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Using Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-

invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of

epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein con-

centration in the cells, in a very good agreement with standard bicinchoninic acid protein measure-

ments. It opens the way to in situ real time dynamics of protein content and permeabilization in

live cells. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930168]

Reversible permeabilization of live cells is a complex

and increasingly addressed issue, whether it is for medical

application,1,2 or in laboratory research protocols, where a

constant effort is made to reach more realistic investigation

conditions in biological systems.3–5 Permeabilization is

defined as the increase of molecule transfers through the cell

membrane, often using surfactants. Applications cover anti-

cancer drugs or imaging marker delivery, gene therapy, etc.

Besides complex viral vectors that rise potential immune

issues,6 delivery of biomolecules can be done mechanically

or chemically.7 Reversible permeabilization is mostly

obtained by techniques creating pores into the membrane,

the most common ones being electroporation,8 non-ionic de-

tergent,9 and pore-forming toxins.10 The terahertz domain

exhibits many advantages. It is directly sensitive to ions and

proteins contrary to the visible domain, it does not suffer

from very high absorption as the infrared, and it offers better

spatial resolution than the hyper-frequency domain.11 The

terahertz region has been shown to have potential in biomed-

ical applications, but strong experimental limitations had

long kept the study of biological objects down to the single

purified molecule, simplified and/or pre-treated biological

structures.12–14 Recent works demonstrated the possibility to

spectroscopically investigate more complex systems as

cells15,16 and even accessible tissues17,18 or small organs.19

By using a terahertz Attenuated Total Reflection (THz-ATR)

imaging device designed for biological samples, we demon-

strate here the possibility to use THz sensitivity in following

permeabilization dynamics of a live cells layer in real time,

without any marker or sample preparation. The origin of the

terahertz contrast is also investigated.

THz-ATR makes use of the evanescent wave at the

back of a prism under total internal reflection, through the

object under study. The decay of the evanescent wave

ranges from 20 to 30 lm, depending on the prism angle and

on the refractive index of the object.20 We consider a thin

layer of cells and the surrounding solution in this inhomo-

geneous evanescent wave. Providing that the thickness of

the cell layer matches the decay depth of the evanescent

wave, the reflected terahertz wave is mostly modified by the

terahertz dielectric properties of the cell layer in contact

with the upper side of the prism. The extracellular solution

above the cell layer only weakly affects the terahertz signal.

The best signal is obtained for an evanescent decay smaller

than the cell layer thickness, and for a compact cell layer.

If not, the signal remains proportional to the cell content,

but its amplitude decreases. The resulting reflected terahertz

signal is then mostly correlated to the cell content.

Therefore, a content leakage from the cell to the surround-

ing solution will be easily detected by the change of the cell

content.

The THz-ATR device (Fig. 1) is a very transparent high-

resistivity silicon (HR-Si) isosceles prism (R > 10 X � cm,

n¼ 3.42) with a base angle of 42�.20 This incident angle pro-

vides internal reflection conditions. For imaging purpose, the

silicon prism is topped with a 3 mm thick HR-Si patch on

which the samples are placed and which can be precisely

mechanically moved. Plenty of space is available above the

prism for biological samples and related controls. The THz

signal is generated by a classical THz time-domain spectros-

copy (THz-TDS) setup,21 composed of a GaAs photoconduc-

tive transmitter lit by a 12 fs-76 MHz-fs titanium-sapphire

FIG. 1. The THz-ATR device is made of a high resistivity silicon (HR-Si)

isosceles prism topped by a moving HR-Si patch. Epithelial cells are directly

grown on the HR-Si patch.
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laser that generates an almost linearly polarized sub-single

cycle THz pulse, centered around 1 THz and extending up to

4 THz. The pulse is detected by a low temperature grown

GaAs photoconductive detector. A delay line between the

emitter and detector THz chips allows to measure the THz

electric field at controlled delays t, allowing either spectro-

scopic or amplitude measurements.

The cells being imaged in the THz-ATR device are epi-

thelial Madine-Darby Canine Kidney (MDCK) cells. MDCK

cells are a permanent cell line derived from dog kidney.

They form a typical cuboidal single layer epithelium when

grown to confluence, where they display a height of 10 to

12 lm,22 matching well the evanescent wave decay. This sin-

gle cell layer covers the silicon patch in contact with it. They

are widely used as a model cell line for studies on epithelial

polarization and transport, mechanisms of infection, junc-

tions, permeability properties of early drug discovery com-

pounds, etc.23 MDCK cells are maintained in DMEM

(Dulbecco’s Modified Eagle Medium) supplemented with

10% fetal calf serum, 1% penicillin-streptomycin at 37 �C
and 5% CO2. Cells are harvested with trypsin-EDTA, plated

on Si-patch in culture medium and grown until confluence.

Half of the layer is kept on the patch, and the other half is

scratched free as a reference. Before each experiment, the

patch is washed with HBSS (Hank’s Balanced Salt Solution)

and let reach room temperature (21 �C) in 3 ml of a solution

of HBSS containing 10 mM of HEPES as a buffering agent.

Since the patch diameter is 36 mm, the cells are covered by

3 mm of solution. Experiments refer to time T following a

perturbation applied to the cells at T¼ 0.

Acquisitions are made with silicon patch half covered

with a cell layer, half cell-free occupied by the cell medium

as in Fig. 1. Peak Amplitude (PA) of the THz pulse is chosen

as it demonstrates the strongest modification between cells

and free patch surface. Comparison between visible and tera-

hertz images is given in Fig. 2(a). We define a relative Drel

and normalized D experimental contrasts in Eqs. (1) and (2),

respectively. Drel stands for the direct ratio of peak amplitude

(PA) variations, and D for its normalized value with respect

to T¼ 0 value, as follows:

Drel ¼
PAx � PAref

PAref
; (1)

D ¼ Drel Tð Þ
Drel T ¼ 0ð Þ ; (2)

where PAx and PAref are defined in Fig. 2(b) inset as the

peak amplitudes at a given x position and in the empty zone,

respectively. For each position, the amplitude peak value is

determined by the acquisition of 8 different temporal points t
by slightly changing the delay line of the THz-TDS setup,

each one necessitating a 30 ms set up time (Fig. 2(b), inset).

A single PA point is therefore obtained in about 0.25 s.

Several temporal points are needed to measure the maximum

amplitude, in spite of sampling or time shift due to a change

of the dielectric constant of the cells. The cell layers typi-

cally display a 6 to 8% peak-amplitude relative contrast Drel

compared to the medium alone. Typical curves along a sin-

gle line are presented in Fig. 2(b).

In order to confirm that the contrast indeed comes from

the cell content, a strong detergent (Triton-X100, Sigma

Aldrich) is added at a high concentration known to quickly

kill the cells by solubilizing their membrane. Drel drops from

around 8% to less than 1% due to a phantom of the cell layer

still present at the end, so most of the contrast comes from the

cell content. When the cell layer is simply removed by scrub-

bing and renewing the medium, the contrast totally disap-

pears. The origin of the observed contrast is now investigated.

Saponins at high concentration are more commonly used

in immunocytochemistry to permeabilize membranes of dif-

ferent kind of fixed cells, but have also been reported to per-

meabilize live cell plasma membrane at low concentration24,25

and in a reversible way.26,27 It is a nonionic detergent that cre-

ates non-specific pores in cell membrane, most probably by

binding with the cholesterol within the lipid components of

the cell membrane.28 It mostly triggers protein and ion trans-

fers through the membrane. The concentration of Saponin

(Sigma Aldrich) targets 75 lg/ml. After saponin is added at

21 �C, a delay plateau is observed on D (Eq. (2)) during sev-

eral minutes, then D decreases (Fig. 3, red circles). We believe

the observed decrease in D sensitively reflects that of the intra-

cellular protein concentration in the cells. Such a delay has

already been reported during the time course of saponin-

induced release of LDH (Lactate DeHydrogenase), a marker

for soluble cytosolic proteins, suggested to reflect the time

required for the formation of the plasma membrane lesions.25

FIG. 2. (a) Optical (top) and THz-ATR (bottom) images with MDCK epithe-

lial cell monolayer (left) compared without cells (right). Cross-section

(dotted black line) is displayed below. (b) Mean of 3 consecutive 45 s cross-

sections. The inset is an example of two pulse peaks taken in cell (red) or

medium (black) zones, versus the delay t of the THz-TDS setup.
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Different toxins known to disturb the ionic asymmetric

equilibrium were tested, but none of them showed a signifi-

cant impact on D, showing that ions do not seem to play a

major role here.

To quantify protein leakage during permeabilization,

a bicinchoninic acid (BCA) Protein Assay kit (Life

Technologies) was used. This assay is a standard colorimetric

assay, determining protein concentration, well-suited for het-

erogeneous protein solutions even in the presence of deter-

gents and various cell compounds.29 In order to stay in the

detection range, the assay was made on very small extracellu-

lar volumes (200 ll, in 24 wells plates). An assay requires an

approximate 2 to 3 h for calibration and sample preparation,

incubation, spectrometer reading, and analyzing.

A BCA was made under the same concentration of sapo-

nin, and the normalized result is compared to 1� D in Fig. 3.

D measures the cell content, so 1� D measures the extracellu-

lar solution content. A positive control at the end of a THz

experiment ensures that the extracellular protein concentration

indeed rises as observed in the BCA made in 24-wells plate.

Normalized external protein concentration and 1� D show a

very good agreement. Visible camera images do not show any

cell detachment, even under gentle medium movements, up to

40 min where the borders seem to start to detach, but without

any detachment in the central observed region. Plated conflu-

ent cells were also observed under microscope after addition

of 80 lg/ml saponin and showed no detachment before 30 min

and very little morphological change. This is an important ver-

ification as the sample is probed only if lying in the evanescent

wave zone.

We now present a simple simulation approach comparing

the respective importance of ion and protein contributions to

the THz contrast. The theoretical contrast Dth of simple biolog-

ical solutions with known dielectric constant is calculated by a

3-level (HR-Si, cells, and surrounding medium) model based

on Fresnel equations, and compared to measured contrasts

(Drel). Common reference for contrast is distilled water except

for Drel of epithelial cell where HBSSþHEPES is used.

Results are shown in Table I. All errors in Drel are within

60:3%. For epithelial cells, Dth around 6% is obtained

between a thin (12 lm) cell layer compared to distilled water,

based on theoretical measured dielectric constant index at

1 THz on HeLa cells.16 This is consistent with our observed

contrast around 6 to 8% between MDCK and HBSSþHEPES

solution, as this solution is expected to add an approximate 1%

contrast compared to distilled water.

Using this model, and confirming the order of magnitude

observed with a simple ionic solution of KCl, we determined

that the ionic asymmetric repartition between inside and out-

side the cell generates a maximum �1% relative contrast.

Unlike the small contrasts obtained by physiological ionic

solutions, albumin (medium sized protein, 44 kDa) shows a

positive Drel around 2.2% at a concentration corresponding

to approximately only a quarter of the mean protein concen-

tration inside MDCK.30 Therefore, modeling and simple

FIG. 3. Normalized extracellular protein concentration (black squares) and

normalized THz contrast (1� D, red rounds) after addition of 75 lg/ml of

saponin at 21 �C, at time T¼ 0.

TABLE I. Theoretical and experimental contributions to contrasts of simple

ion and protein solutions.

Drel Dth

HBSSþHEPES �1.3% �1.4%

KCl (100 mM) �1% �1.1%

Albumin (50 g/l) 2.2% No data

Epithelial cells 6 to 8% 6% (Ref. 16)

FIG. 4. (a) D variation for two different saponin concentrations introduced

at T¼ 0 min, for 50 lg/ml (black squares) and 75 lg/ml (red rounds). (b)

BCA normalized results at two different time (T¼ 5 min, squares, and

22 min, rounds) in the [5–100] lg/ml saponin range.
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experimental values on ions and proteins seem to consolidate

the assumption that the contrast mainly originates from inter-

nal protein concentrations.

A first example of differential permeabilization dynam-

ics depending on the saponin concentration is shown in

Fig. 4(a) for saponin at 50 and 75 lg/ml. Both curves exhibit

first a plateau, then a decrease of the contrast. The dynamics

of the contrast is about twice as fast at 75 lg/ml saponin as at

50 lg/ml, and the plateau is twice as long at 50 lg/ml. Those

observations are in good agreement with a BCA done at

two different times for 5 different saponin concentrations

(Fig. 4(b)). The BCA demonstrates a very sharp dependency

of the permeabilization to the saponin concentration in

the [22–100] lg/ml range, consistent with the previously

reported results.25 At T¼ 5 min, 50 and 75 lg/ml do not have

significantly different effects on the normalized external pro-

tein concentration (Fig. 4(b), black square). On the contrary,

at T¼ 22 min, the external concentration in both case has

increased significantly meaning they are no more in the pla-

teau region (Fig. 4(b), red circle).

In conclusion, this work demonstrates that THz-ATR

measurements allow noninvasive in situ real time study of bi-

ological samples in physiological conditions, without staining

or labeling. Cell layers of 10 lm thickness can be easily

investigated, as it is of the same extension as the probing

evanescent field. The contrast observed between cells and the

surrounding medium is understood as mainly coming from

the intracellular protein composition of cells. Its variations

give access to the dynamics of cytoplasm leakage when cells

are permeabilized, which is of great interest when it comes to

efficiently but reversibly permeabilize a cell layer. This

method has many advantages over the classical BCA method

for following protein leakage. It is noninvasive, so a whole

dynamic can be done on the same layer. It directly probes the

inside cell composition instead of the extracellular volume,

so no extracellular volume restriction or control are needed.

Also, a THz measurement is much faster than BCA, allowing

real time measurements without calibration requirements.

The authors thank Lluis Mir and his colleagues from

Institut Gustave-Roussy, Villejuif, France, for fruitful

discussions on MDCK cells and electroporation.
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