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†Translational Research Department, Institut Curie, CNRS UMR 144, 26, rue d’Ulm, F_75248, Paris, France
‡Ecole Polytechnique CNRS UMR7654, 91128 Palaiseau Cedex, France

Synopsis
A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep
members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating
proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient
source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we
selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two
independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally
different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications
such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in
eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various
cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used
in living cells to track, modulate or interfere with intracellular processes.

Key words: αRep, combinatorial library, green fluorescent protein (GFP), protein design, protein interactions, repeat
protein.
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INTRODUCTION

Protein–protein interactions are essential to most biological func-
tions in the cell. Information concerning localization, trafficking,
activation states and interaction partners of proteins in living cells
is crucial to understand the complexity of cellular networks. Tech-
nologies that allow modulating or preventing protein interactions
offer powerful tools to investigate pathways but could also be
applied to target deregulated signalling cascades in diseases [1].

Antibodies are the most commonly used scaffolds to bind pro-
tein targets. However, their high propensity to aggregation and the
need for disulfide bond formation during folding are limitations
for their use as intracellular tools in the reducing environment of



Abbreviations: AR, adrenergic receptor; BCR-ABL, break point cluster region-gène abelson; DARPins, designed ankyrin repeat proteins; DMEM, Dulbecco’s Modified Eagle medium;
FNE, fibronectin-binding protein E.; FP, fluorescent protein; GPCR, G-protein-coupled receptors; HEAT, Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), and the yeast
kinase (TOR1); HEK, human embryonic kidney cells; HRP, horseradish peroxidase; IMAC, immobilized metal affinity chromatography; ITC, isothermal titration calorimetry; LRR, leucine
rich-repeat; MCS, multiple cloning site; Ni-NTA, nickel-nitrilotriacetic acid; NLS, nuclear localization sequence; Rab6, ras-related in brain 6; ScFvs, single-chain variable fragment;
SEC, size-exclusion chromatography; SH2, Src homology 2; SHP2, SH2 domain-containing phosphatase 2; SPR, surface plasmon resonance; TBST, Tris-buffered saline and Tween 20;
TPR, tetratricopeptide; VHH, variable domain of heavy chain antibody; WB, western blot.
1 To whom correspondence should be addressed (email philippe.minard@u-psud.fr).

the cytoplasm. Engineered recombinant antibody fragments of
reduced size, such as single-chain variable fragment (ScFvs) are
usually more efficiently produced. Some of these appear to fold
in vivo and are compatible with intracellular applications. For
example, the selection of binders from naive libraries of ScFv
allowed the generation of intrabodies able to detect specific con-
formations of the small GTPase ras-related in brain 6 (Rab6) [2],
tubulin [3] or more recently neuronal proteins such as Gephyrin
and Huntingtin in living cells [4,5]. The selection process of-
ten requires an additional screen for solubility to recover soluble
and stable binders from most ScFv libraries [6,7]. Single do-
main antibodies from camelidae (variable domain of heavy chain
antibody (VHH) also called nanobodies) or shark-derived anti-
body fragments [8], are more soluble and efficiently expressed
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in heterologous systems than ScFvs; this clearly improved pro-
spects of these molecules for a range applications including
intracellular-specific VHHs [9]. For example, a GFP-binding
VHH was able to capture in vitro and in vivo GFP-fusion pro-
teins [9–11]. Irannejad et al. [12] have more recently developed
VHH antibodies that detect a specific conformational state of
the β2-adrenergic G-protein-coupled receptors (β2-AR GPCR),
with spatiotemporal resolution in living cells. Although VHHs
still need at least one essential intradomain disulfide bond, intra-
cellular expression has been documented for some VHHs. The
fraction of each VHH actually folded and functional in reducing
conditions presumably varies with the stability of each molecule.
Additionally, efficient processes to obtain VHH binders currently
rely on camelidae immunization, followed by phage display se-
lections from ‘immune’ libraries and screening of the best can-
didates. Therefore, until efficient naive library become available,
VHH technology is not optimal to generate binders when a clear
control on the target molecular state is required.

Non-antibody scaffolds offer an alternative and very attractive
approach for the creation of protein recognition tools. Synthetic
large protein libraries with highly randomized binding surfaces
are derived from a stable protein scaffold, which is diversified at
specific positions. The few variants of a library binding tightly
and specifically to any specific given target can be selected out
by phage or cell display methods. Scaffold candidates should be
soluble, stable and disulfide-free to prevent inefficient folding in a
reducing environment. One important example of a non-antibody
scaffold is provided by the tenth type III fibronectin domain
(named monobodies) [13]. Interesting intracellular applications
were reported for monobodies; for example, they were used to de-
tect specific conformational changes of the oestrogen receptor in
a living cell [14]. They were also applied as highly selective inhib-
itors directed against the Src homology 2 (SH2) domains of SH2
domain-containing phosphatase 2 (SHP2) phosphatase in order to
dissect the signalization cascade of the break point cluster region-
gène abelson (BCR-ABL) oncogene protein by specifically inter-
fering with targeted protein domains [15] or as fusion with GFP
to track PSD95 and Gephyrin in neuron in real time [16].

Repeat proteins are an emerging class of alternative scaffolds
for the creation of protein binders to specific intracellular probes.
These types of proteins result from the repetition of a simple motif
typically long from 20 to 40 amino acids and fold in solenoid-
like architecture. In the folded proteins the juxtaposition of each
motif generates an extended surface very well adapted to mac-
romolecule recognition. Several types of repeats as leucine rich-
repeat (LRR) [17,18] tetratricopeptide (TPR), armadillo, HEAT
and ankyrin repeats have been used as molecular template to de-
velop large libraries of binding scaffolds [18,19]. Intracellular
applications of engineered repeat proteins were first successfully
achieved with designed ankyrin repeat proteins (DARPins), [20]
and TPR [21]. Recent applications clearly confirm the potential
of engineered repeat proteins as tailor made intracellular recog-
nition units [22–24].

We here present a new type of repeat proteins, the αRep pro-
teins, as a tool for specific molecular recognition of protein tar-
gets inside living cells. Apart from monobodies or DARPins, only

few examples of non-antibodies-derived artificial proteins selec-
ted from libraries have been described so far for their abilities to
bind/track/modulate intracellular targets. Synthetic libraries can
offer versatile sources of these intracellular binders and the de-
velopment of different scaffolds can enlarge the choice for the
right probe to any cellular application. The construction of a
library of artificial repeat proteins called αReps was previously
described [25]. Sequence alignment of a subfamily of natural
thermostable HEAT repeat proteins helped to design a consensus
repeat sequence coding for a motif of 31 residues containing five
highly variable positions. Polymerization of degenerated micro-
genes coding for a motif, randomized at the variable positions in
between specific N-terminal and C-terminal sequence, generated
a highly diverse library of 1.7 × 109 independent clones. Pro-
teins from this library were well expressed, soluble and stable.
They vary in sequence at variable positions and in length depend-
ing of the number of inserted repeats [25]. Using an optimized
phage display library, specific αReps could be selected, with
micromolar to low nanomolar dissociation constants for various
protein targets [26]. The present paper is focused on the selection
and detailed characterization of αReps tailored to interact with
fluorescent proteins.

The discovery and development of fluorescent proteins have
revolutionized the studies of proteins in living cells and organ-
isms, as they are genetically encoded fluorescent tags. The GFP is
now widely used by biologists. Specific GFP binders could there-
fore be used for the purification of GFP fusion proteins as well
as to track GFP-fusion proteins in a cellular context [27]. Other
interesting applications of GFP binders have been described such
as induced protein degradation [28] or control of gene expres-
sion [29]. Very recently, a set of DARPins binding specifically
to fluorescent proteins has been described [30]. These DARPin-
based GFP binders are functional in living cells and can be used
in cell and developmental biology for protein tracking and protein
interference experiments.

Clearly, well-characterized artificial proteins binding to fluor-
escent proteins are potentially useful tools for a large community.
A first αRep protein binding GFP has been reported [26]. We
present here two additional αRep proteins able to recognize GFP
with high specificity and affinity. The X-ray structures of both
αReps in complex with GFP surprisingly showed that they adopt
totally different binding modes. The ability of αReps to isolate
their target in a crude cell lysate was confirmed by a pull-down
experiment. Finally, we were able to express the αReps in mam-
malian cells and their localization was modified by the interaction
with the GFP protein target addressed to different cellular com-
partments (mitochondria, Golgi apparatus and nucleus).

MATERIAL AND METHODS

Phage display selection against biotinylated EGFP
αRep library 2.1 was used to perform phage display selec-
tion. The selection methods were as previously described [26].
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Briefly, in vivo biotinylated EGFP was linked on streptavidin-
coated micro-titre ELISA plate. To prevent the selection of
streptavidin-binding clones, phages from the library were
pre-incubated in wells coated with streptavidin (1–2 × 1010

phages/well) and then transferred in the selection plate for
1 h at 20 ◦C. After several washes with Tris-buffered saline
and Tween 20 (TBST-20 mM Tris/HCl, pH 8.0, 150 mM NaCl,
0.1 % Tween-20) bound phages were specifically eluted by
releasing immobilized GFP with TEV protease (10 μg of ml− 1)
for 3 h at 25 ◦C.

Screenings of αReps for target binding
After three rounds of selection, specific clones were identified by
phage-ELISA [26] and further confirmed using a functional CoFi-
blot analysis [31,32]. This test detects the presence of biotinylated
target retained on phage-free αRep directly expressed from bac-
terial colonies. Biotinylated target bound on positive clones were
detected by fluorescence imaging using streptavidin-Alexa-680.

The sequence of 11 clones presenting strong binding signals
for the target revealed four different αRep protein sequences
among which three were further characterized.

Proteins expression and purification
αRep variants and fluorescent proteins (FPs) genes were sub-
cloned in pQE81L vectors (Qiagen). Expression and purification
of αRep and GFP proteins were performed as described [25].
The plasmid coding for each protein was transformed into the
expression strain (BL21-Gold DE3 Agilent). Cells were grown
at 37 ◦C in 2YT containing 100 μg·l− 1 ampicillin up to an ab-
sorbance of 0.6 at 600 nm. Protein expression was induced by
addition of 1 mM IPTG and the cells were further incubated for
the four αReps at 30 ◦C. The cells were then harvested, suspen-
ded in TBS, submitted to three freezing/thawing cycles, treated
with benzonase for 30 min and sonicated.

Biotinylated αRep used for pull-down experiments were pro-
duced using the Avitag system. αRep coding sequences were
sub-cloned in a modified pQE81L vector in which the biotinyla-
tion sequence (GLNDIFAQKIEWHE) was added in phase in
between the His-tag and the αRep cloning sites.

The His-tagged proteins were all purified from crude
supernatant using nickel-affinity chromatography (nickel-
nitrilotriacetic acid (Ni-NTA) agarose, Qiagen) followed by size-
exclusion chromatography (SEC; Hiload 16/60 SuperdexTM 75
GE Healthcare) in PBS or HEPES buffer. For each protein, pur-
ity of the final sample was controlled by SDS/PAGE with an
overloaded gel showing one well-resolved band with no visible
contamination. For all the following experiments the proteins
were quantified by UV spectrophometry (280 nm) and expressed
in monomer concentration.

Analytical size-exclusion chromatography
Analytical SEC was done with an ÄKTA Purifier (GE Health-
care) system using a SuperdexTM 75 10/300 column (flow-rate

0.8 ml·min–1) equilibrated in PBS. For all the purified proteins
analysed, 100 μl of protein sample (1–15 nmol depending on
experiments) were injected on to the column. For each elution
profile, A280 nm was normalized relatively to its maximum.

Isothermal titration calorimetry
The binding parameters were monitored with an isothermal titra-
tion calorimetry (ITC) 200 microcalorimeter (MicroCal). For the
titration of target protein, 2 μl aliquots of the titrant (varying from
350 μM to 364 μM, depending on the experiment) were injected
from a computer-controlled 40-μl microsyringe at intervals of
180 s into the solution of target (varying from 30 to 35 μM, de-
pending on the experiment; cell volume 0.24 ml) dissolved in the
same standard buffer (PBS) while stirring at 1000 rpm. The heat
of dilution of the binder was determined from the peaks measured
after full saturation of target by the binder. The data were integ-
rated to generate curves in which the areas under the injection
peaks were plotted against the ratio of injected sample to cell
content. Analysis of the data was performed using the MicroCal
Origin software provided by the manufacturer according to the
one-binding-site model. �H◦, the standard change in enthalpy
and �G◦ the standard change in Gibbs free energy were calcu-
lated by integration of heat capacity variation from the titration
curve and associated equilibrium constant. �S◦ is the standard
change in entropy upon binding was calculated from determ-
ined equilibrium parameters using the equation: − RTLn(KA) =
�G◦ = �H◦ − T�S◦, where R is the universal gas constant
(1.9872 cal·mol− 1·K− 1), T is the temperature in Kelvin, KA is
the association constant. The binding constant of each interaction
is expressed as 1/KA = KD (in mol·l− 1) for more clarity.

Surface plasmon resonance
Surface plasmon resonance was measured using a ProteonTM

XPR36 instrument (Bio-Rad). All measurements were performed
in 50 mM phosphate buffer, pH 7, 150 mM NaCl and 0.005 %
Tween 20 at a flow rate of 100 μl·min− 1. ProteOn GLC sensor
chip (Bio-Rad) were used to immobilized αRep proteins (bGFP-
A, bGFP-C, bGFP-D and αRep A3) in parallel on one of the
six channels chip following the amine-coupling protocol. For the
determination of kinetics data, purified FPs (EGFP, ECFP, EYFP
and mCherry) were injected each at six different concentrations
in parallel (0; 1.1; 3.3; 10; 30 and 90 nM) during 200 s and
dissociation signals were acquired during 600 s. The signal of the
uncoated reference channel and interspots were always subtracted
from the sensorgrams. The kinetic data were analysed with the
Proteon Manager software fitted by Langmuir analysis for the
five protein concentrations.

Crystallization, structure determination and
refinement
All crystallization experiments were carried out at 293 K us-
ing the vapour diffusion method. Initial crystallization screening
was done at three different protein concentrations (15, 10 and
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Table 1 Presentation of the three αReps selected against EGFP: bGFP-A, bGFP-C and bGFP-D
For each protein the number of inserted internal repeats in between N-cap and C-cap and the nature of the residues found at randomized positions
are indicated. Eighteen, 19, 22, 23, 26, 30 refers to the position of the residues inside each repeat. Only residues E, K and Q are allowed at position
30. For each αRep kinetic binding constants, kon, koff and dissociation constant KD for the FP variants (EGFP, EYFP and ECFP) were measured by
SPR (Proteon Biorad). αReps were immobilized to the chip surface by amine coupling and different concentrations of each variant were injected (90,
30, 10, 3.3, 1.1 and 0 nM). Dissociation constants of the three αReps for the EGFP proteins were also measured by ITC (in the syringe: bGFP-A:
350 μM; bGFP-C: 364 μM; bGFP-D in the cell: 30 μM and EGFP in the cell: 35 μM or in the syringe: 298 μM).

Motifs number Variable sequence positions kon koff KD (nM)

αRep Motif 18 19 22 23 26 30 Variant 104 M− 1·s− 1 10− 4 s− 1 SPR ITC

bGFP-A 6 Ncap P P V Y F K 15 +− 4

1 A S Y A T Q

2 G Y T A E Q EGFP 15 +− 1 2.1 +− 0.1 1.4 +− 0.1

3 P W L T R E EYFP 12 +− 1 16 +− 1 14 +− 1

4 P W L T R Q ECFP 11 +− 1 6.9 +− 0.1 6.5 +− 0.1

5 A S K A V Q

6 E Y Q R S K

bGFP-C 3 Ncap M R Y N T K EGFP 6.2 +− 0.1 2.6 +− 0.1 4.2 +− 0.1 19 +− 12

1 G Y L E E E EYFP 11 +− 1 6.3 +− 0.1 5.5 +− 0.1

2 P D S E L K ECFP 5.8 +− 0.1 14 +− 1 25 +− 1

3 R Y M A W K

bGFP-D 4 Ncap M P Y D D K –

1 P N A S D K EGFP 2.9 +− 0.1 4.2 +− 0.1 14 +− 1

2 G Y F S L K EYFP 7.9 +− 0.1 1.7 +− 1.1 2.1 +− 0.1

3 S R W S Y Q ECFP 7.6 +− 0.1 9.0 +− 0.1 11 +− 1

4 W Q K A V K

5 mg·ml− 1) using commercially available kits (Qiagen Classic,
MB Class I, PEG II, JCSG + ). The two complexes behaved
rather differently during the crystallization process. The bGFP-
A–EGFP complex crystallized under many different crystalliz-
ation conditions, whereas for the bGFP-C–EGFP complex only
one hit was obtained. Optimization of the initial hits led to the
following crystallization conditions: complex bGFP-A–EGFP
(0.05M MgAc, 0.1M NaAc, 5 %–15 % PEG 8K) and complex
bGFP-C–EGFP (50 mM Tricine, pH 6.9, 25 % PEG4K).

Crystals were flash-frozen in liquid nitrogen by two soaking
steps using mother liquor supplemented with 15 % and 30 % gly-
cerol as cryoprotectant. Diffraction data were collected at 100
K on beamline PROXIMA 1 at the SOLEIL synchrotron using
a PILATUS detector. The images were integrated with the XDS
program [33] and processed using the CCP4 program suite [34].
For the resolution of the structure, molecular replacement phases
were obtained with Phaser, implemented in the CCP4 program
suite [35] using the following search models: the structure of
EGFP from Aequorea victoria, PDB ID 1JBZ [36] and a six-
helix motif from the αRep4 structure, PDB ID 3LTJ [23]. The
experimental map was improved by solvent modification using
the program DM [37]. The initial models were completed and ad-
justed with the program COOT [38]. Refinement was performed
using REFMAC [39]. The crystal structure of the bGFP-A–EGFP
(complex 1) at 2 Å (1 Å = 0.1 nm) resolution was refined to
R and Rfree crystallographic factors of 20.5 % and 26.8 % re-
spectively (Table 1). The crystal structure of the bGFP-C–EGFP
(complex 2) at 3.4 Å resolution was refined to R and Rfree crys-
tallographic factors of 20.9 % and 29.2 % respectively (Table 1).

Atomic co-ordinates and structure factor were deposited in the
Protein Data Bank under accession codes 4XL5 for the complex 1
(bGFP-A–EGFP) and 4XVP for the complex 2 (bGFP-C–EGFP)
respectively.

Pull-down experiment
Human embryonic kidney cells (HEK) (10 × 106), transfected
with the plasmid pEGFP-N1 (Clontech), were harvested 48 αRep
after transfection and lysed in 1 % Triton X100, 150 mM NaCl,
50 mM Tris/HCl, pH 7.4, 1 mM EDTA during 30 min at 4 ◦C.
Cellular lysate was ultra-centrifuged at 90 000 g for 30 min. The
supernatant, containing EGFP proteins, was divided in five ali-
quots, each incubated with either 300 μg of biotinylated αRep
(bGFPs and A3) or dilution buffer (150 mM NaCl, 50 mM
Tris/HCl, pH 7.4), all adjusted to a final volume of 1.5 ml, during
3 h at 4 ◦C. Supernatant (7.5 μl) was diluted in SDS containing
buffer to be analysed (referred as input). Streptavidin-Agarose
beads (40 μl; Thermo Scientific), previously equilibrated in wash
buffer (150 mM NaCl, 50 mM Tris/HCl, pH 7.4, 0.1 mM EDTA),
were added in each mix and incubated 1 h at 4 ◦C. After a centrifu-
gation step (2 min, 3000 g, 4 ◦C), supernatants were isolated and
7.5 μl was used for SDS page (referred as depleted lysate). Beads
were quickly washed four times (1000 g, 15 s, in 1 ml of 0.16 %
Triton X100, 150 mM NaCl, 50 mM Tris/HCl, pH 7.4, 0.16 mM
EDTA). Beads were suspended in 4× SDS-containing buffer.

SDS/PAGE (12 % gel) were used for samples migration. GFP
proteins on western blot (WB) nitrocellulose membrane were
revealed using anti-GFP antibody (Cell Signaling) and anti-rabbit
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IgG–HRP immuno-conjugate, observed by addition of ClarityTM

western ECL substrate (Bio-Rad).

Eukaryotic cell expression
αReps sequences were sub-cloned in a modified pmCherry-
N1 vector (Clontech) in which Flag-tag sequence
was added in N-terminal of the multiple cloning site
(MCS). Plasmids contained EGFP genes were previ-
ously described (pEGFP-Rab6 [2], pEGFP-mito [40],
pNLS-EGFP [41]). HEK cells were grown in Dulbecco’s
Modified Eagle medium (DMEM)-F12 medium supplemented
with 10 % FBS and HELA cells were grown in DMEM,
high glucose, GlutaMAX (Lifetechnologies) containing 10 %
heat-inactivated fetal calf serum (FCS), 1 mM sodium pyruvate.
Transfections were realized using Lipofectamine LTX (Invit-
rogen) following the commercial protocol for HEK cells and
thanks to calcium phosphate for HELA cells. For microscopy,
105 HEK cells were directly transfected in micro slide eight-well
(Ibidi) with αRep plasmid or αRep and GFP plasmid and
examined after 1 or 2 days.

Microscopy
Live cells expressing fluorescent proteins were analysed using
Axio Observer microscope (Zeiss, 40× objective) or confocal
spinning disk Yokogawa CXU-X1 A1 microscope (60× object-
ive) at 37 ◦C, with CO2.

RESULTS

Selection from the library of GFP-binding αReps
The αRep scaffold, the library construction and the phage dis-
play selection procedure against the biotinylated target EGFP
were previously described [26]. Briefly, three rounds of selection
were performed using the αRep 2.1 library against biotinylated
EGFP bound to streptavidin in an ELISA Plate. The GFP-binding
clones were identified using successively a phage-ELISA screen
and a functional colony filtration blot. In the phage-ELISA ex-
periment, bacteriophages produced from individual αRep clones
are incubated in presence of the immobilized target and revealed
using an anti-phage antibody. In the functional colony filtration
blot, the proteins from soluble cytoplasmic fractions of isolated
clones are adsorbed on a nitrocellulose membrane and incubated
with the biotinylated target; the bound target protein is revealed
using fluorescent streptavidin. Clones showing affinity for the tar-
get were sequenced and redundancy could be observed in those
sequences obtained after the third round of selection (four unique
sequences out of 24 clones). Three binders of interest were fur-
ther characterized. One of the sequences, bGFP-A, was described
[26] and the two others will be referred as bGFP-C and bGFP-D.
A fourth sequence (bGFP-B) displayed strong binding signals
but this purified protein appeared by SEC to associate in a range
of oligomeric forms and for this reason was not further invest-

igated. The three selected binders differ both in the number of
inserted repeats they contain (respectively 6, 3 and 4 motifs) and
in residues that are found at the randomized positions (Table 1).

The isolated αRep genes were sub-cloned in expression vec-
tor (pQE81L), produced in Escherichia coli and purified using
immobilized metal affinity chromatography (IMAC) followed by
SEC. They are all very well expressed (from 50 to 100 mg·l− 1),
soluble and stable as already observed for proteins from the αRep
libraries.

In vitro characterization of EGFP–αRep complexes
Analytical size exclusion chromatography
Analytical SEC was used to determine the quaternary structure
of the αRep proteins and their complexes with GFP in solution.
Previous SEC results showed that bGFP-A protein eluted as a
dimer, although it forms a 1:1 complex with EGFP [26]. A solu-
tion containing bGFP-C or bGFP-D with GFP was injected on an
analytical SEC column (Figure 1A; Supplementary Figure S1A).
The proteins bGFP-C, bGFP-D and EGFP are eluted respectively
at 11.2 ml, 11.5 ml and 11.3 ml. For each mixture, a new peak
was observed at a lower volume (10.5 ml for bGFP-C and 8.9 ml
for bGFP-D) compared with those of the target or binder pro-
tein alone. This is consistent with the formation of a GFP–αRep
complex.

In summary, SEC indicates that each of the three αReps forms
a complex with GFP stable enough to be isolated.

Binding affinity determination
ITC experiments were performed to determine the affinity of
the binders for the EGFP target. The dissociation constants for
bGFP-A–EGFP and bGFP-C–EGFP complexes were found to be
in the nanomolar range, with KD values of respectively 15 +− 4 nM
[26] and 19 +− 12 nM (Table 1; Figure 1B). For bGFP-A and
bGFP-C, the stoichiometry values (n) of 1.1 and 1.2 respectively
indicated the formation of 1:1 complexes. However for bGFP-
D, no apparent binding signal could be measured. The lack of
ITC signal of the bGFP-D for the EGFP was unexpected given
that a stable interaction is unambiguously observed by various
other techniques (ELISA, CoFi Blot, gel filtration). The lack
of ITC signal for the interaction between bGFP-D and EGFP
suggested that the enthalpic contribution is counterbalanced by
an opposite sign entropic contribution, cancelling the resulting
measured signal.

In order to complete the ITC results, surface plasmon
resonance (SPR) experiments were carried out to determine the
binding constants of each αRep for the EGFP target. For the com-
plex bGFP-D–EGFP, the SPR-measured equilibrium dissociation
constant (KD) was 14 +− 41 nM. The kon values were found in the
order of 104 M− 1·s− 1 showing a rapid binding on the target and
a slow dissociation rate (order of magnitude of koff: 10− 4 s− 1).
The nanomolar range of the KD values for the complex formation
of bGFP-A (1.4 +− 0.1 nM) and bGFP-C (4.2 +− 0.1 nM) was
confirmed. KD values obtained by SPR were smaller than those
measured by ITC. This origin of differences between ITC and
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Figure 1 Biophysical characterization of the bGFP-C–EGFP complex
(A) SEC (Superdex 75 10/300 GL, GE Healthcare) of the selected bGFP-C and EGFP. (�) SEC Elution profile of a mixture
of EGFP (4 nmol) and binder bGFP-C (4 nmol); (�): elution profile of the bGFP-C alone (2.2 nmol); (ü ): elution profile of the
EGFP alone (6.7 nmol). (B) ITC calorimetric titration of EGFP (35 μM) with bGFP-C (364 μM). (C) Affinity determination of
selected bGFP-C using SPR. In this example, different concentrations of EGFP respectively 90, 30, 10, 3.3, 1.1 and 0 nM,
were applied for 200 s, followed by washing buffer flow during 600 s, to a flow cell where bGFP-C was immobilized by
amine coupling. The sensorgrams were corrected for non-specific binding by subtraction of the signal obtained in channel
without EGFP (0 nM) injected. Proteon Manager software was used to fit the curves by Langmuir analysis and determine
the kon and koff rates and then deduce the KD.

SPR KD values are not fully understood but similar discrepancies
have already been observed [42]. In our case, part of the
differences may be related to the fact that, due to high affinities,
ITC curves contained only few points within the transition part
of the saturation curve and which lead to an increased error on
KD values.

Binding specificity
In order to analyse the specificity of each binder, the interactions
with various FPs were measured by SPR. EGFP, ECFP, EYFP and
the mCherry protein were purified by affinity chromatography
(IMAC) followed by SEC. The FP variants of the EGFP, ECFP
and EYFP, differ only in residues near the chromophore, which
is buried inside the β-barrel of the protein and in a few surface
residues. As shown in Table 1, only slight binding-affinity differ-
ences between the EGFP, ECFP and EYFP and the GFP binders
were observed. This result can be rationalized with the known

structures of αRep–EGFP complexes (see below) that indicate
that the surface residues that differ between EYFP and ECFP are
not located in the αRep-binding surface. The binders bGFP-A,
bGFP-C and bGFP-D could thus be used as generic binders for
these closely related FP. Conversely, bGFP binders had no affin-
ity for the mCherry protein, which has the same β-barrel fold but
displays more differences in surface residues.

In order to understand how the selected αReps of different
length bind their common target with comparable affinities, the
structures of two of the studied complexes have been investigated
by X-ray crystallography.

X-ray structures of two complexes
Structure determination of the EGFP–bGFP complexes
bGFP-A–EGFP (complex 1) crystallized in the monoclinic space-
group P21 and crystals diffracted at 2 Å resolution (Table 2). The
asymmetric unit contains one copy of the hetero-dimer. Clear
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Table 2 X-Ray data collection and refinement statictics

bGFP-A–EGFP bGFP-C–EGFP

PDBID 4XL5 4XVP

Data collection

Beamline PX1 (SOLEIL) PX1 (SOLEIL)

Wavelength (Å) 0.97857 0.97918

Space group P21 C2

Unit cell dimensions

a, b, c (Å) 72.28, 45.98, 74.89 105.52, 71.55, 179.20

α, β, γ (◦) 90.00, 90.76, 90.00 90.00, 100.72, 90.00

Resolution (Å)* 39.2-2.0 (2.1-2.0) 46.7-3.4 (3.6-3.4)

Completeness (%) 98.5 (98.1) 99.7 (80.1)

Multiplicity 3.0 (3.0) 3.5 (2.3)

I/σ (I) 14.3 (2.0) 10.9 (2.0)

Rmerge
† 0.05 (0.77) 0.10 (0.54)

Number of reflections 99062 (15572) 61834 (6295)

Number of unique reflections 33143 (5270) 19164 (2826)

Wilson B factor (Å) 46.155 48.647

Refinement

Resolution (Å)* 39.2-2.0 (2.1-2.0) 46.7-3.4 (3.5-3.4)

R-work 0.205 (0.385) 0.209 (0.397)

R-free 0.268 (0.377) 0.292 (0.43)

Number of non-H atoms 3790 9144

EGFP 1818 5472

bGFP 1869 3672

Water 103 -

RMSD bonds (Å) 0.014 0.010

RMSD angles (◦) 1.7 1.4

Ramachandran favoured (%) 99.57 98.94

Ramachandran outliers (%) 0.43 1.06

Average B-factor (Å2) 49.12 118.36

EGFP (Å2) 48.33 120.1

bGFP (Å2) 50.11 115.78

Water (Å2) 45.37 –

*Statistics for highest resolution shell are shown in parentheses.
†Rmerge = �h�i|Ihi - <Ih>|/�h�iIhi, were Ihi is the ith observation of the reflection h, whereas <Ih> is
the mean intensity of reflection h.

electron density was observed for residues 3–231 of the EGFP and
15–259 of the bGFP-A αRep. bGFP-A consists of 16 α-helices,
which superposed well with the last 12 helices of a previously
described [25] αRep-4 structure (RMSD value of 0.367 Å for
168 atoms superimposed; Figure 2A).

bGFP-C–EGFP (complex 2) crystallized in the monoclinic
C121 space group and crystals diffracted at 3.4 Å resolution
(Table 2). Complex 2 contains three hetero-dimers in the asym-
metric unit. The refined structure consists of residues 2–231 for
EGFP (chains A, B and C) and residues 9–166 for bGFP-C
(chains D, E and F). The three hetero-dimers are structurally
identical with a RMSD of 0.167 Å and 0.140 Å for superimposed
Cα-positions (Figure 2B).

bGFP-A and bGFP-C adopt the canonical αRep fold consisting
of 6 and 3 α-helical internal repeats respectively and well-defined

C- and N-caps. EGFP undergoes only very limited structural
changes upon binding the bGFPs.

The interface areas (as calculated by PISA [43]) for complex 1
are 934 Å2 (bGFP-A–EGFP) and for complex 2, 1309 Å2 (bGFP-
C–EGFP), which is in the range of standard protein/protein inter-
faces [44,45]. Although the size of bGFP-C is two times smaller
than for bGFP-A, its interaction surface with EGFP is larger by
375 Å2.

Surprisingly, the two binders interact very differently with
their EGFP target in their respective complexes. Although their
N-caps bind to the same region on EGFP, the interaction modes
and the relative orientations of the binders are radically differ-
ent. In complex 1 the helices of bGFP-A are oriented perpen-
dicularly to the barrel axis of EGFP, whereas, for complex 2, the
helices of bGFP-C are parallel with the barrel axis (Figure 3). The
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Figure 2 structures of GFP-binding αReps
(A) Superposition of the 16 α-helices of bGFP-A (yellow) with the 12 α-helices of αRep-4 (red, PDB ID 3LTJ; [53]), RMSD =
0.367 Å. (B) Superposition of the three hetero-dimers (A:D, B:E and C:F) of the complex 2 (bGFP-C–EGFP) in green, blue
and red, from the same asymmetrical unit (RMSD = 0.167 Å for 330 residues and RMSD = 0.140 Å for 318 residues.

Figure 3 Details of the complexes structures: capping repeats are represented in red, EGFP in green, bGFP-A in yellow
and bGFP-C in blue
(A) EGFP–bGFP-A complex, side view; (B) EGFP–bGFP-C complex, top view; superposition of both complexes structures:
(C) side view and (D) top view, N-cap motif interact with the same GFP region

majority of the direct protein contacts between bGFP-A and
EGFP surface are located at the N-cap helices of the repeat pro-
tein. The curvature of bGFP-A creates a cavity between the EGFP
barrel surface and its central repeats (R5 and R6) that is filled
with water molecules that mediate indirect protein interactions.

The direct interactions between bGFP-A and EGFP are mainly
hydrophobic and mediated by randomized residues on the con-
cave surface of the proteins (Figures 4A and 4B). However, only
14 out of the 42 randomized residues are involved in the inter-
action. Those positions that interact are situated mainly on the
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Figure 4 Analysis of the EGFP–bGFP interactions
Hydrophobic contacts are coloured in light blue in the tables and in cyan in the structures, hydrogen bonds are in red and
salt bridges in orange. *conserved residues of αReps involved in specific interaction with the target. (A) Table presenting
variable residues of bGFP-A for each repeat [N-Cap and repeats 1–6 (R1–R6)]; coloured residues contact with EGFP, residues
in black are not involved in the interaction. (B) Cartoon representation of the bGFP-A structure in yellow, residues involved
in the interaction are represented as sticks and coloured according to the nature of the interaction with EGFP residues.
(C) Cartoon representation of the bGFP-C structure in dark blue, residues involved in the interaction are represented as
stick and coloured according to the nature of the interaction. (D) Table presenting variable residues of the bGFP-C arranged
according to their position in each repeat [N-Cap, repeats 1–3 (R1–R3) and C-cap], coloured residues are involved in
the main contact with EGFP residues, residues in black are not involved in the interaction. (E) EGFP structure in green,
residues involved in the interaction with αReps are represented as sticks: in yellow, residues interacting with bGFP-A and
in blue, residues interacting with bGFP-C. No residue of the GFP involved in interaction is found in both complexes.
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N-terminal part of each repeat (positions 18 and 19 on the repeat)
since the C terminal parts of the repeats are not in contact with the
EGFP surface. For example, positions 19 of repeat 1, 2, 3, 4 and 6
generate 38 out of the 101 hydrogen bonds of the interface. The
only three hydrogen bonds observed in the structure are located
in the N- and C-terminal of the binder (Tyr33 of the N-cap, Asp58

and Arg219 in the R1 and R6 repeat respectively). Hydrogen bonds
« via » waters molecules are also observed in the repeats R1, R2
and R3: S60-HOH44-K41 (repeat 1); Y91HOH27-S208 (repeat 2);
W122-HOH26-L207 (repeat 3). Except in the N-cap, the variable
positions 26 and 30 are not involved in the interaction. Unex-
pectedly, a non-randomized residue (Asp58) also participates in
the interaction, forming a hydrogen bond with EGFP Tyr39. The
N-cap and the last internal repeat (R6) play an important role
in the interface, generating two of three directs hydrogen bond
observed (Tyr33 and Arg219). Overall, the strong interaction meas-
ured between bGFP-A and EGFP almost entirely originates from
randomized side chains but not all randomized side chains in-
teract. The αRep–EGFP interaction thus does not exploit the
whole potential of the αRep surface. The selected αRep bind
EGFP efficiently, although, due to the partial sampling of the se-
quence space, each binder is unlikely to display the ′optimal′ side
chain combination for its binding surface. Further optimization of
such large surfaces could be conducted using affinity maturation
methods.

The interaction surface between bGFP-C and EGFP is quite
different from that of complex 1: bGFP-C has less repeats than
bGFP-A and almost all of its diversified residues are involved in
the interaction: 23 out of 24 randomized residues are located in
the interface and 21 out of 24 randomized residues are involving
in contacts with EGFP from chains D, E, F respectively. Unlike
previously observed for the four other αRep structure complexes
already solved, the not randomized C-cap module is also involved
in the interaction. The details of all the interactions are presented
in Figure 4(A).

Energetic profiles of the interactions
Although the binding affinities of bGFP-A and bGFP-C for EGFP
are very similar, the crystal structures of the complexes showed
they bind very differently to the EGFP protein. Despite their dif-
ferent binding modes, the two binders mainly interact with EGFP
via the randomized surface residues situated on their concave
surfaces. A more detailed analysis of the interfaces between the
αRep proteins and EGFP revealed that different types of interac-
tions stabilize the complexes. The thermodynamic parameters of
binding obtained by ITC are presented in Figure 5, showing that
both binders have compensating differences in their enthalpic
and entropic contributions. bGFP-A, has an unfavourable �H
[5.58 +− 0.06 kcal·mol− 1 (1 cal≡4.184 J)] and a favourable neg-
ative − T�S ( − 16.33 kcal·mol− 1) contribution. The favourable
entropic energy ( − T�S) suggests that binding is mainly driven
by hydrophobic interactions. This result is corroborated by the
structural analysis showing that complex formation involves 10
hydrophobic residues located between the N-cap and the fourth
repeat (Figure 4A). The thermodynamic analysis of the bGFP-C

Figure 5 Energy balance of interactions of both complexes bGFP-
A–EGFP and bGFP-C–EGFP
Plot of entropic and enthalpic contributions resulting of the interaction
of each complex, determined by ITC. �H, enthalpic contribution; − T�S,
entropic contribution.

binding to EGFP presented in Figure 5, shows both favourable
enthalpic ( − 3.99 +− 0.07 kcal·mol− 1) and entropic contributions
( − 6.37 kcal·mol− 1). The favourable enthalpic contribution re-
flects the important involvement of hydrogen bonds in this in-
teraction, as corroborated by the structure: the bGFP-C–EGFP
complex involves 165, 154 and 156 contacts (Figure 4D) with
9, 9 and 8 direct H-bonds for A:D, B:E and C:F heterodimers
respectively. On the other hand, the favourable entropic contribu-
tion is probably due to the burial of the hydrophobic groups and
release of water upon binding in the two hydrophobic patches
present at the interface (bGFP-C Tyr60; Leu63 with EGFP Ser175;
Val176; Leu178 and bGFP-C Arg121; Tyr122; Met125 with EGFP
Tyr182; Phe165; Asn164; Met153).

αReps as tools for biochemical and functional
studies in living cells
In order to determine whether artificial αRep proteins could be
used in living cells, we characterized the αRep–EGFP interac-
tions in a cellular context.

αReps can pull down their target from a cellular extract
According to the high affinity measured in vitro for the interac-
tion, αRep proteins should be able to selectively bind their target
within a complex mixture such as crude cell extract. To confirm
this hypothesis, we set up a pull-down experiment. αReps can
easily be expressed and biotinylated in E. coli by the addition
of an Avi-tag sequence to the N-terminus. The individual previ-
ously purified biotinylated bGFPs and a non-relevant αRep used
a control, were incubated with a cell lysate of HEK 293 cells
expressing EGFP. αReps were captured on streptavidin-agarose
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Figure 6 Affinity purification of EGFP protein by specific αRep proteins
Biotinylated αRep proteins were attached on streptavidin-agarose beads: bGFP-A, bGFP-C, bGFP-D, NS-αRep (non-specific
αRep) and beads without biotinylated proteins (0) as a control. Beads were incubated with cell lysate containing EGFP
and washed. Bound proteins were analysed by western blot using anti-GFP antibody followed by anti-rabbit horeseradish
peroxydase (HRP) antibody. (A) Input: lysate before incubation with beads; Depleted cell lysate: lysate after beads incuba-
tion for each αRep and control. (B) αRep pull-down: analysis of proteins attached on beads after the washing step for the
different samples.

beads and aliquots of the remaining unbound supernatants were
kept for analysis (depleted lysate). Following washing steps, the
bound αRep complexes were denatured with SDS and analysed
by western blot using an anti-GFP antibody (Figure 6). No EGFP
was detected in the depleted lysate incubated with each of the
bGFPs whereas, in control experiments, EGFP remains in the
lysate in absence of αRep or in presence of non-relevant αRep.
These results show that bGFPs are able to capture EGFP from
a complex mixture. A clear band on the western blot for EGFP
was detected in the eluted fractions from beads that bound bG-
FPs, but not from the controls. The αReps bGFPs are clearly
able to retain specifically their target after repeated washes and
can be used as tools to isolate their target from a complex cell
extract.

αReps can be expressed in eukaryotic cells
αReps were initially developed using prokaryotic cells expres-
sion, but were not previously tested for expression in mammalian
cells. In order to detect αRep expression in eukaryotic cells, the
sequences coding for each bGFP and a non-relevant αRep were
fused to the sequence coding for the fluorescent protein mCherry.
The expression of the resulting αRep–mCherry fusion proteins
was detected by fluorescence in transiently transfected live HEK
cells. Red fluorescence could be seen in transfected cells for
the four tested proteins, equally distributed in the cell cytoplasm
(Figure 7A). No aggregate or cell toxicity due to the expression
of αRep–mCherry could be observed during the experiment. The
four αRep–mCherry fusions are expressed and stable in cell cyto-
plasm, no specific localization was apparent for those proteins,
which appeared as freely diffusing in the whole cell.

αReps recognize their target inside cells
The ability of αReps to discriminate their target within the context
of a eukaryotic cell was then investigated. The three bGFPs and a
non-relevant αRep control served as model proteins to compare

the specific binding of αReps in different subcellular compart-
ments. We used three different previously well characterized GFP
fusions targeted to different cell compartments: NLS-GFP which
is addressed to the nucleus [41], rab6A-GFP targeted to the Golgi
apparatus [2] and Mito-GFP which is inserted into the outer mem-
brane of the mitochondria [40]. HEK cells were co-transfected
with one plasmid expressing localized EGFP and another ex-
pressing αRep–mCherry. Living cells were then observed by
confocal microscopy following the EGFP and mCherry fluores-
cent proteins. Representative images of co-transfected cells are
shown (Figures 7B and 7C) with red (αRep–mCherry) and green
fluorescence (GFP) together with a merged image of the same
cells to directly compare the localization of proteins. In each
case, m-Cherry fused αRep binders are clearly co-localized with
the differently addressed GFP fusions. The non-relevant αRep,
as expected, showed no specific localization and was homogen-
eously distributed in the cytoplasm in presence of GFP fusion
proteins. These results show that αReps are expressed, correctly
folded and bind specifically their target in eukaryotic cells. The
co-localization with nuclear GFP shows that the αRep proteins
can also be targeted to the nucleus and that the nuclear target–
αRep binder interaction is sufficient for nuclear localization, as
αRep are not fused to a nuclear localization signal. Independ-
ently of their size and composition, the three bGFPs presented
the same properties of stability and recognition of the GFP fu-
sion proteins. αRep proteins therefore seem to be ideally suited
to serve as specific binders in a eukaryotic cellular context.

DISCUSSION

GFP binders selection
The αRep library contains a repertoire of artificial repeat proteins
from which specific binding molecules can be selected [26]. Us-
ing GFP as a model target protein, we further investigated the
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Figure 7 αReps characterizations in mammalian living cells
(A) Plasmids expressing αRep–mCherry protein fusion (bGFP-A, bGFP-C, bGFP-D and NS αRep: non GFP-specific αRep)
were transiently transfected in HEK cells. Protein expression was observed 24 h after transfection by confocal microscopy.
The red fluorescence of the mCherry–αRep protein fusions is equally distributed inside the cell cytoplasm. (B) Scheme
of co-localization experiment; LS: localizing sequence to nucleus, mitochondria and Golgi apparatus, fused to EGFP
protein and observed in green in the cell; αRep–RFP: protein fusion of αRep–mCherry observed in red inside the cell.
Co-localization of both fusion proteins resulting of the recognition of the GFP by the selected αRep can be observed
by a yellow colour inside the cell. (C) Plasmids expressing αRep–mCherry and LS–GFP protein fusion were transiently
co-transfected in mammalian cells. Each line shows representative cells expressing EGFP-fusion addressed to different
subcellular compartment. GFP proteins were addressed into the nucleus (nucleus-GFP in HEK cells), the mitochondria
(mito-GFP in HEK cells) and the Golgi apparatus (Golgi apparatus in HELA cells). Each column shows representative cells
expressing an αRep–mCherry fusion. For each co-transfection, the same cell is imaged using (a) green fluorescence
(EGFP), (b) red fluorescence αRep–mCherry and (m) merge of both images.

potential of the αRep library as a source of binders and their
applicability as tools for protein target recognition in eukaryotic
cells.

First, these results are an additional demonstration of the utility
of scaffolds derived libraries: EGFP-specific αReps with differ-
ent sequences and lengths were selected from a single phage
display library. Detailed in vitro characterization confirmed that
these binders tightly interact with EGFP. It is noteworthy that,
although the sequence space created by the αRep randomiza-
tion scheme is very large and far from being totally explored in
the experimental library, the selections did produce a number of
distinct interacting proteins with a useful affinity for practical
applications. The GFP binders described here have been selec-
ted out from a single generic library, without any post-selection
affinity maturation procedures. We therefore demonstrated that

selection from a highly diverse ‘naive’ library could be efficient
even without any previous immunization step. The target protein
EGFP does not present any specific features that could favour
specific interaction with αReps. Thus, the favourable properties
of the described binders essentially result from the high chemical
diversity of interaction surfaces embedded in the αRep library.

Structure of EGFP–αRep complexes
Structural studies are essential to understand how scaffolds-
derived binders precisely interact with their cognate target
[31,46]. This was fully illustrated by the results of our crys-
tallographic analysis of two bGFP–EGFP complexes.

The crystallization behaviour of the bGFP-A–EGFP and
bGFP-C–EGFP complexes was radically different. Many
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buffer/precipitant conditions yielded bGFP-A–EGFP crystals
formation whereas only one was found for bGFP-C–EGFP.
Moreover, crystals appeared at different time scales: from a few
hours for bGFP-A–EGFP up to many days for bGFP-C–EGFP.
The structural differences between the two complexes and the
size difference of the αReps critically influences their crystalliz-
ation behaviour; bGFP-A contains three more internal repeats,
producing an extended surface surrounding the EGFP molecule
and therefore modifying the intermolecular contacts opportunit-
ies during crystal growth [47].

The αRep library was assembled by concatenation of micro-
genes leading to a variable number of protein repeats, which
makes it unique among the documented artificial protein librar-
ies. αRep proteins tend to make good quality protein crystals
on their own but we have also shown that they can be used as
crystallization chaperones for proteins that refuse to crystallize.
The structure of fibronectin-binding protein E (FNE), a protein
involved in Streptococcus pathogenic species could only be crys-
tallized in complex with a specific αRep [31]. The fact that good
quality crystals were obtained of complexes of the same target
protein, with αRep proteins with a different number of repeats
illustrates that the variable size of the proteins can be an asset.

The comparison of the structures of GFP in complex with
bGFP-A and bGFP-C is very instructive. Using the same protein
fold containing randomized residues at the same positions, αRep
proteins were able to form very different complexes with the
same target protein. The GFP surfaces bound by the two αRep
proteins only partially overlap. The extended concave surface
of bGFP-A is sufficiently large to accommodate the cylindrical
shape of EGFP with an unexpected orientation, interacting with
one end of the cylinder as well as with side chains located along
the side of the barrel.

The structures of both αRep–GFP complexes clearly indicate
that the target recognition is specific of the conformation of the
native protein. This was also generally observed with binders
selected out from other repeat protein libraries [17,19,26,31].
The variegated surface of αReps is located on the juxtaposed
helices 2 on the concave side of the fold. The overall shape of
this binding surface appears well adapted to bind large patches on
folded proteins. The αRep scaffold is probably less well adapted
to interact with clefts, crevices or any other type of concave
features of protein targets.

The available structures of GFP/nanobodies [11,48] can be
compared with GFP–αRep complexes. The EGFP surface inter-
acting with bGFP-C fully overlap the surface of EGFP binding
a Nanobody called ‘minimizer’, although the αRep binding sur-
face is more extended. The same surface is therefore targeted
with binders of different topologies. Although this could suggest
that this part of EGFP has some intrinsic features, such as two
exposed tyrosyl side chains, prone to be selected as anchoring
residues, this is not decisive as others part of the EGFP surface
are also efficiently targeted with VHH [11,49] as well as with
αRep, as observed with bGFP-A.

The superposition of all known αRep structures [26,31] shows
very little variations suggesting that the αRep fold is relatively ri-
gid. This is in contrast with several natural HEAT repeat proteins

that appear more flexible and adapt to their bound partners by
local distortion of one repeat or by adjustments of inter-repeats
contacts [50,51]. The limited flexibility of αReps, relatively to
natural HEAT repeat proteins, is probably due to their high stabil-
ity. The sequence definition procedure of consensus-based artifi-
cial repeat proteins like αRep (or DARPins) implicitly optimizes
the protein stability, which in turn minimizes flexibility. However,
the limited flexibility of these artificial folds does not appear to
be an obstacle to the selection of high-affinity binders from these
libraries. It seems however likely that additional affinity matura-
tions step could be later used to further improve affinity of initially
selected binders by optimization of the side chains compositions
of the binding surface as well as the overall fold flexibility.

Binders applications
These αRep-based GFP binders can be easily produced in large
quantities and are very stable proteins. We show here that the
affinity and specificity of three different αReps for their GFP
target are sufficient to use them as new tools to purify GFP-fusion
proteins from a cell extract in pull-down experiments.

Natural HEAT repeat proteins are found in various organisms
from prokaryotes to humans. The restricted sub-family used for
the consensus design of αRep is however more common in proka-
ryotic species. It was thus unclear how those artificial proteins
would behave in a eukaryotic expression system. The intracellu-
lar eukaryotic expression of αRep variants confirms that they can
be stably expressed in mammalian cells. No specific localization
could be observed for αRep proteins. They are soluble in the cell
cytoplasm and can diffuse into the nucleus.

All three αRep variants selected against the EGFP were able to
co-localize with EGFP inside different cell compartments. Thus,
αReps accurately report the localization of a target protein in
living cells without forming any aggregates or causing toxicity,
which are often observed when using intrabodies. Therefore,
αRep proteins seem to be fully appropriate to explore intracellu-
lar processes in living cells, by interacting directly with endogen-
ous proteins. As overexpression of recombinant protein binders
inside the cell may induce a high background signal due to the
presence of an excess of unbound binders. Strategies have been
devised to match the expression level of the binder relatively to
its endogenous target [16]. Here, cell lines were co-transfected
with αRep and target constructs. When transfection is not ap-
plicable, alternative approaches such as viral delivery systems,
cell penetrating peptides or ‘protein transfection systems’ using
lipid-based delivery reagents could be used [9,52].

Detailed structural information provided by the crystal struc-
tures will provide the basis for future, more elaborate design.
For example, the EGFP-binding αRep described in the present
study could be easily fused to other targeted components to create
hetero-bifunctional intracellular reagents. In this respect, the high
foldability (low propensity to aggregation) of these αRep binders
is critical both for efficient production and for their future use
as generic EGFP-binding domains in engineered multi-domain
proteins.
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