticles by protonation of the surface-binding thiolates [START_REF] Biju | Temperaturesensitive photoluminescence of CdSe quantum dot clusters[END_REF]. On the other hand, for pH larger than 8.6, the absorbance decreases with a simultaneous precipitation of Cd(OH) 2 . Consequently, a standard pH of 8.6

was chosen for performing all experiments.

The response time of Cd 2+ binding to TG-CdSe should depend on the concentration since the process can be described as a diffusion dependent receptor-ligand interaction. The kinetics of the absorbance change at 400 nm (Fig. 7B) after the addition of 15 μM Cd 2+ to the TG-CdSe QDs solution shows that the induced change (A-A 0 ) has reached 75% of its maximum after 90 s. In order to standardize the measurements, we have chosen a 90-s response time after the addition of any metal cations at varying concentration to further characterize the TG-CdSe cation interaction.

The fluorescence intensity decreased when increasing the concentration of Cd 2+ (Fig. 8) but without noticeable changes in the position of maximum and shape of the fluorescence spectrum. Consequently, the presence of Cd 2+ gave rise to a quenching of the emission of QDs, which should be more pronounced than apparently observed if we consider the increase of the absorption coefficient at 360 nm, the excitation wavelength. This apparent quenching could be partly linked to reabsorption of emission due to the increase of absorption at 570 nm and suggests a strong interaction between Cd 2+ and TG-CdSe QDs [START_REF] Lakowicz | Luminescence spectral properties of CdS nanoparticles[END_REF]. The decrease of fluorescence observed here is at variance with the increase induced by Cd 2+ (5 -50 µM range) binding to CdSe/ZnS core/shell QDS caped with carnitine [START_REF] Li | L-Carnitine capped quantum dots as luminescent probes for cadmium ions[END_REF], suggesting different mechanisms for the two kinds of QDs.

As the thiol groups of TG are covalently bound to the QDs core, leaving the hydroxyl groups free, they can provide selective coordination sites for Cd 2+ ions. On this basis, we propose in Fig. 9 a model for a working hypothesis where the cadmium cations interact with the hydroxyl groups of TG and forms cadmium oxide on the surface of CdSe QDs. We have retained the hypothesis of Cd 2+ interacting with the non-ionized OH groups of TG rather than with their ionized form, because their pKa = 9.43 [START_REF] Xu | pH-sensitive photoluminescence for aqueous thiol-capped CdTe nanocrystals[END_REF] and we have observed the maximal response for pH = 8.6.

We have also investigated the influence of the buffer composition, QDs concentration and temperature on the spectral properties and binding of Cd 2+ to TG-CdSe QDs. The corresponding data are given in Supplementary Material. The various buffers used had no influence on the spectra whereas variations of the QDs concentration do not change the spectral shape and do not shift the bands. At large QDs concentration, a limited aggregation leads to an absorbance increase which is not proportional to the concentration. The absorbance edge of TG-CdSe QDs in the absence of Cd 2+ has very slightly shifted as the temperature increased from 20 °C to 50 °C (Fig. S3). In the presence of 15 µM Cd 2+ , there is a decrease of the absorbance from 10 to 50 °C (Fig. S3B), while disclosing the same shift of the first band maximum position to 409 nm due to Cd 2+ binding. This dependence is less pronounced between 10 and 20 °C and has a larger slope at 50 °C. We readily assigned this decrease to the displacement of the equilibrium of Cd 2+ interacting with the OH groups of TG, as it must be observed for any ligand-receptor system (Fig. S3C andD). This does not affect the capability of detecting Cd 2+ , but agrees with the origin of the absorption spectral changes assigned to Cd 2+ binding.

Influence of foreign metal Ions nature and specificity for Cd 2+

The presence of interfering ions may affect the optical response due to the Cd 2+ -TG-CdSe interaction and we have therefore examined the selectivity of this binding. Fig. 10 shows the effect of particular metal cations at fixed concentration (20 μM) on the absorption of QDs at 400 nm. Saliently, only the addition of Cd 2+ ions led to a drastic change of the absorbance whereas no spectral change was observed after the addition of the following metal cations alone: K + , Na + , Li + , Pb 2+ , Ni 2+ , Mn 2+ , Mo 2+ , Hg 2+ , Zn 2+ , Ca 2+ , Mg 2+ , Fe 2+ , Cu 2+ , Co 2+ , Ba 2+ , Al 3+ and Fe 3+ . Moreover, the simultaneous presence of these cations with Cd 2+ in solution of TG-CdSe QDs induced a similar increase of absorption as observed for Cd 2+ alone (Fig. 10). Therefore, there is no competition between these common ions and Cd 2+ for the binding to TG-CdSe QDs which can thus be used as a selective probe for the Cd 2+ ions in aqueous solution at room temperature, whatever the absence or presence of other cations.

The binding properties of TG-CdSe QDs must be compared to those of other systems.

Indeed, QDs made with different materials and capped with various ligands were shown to interact with various metal cations such as Hg 2+ [START_REF] Nazzal | Photoactivated CdSe nanocrystals as nanosensors for gases[END_REF][START_REF] Chen | Synthesis of novel nanocrystals as fluorescent sensors for Hg 2+ ions[END_REF] ,Cu 2+ [START_REF] Yang | Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions[END_REF], Ba 2+ [START_REF]Functionalized ME-capped CdSe quantum dots based luminescence probe for detection of Ba 2+ ions[END_REF], and Pb 2+ [START_REF] Wu | A novel method for the determination of Pb 2+ based on the quenching of the fluorescence of CdTe quantum dots[END_REF].

When functionalized with 2-mercaptoethanol, CdSe QDs have been shown [START_REF]Functionalized ME-capped CdSe quantum dots based luminescence probe for detection of Ba 2+ ions[END_REF] to bind Ba 2+

but not Cd 2+ (no result was reported for Fe 2+ and Cu 2+ , which are common interfering cations). Such a difference is remarkable and may provide a future direction to investigate the mechanism of selectivity in these systems. Not only the functionalization, but also the nature of QD itself determines the selectivity. For example, CdS QDs functionalized with carboxyl [START_REF] Gore | Highly Selective and sensitive recognition of cobalt[II] ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe: applications to environmental analysis[END_REF] is selective for Co 2+ , whereas CdTe QDs coupled with phenol-formaldehyde resin nanoparticles detected the binding of Cu 2+ by means of fluorescence energy transfer.

We must note that neither CdSe QDs synthesized via the organic route at high T and functionalized with bovine serum albumin [START_REF] Liang | Functionalized CdSe quantum dots as selective silver ion chemodosimeter[END_REF], nor CdS QDs functionalized with carboxyl [START_REF] Brus | Electron-electron and electron-hole interactions in small semiconductor crytallites: the size dependence of the lowest excited electronic state[END_REF], nor CdTe QDs capped with phenol-formaldehyde [START_REF] Yang | Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions[END_REF] can bind Cd 2+ ions. The large number of cations that we tested here emphasizes the selectivity of the TG-CdSe sustem as a potential optical sensor for Cd 2+ ions, whose molecular properties and mechanism at the origin of this selectivity remain to be investigated.

Conclusion

In the present work, TG-capped CdSe QDs were successfully synthesized in aqueous medium, in an easy and highly reproducible way, by using safe and low cost materials. These functionalized QDs selectively detect Cd 2+ ions even in the presence of other cations which are physiologically relevant or can be present in water as pollutants. Under defined conditions (pH = 7 -9), this system shows sensitivity for Cd 2+ ions in the concentration range 1.0 -22 μM with a detection limit of 0.32 µM (37 µg•L -1 ). Together with a facile and low cost synthesis, its sensitivity and remarkable selectivity make the thioglycerol-capped CdSe a promising candidate for designing an optical tool to probe Cd 2+ ions in solution, possibly to investigate its interaction with cultured cells. 

  ) shows strong atomic peaks which originate from Cd and Se of QDs and peaks from thioglycerol ligand (S, C and O); nickel from the grid is also detected. The integration of Cd and Se signals indicates an average atomic percentage ratio Cd/Se = 32.2/23.2 = 1.39, showing that the synthesized QDs are enriched in cadmium.

  affects the energetic level of the electrons. By using the estimated particle size from absorption edge threshold (2.83 nm), the calculated effective band gap of CdSe QDs is 2.21 eV.
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Table 1 .

 1 1. Assignment of the bands in the FT-IR spectrum of TG-CdSe QDs.

	Wavenumber (cm -1 )	Assignment
	746	Cd-Se bond stretching
	958, 1083 and 1239	C-C stretching modes
	1419	C-H stretching mode
	1649	O-H bending mode of water
	2862	C-H stretching mode
	2937	CH 2 symmetric stretching
	3400	O-H stretching mode
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