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On the efficiency and robustness of damping by branching

Benoit Théckès a,1, Xavier Boutillon b,n, Emmanuel de Langre a
a LadHyX, CNRS - École Polytechnique, F-91128 Palaiseau, France

b LMS, CNRS - École Polytechnique, F-91128 Palaiseau, France

This paper investigates the mechanism referred to as damping by branching (DBB), and its
ability to attenuate the response of an oscillating structure, in the range of large
amplitudes. More specifically, we give an experimental proof of this mechanism and we
show that it is very robust against variations of the physical parameters and constituents:
nature of the damping mechanism, geometrical structure. These results motivated the
design of the Tuned Mass Branched Damper (TMBD) which is shown to be a little more
efficient than the classical Tuned Mass Damper (TMD) in some domains of the
parameter space.

1. Introduction

Damping by branching (DBB) was identified recently by [1] as a simple mean to damp an oscillating beam, referred to as
the trunk, by means of the oscillations of beams attached to it, the branches. Damping of vibration in trees originates in
wood viscoelasticity and in interactions with air [2,3]. Yet, significant exchange of energy between parts of the trees are
known to play an important role in the damping of large amplitude motions [4–10]. Essentially, the mechanism responsible
for the damping of the trunk mode is the transfer of energy to the branches, through geometrical nonlinearities, followed by
the dissipation in the motion of the branches. This was elucidated using the simple lumped parameter model shown in Fig. 1
with two degrees of freedom. The 2:1 resonance between the branch and the trunk mode was shown to bring an effective
damping of up to 3 percent for a damping of about 20 percent in the branches (see [1]: effective damping of E1.8 percent in
Fig. 5b for E0 ¼ 1 with the lumped parameter model and of E3 percent in Fig. 7 for E0 � 1 with the continuous model). By
Finite Element computation of more complex branched systems made of flexural beams, it was shown that the mechanism
is also efficient in the presence of a large number of modes.

Although the concept of DBB seems promising, many questions remain as to its applicability in designing efficient
dampers. First, this type of damping has never been evidenced experimentally although some observations on trees [11]
suggest that it does exist. Second, the robustness of the effect was not studied in [1]. Third, DBB needs to be evaluated in
comparison with other damping methods.

The purpose of the present paper is to answer these questions. In Section 2, we recall the main features of the DBB
mechanism. Experimental results are shown in Section 3 and compared to those obtained with the simplistic model
presented in Section 2. The robustness of the mechanism is explored in Section 4, and a comparison is presented in Section 5

n Corresponding author.

1



between the classical Tuned-Mass Damper (TMD) and one implementation of the DBB effect. The main results and effects
are recalled in the concluding remarks.

2. Main features of damping by branching

We recall here the main features of DBB, as defined in [1], using the elementary model shown in Fig. 1. The model is
based on the motion of three rigid bars linked by rotational springs and supporting three masses. The first bar, referred to as
the trunk, has a length ℓ1, is linked to the ground by a rotational spring k1 and supports a mass m1. Its motion is defined by
the angle θ. The branches are two symmetrical bars of length ℓ2, each originally forming an angle ϕb with respect to the axis
of the trunk. Each branch is linked to the tip of the trunk by a rotational spring k2, and supports a mass m2. A dissipative
element cb is introduced between the branches. We consider only their symmetrical motion defined by the angle ϕ. In the
limit of small motion, the first mode (trunk mode) involves θ only and the second mode (branch mode) ϕ only. The
corresponding dimensionless equations of motion have been derived in [1]:

€ΘþΘ¼ 2Γ _Θ _Φ sin ðϕbþΦÞ� €Θ cos ðϕbþΦÞ� cosϕb

� �

h i

€Φþ2Ωξb
_ΦþΩ2Φ¼ � _Θ

2
sin ðϕbþΦÞ (1)

where ξb is the damping ratio of the branch mode,Ω is the ratio between the frequencies of the trunk and branch modes, Γ
is a mass ratio,Θ andΦ are rescaled angles, time derivation is with respect to the normalised time τ (see Appendix A for the
definition of dimensionless quantities).

By analysing the free response of the system to an initial condition imposed on Θ only, it appears that the amplitude of
this mode decreases through transfer to the branch mode. The resulting effective damping of the trunk mode ξeff is defined
as

ξeff ¼
ΔE
4πE0

(2)

Fig. 1. Lumped-element model used in [1] to study DBB. (a) Geometry of the branched system. (b) Motion involving two degrees of freedom θ andϕ. (c) Decay of
the normalised energies in the system after an initial displacement of the trunk mode only (see text for the choice of normalisation). Solid line ——: total energy.
Dashed line (– –): energy in the trunk mode. Dotted line (⋯⋯): energy in the branch mode. (d) Effective damping ξeff of the system as a function of the initial
energy E0 (from [1], (4)). Dashed line (– –): analytical solution for low motion amplitude (see Eq. (3)). Solid line (——): general case. The parameters of the
structure correspond to optimal damping: ϕb ¼ π=2; ξb ¼ 0:2%;Γ ¼ 0:2.
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whereΔE is the energy lost after one period of the trunk mode and E0 is the initial energy of the system (symbols refer here
to normalised energies defined below). The evolution of this energy is shown in Fig. 1. It is found that the effective damping
depends on the amplitude of motion. After normalisation of the energies so that E0 ¼ 1 for Θ¼ π=2 and _Θ ¼ 0, a first-order
approximation gives

ξeff ¼ E0Γ sin 2ϕb ξðξb;ΩÞ: (3)

The function ξðξb;ΩÞ (see [1], Fig. 2) has a maximum nearΩ¼ 2 (2:1 resonance) and ξb ¼ 0:2 (optimal damping). In fact,
the 2:1 resonance is optimal in order to excite the branch mode by the motion of the trunk, as can be seen in Eq. (1) where
the branch mode is excited at twice the frequency of the oscillation of the trunk. The existence of an optimal damping to put
on the branch may be understood as follows: for low damping, the dissipation in the branch is not sufficient and most of the
energy is transferred back to the trunk mode, resulting in low effective damping. Conversely, for high branch damping the
motion of branches remains small, resulting in a low effective damping. Between these two extreme cases, a maximum can
be found. The effective damping is also proportional to the mass ratio Γ. Finally, it can be seen in Eq. (3) that the optimal
angle of branching is ϕb ¼ π=2, where the branches are orthogonal to the trunk. It was shown numerically that these
optimal values yield also optimal effective damping for large amplitude motions. The E0-dependency of ξeff is represented in
Fig. 1(d). The complete results for the parameter-dependency of ξeff have also been given in [1] and are shown here in Fig. 7
(case n¼1).

3. Experimental evidence

One experimental counterpart of the model presented in the previous section is shown in Fig. 2. The trunk and the
branches are made of two PVC strips that are clamped respectively in the support and on the trunk. The large ratio (30)
between the thickness and the width of the strips and the “T” arrangement where the length of the branch is along the
width of the trunk (instead of the thickness) guarantees that the first two modes (Fig. 3) have much lower frequencies than
all other ones. The value of the small masses added near the end of each branch and the quantity of rubber-band glued at
the trunk-branches junction are adjusted so that Ω¼ 2 and ξb � 13 percent respectively. The damping coefficient ξb has
been measured in a test where the trunk is blocked, the branches vibrate freely (see the definition of ξb after Eq. (1)) and the
logarithmic decrement of the vibration (sensor described below) is evaluated. Once the geometry and masses of the
structure are chosen, the modal masses m1 and m2 are evaluated, yielding the value of Γ to be E0.22, in the same range as
in the numerical experiments presented all along this paper (the case of the continuous elementary branched structure is
treated in Section 3.1 of [1], yielding Γ ¼ ðl1m2Þ=ðl2m1ÞÞ.

The trunk is deflected by a nylon thread which is burnt to obtain a motion with zero initial velocities. Given its geometry
(a flat beam), it can be deflected in only one direction in practice. The horizontal component of its motion, denoted by XðtÞ, is
measured at about a quarter of its height (thus remaining very close to the deflection, even for large motions) by a laser
sensor (Keyence LB-70W) and digitised at 500 Hz, giving about 250 points per period of the trunk mode. Since the motion of
the branches proved difficult to measure reliably when the trunk is vibrating, the effective damping is defined by the

Fig. 2. Schematic view of a branched structure. Damping and frequencies are adjusted by means of the rubber damper and the adjustable masses. This
variant of a symmetrical “T” assembly is such that the branches and the trunk do not vibrate in the same plane, ensuring practically that the dynamics are
restricted to two modes only.
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logarithmic decrement of the trunk deflection only, such that

ξeff ¼
1
2π

log
X0

X1
; (4)

where X0 ¼ Xð0Þ is the initial deflection, and X1 is the deflection after one free oscillation of the trunk mode. The initial
energy of the trunk X2

0 is now normalised to its value when the initial deflection of the trunk at its top is equal to its height.
The quantitative analysis done in [1] and based on the curves shown in Fig. 1(c) prove that, for the values of the parameters
chosen here, most of the energy is located in the trunk. Finally, the higher modes of the trunk are very weakly excited in this
experiment. Altogether, the error made on ξeff by restricting the estimation of energy to the trunk is very small.

We are interested in the specific dynamical effect of branching on damping, denoted here as ξDBB. In any experimental
situation, other dissipative effects occur which may also be difficult to control. For this reason, we compare damping when
branches are free to vibrate to damping when the branches are blocked by a very light flat beam taped across the branches:
in Fig. 4, the effective damping is displayed as a function of the initial energy, for blocked and free branches. For blocked
branches, damping is nonlinear, probably because of aerodynamical effects. Its finite value for E0-0 (linear part) most
probably denotes dissipation in the material. It is clear that DBB becomes an important part of the effective damping ξeff for
large motions. We assume that (a) the other-than-DBB effects are the same whether branches are free or blocked (this is not
entirely true: for example, aerodynamical effects are slightly increased when branches vibrate on their own) and (b) that the
effective damping ξefff with free branches is the sum of ξDBB and damping observed with blocked branches. The
ξDBB-component (difference between curves in Fig. 4) is displayed in Fig. 5 together with the effective damping of the
lumped-element model (Section 2) and the damping obtained in the case of a T-shape beam structure. Unlike the former,
the latter is fully deformable and its response has been obtained by finite-elements numerical computation [1].

We attribute the negative values of ξDBB at very small amplitudes, where the effect is virtually null, to uncertainties in the
estimation of the effective damping, mostly due to the sensor measuring the motion of the trunk. Damping by branching is

Fig. 3. (a) Trunk mode. (b) Branch mode. All other modes have much higher frequencies.

Fig. 4. Measured effective damping ξeff as a function of the initial energy E0 (static initial condition). Dotted (⋯⋯): free branches. Dashed (– –): blocked
branches.
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effective for large amplitudes and its estimated magnitude is quite consistent with (and actually framed by) the models that
can be considered as idealisations of the experimental structures.

4. Robustness of the mechanism

In the previous sections, DBB has been presented for free-vibrating structures. A first indication of the robustness of the
mechanism has been demonstrated in [1] where it was shown that a branched assembly of flexible beams under harmonic
excitation exhibits DBB as well as the lumped-element model: ξeff is in the order of 3 percent (see dashed line in Fig. 5) for
an excitation of the trunk mode corresponding to E0 ¼ 1.

4.1. Nonlinear localised damping

We show here that the main features of DBB remain when the linear damping term 2Ωξb
_Φ of the branch mode in Eq. (1)

is replaced by a nonlinear damping term 2Ωξb
_Φj _Φjn�1. For reasons given above, it is difficult to isolate one of these

damping models experimentally. However, the first two forms reflect common damping situations (n¼ 0: damping by
Coulomb friction, n¼ 1: viscous damping, n¼ 2: aerodynamical damping) and the successive powers n encompass a large
variety of situations. Further on, intuition would be severely defeated if DBB was not robust at least to any monotonic form
of damping whereas it is robust for the n-series, as shown below. The analyses are done on the lumped-element model
described in Section 2.

In the case of small motion, a semi-analytical solution for the effective damping ξeff ¼ΔE=ð4πE0Þ can be obtained by a
harmonic balance method [12], as in [1] (see details in [13]). All calculations are done with a linear part (order 1) and a
nonlinear part limited to order 2 (in other words, the harmonic balance method takes into account only two harmonics). For
nZ2, it comes

_Φ ¼ �Ω sin 2τþ2 sinΩτ

ΩðΩ2�4Þ
(5)

ξn Ωð Þ ¼ 2π2n�1

4nþ1

Z 2π

0
2Ω _Φ

2
j _Φjn�1 dτ (6)

ξeff ¼ En0 Γ ð sinϕbÞnþ1 ξb ξnðΩÞ (7)

where the dimensionless variables Ω, τ, Φ, Γ are defined as in Appendix A.
The En0 dependency of ξeff corresponds to a _Θ

2nþ1
dependency of the effective damping force on the trunk mode. In other

words, branching transfers damping from the branches to the trunk at the price of increasing the nonlinearity order of the
damping. Linear damping in the branch mode (n¼ 1, the largest damping in the case of small motion) yields an effective
damping proportional to E0. According to [12], this corresponds to a damping coefficient for the trunk mode of third order in
_Θ. Thus, DBB cannot be efficient for small amplitudes of the motion of the branches.

For large motion, the time-dependency of the energy after the initial loading in Θ is obtained by a numerical resolution
of the system (1) where the nonlinear damping term is now 2Ω ξb

_Φ j _Φjn�1. The effective damping is given in Fig. 6 as a

Fig. 5. Damping by branching component ξDBB (○ symbols with error bars) in the measured effective damping ξeff of the structure with free branches
(Fig. 4) as a function of the initial energy (static initial conditions). Comparison with the effective dampings of the lumped-element model ( � � � � � � ) and of
a similar T-shape beam structure (– – –), as shown respectively in Figs. 4 and 7 of [1].
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function of the initial loading for several degrees n of the nonlinear damping. It appears that the effective damping at large
amplitudes hardly depends on the order of the nonlinear damping of the branch mode. This robustness of DBB with regard
to n is also observed with regard to the parameters ϕb, ξb, Ω and Γ (Fig. 7): their influence on ξeff appears to be essentially
the same as for the linear damping ðn¼ 1Þ.

4.2. Aerodynamical damping

In order to test further the robustness of DBB, we analyse the effect of the aerodynamical damping caused by a fluid at
rest on the structure shown in Fig. 8. This more realistic damping mechanism applies to the branches and to the trunk. The
velocity at a given point on a rod is noted as V and its component normal to the rod is Vn ¼ V �ðV � sÞ, with s being the unit
vector in the beam direction (Fig. 8(b)). The drag force per unit length on beam i is modelled as

f i ¼ �1
2 ρf CDdiVn

j2j (8)

where we denote the signed square function xj2j ¼ xjxj, di is the diameter of the beam i, ρf is the fluid density and CD is the
drag coefficient which we assume to be constant [3]. As in Section 2, the in-phase motion of the branches is not considered.
One introduces the mass ratio [14] defined here as

M¼ CD
ρf d1ℓ

3
1

4m2
ffiffiffiffiffiffiffiffiffiffi

ℓ1ℓ2
p : (9)

The dimensionless equations of motion are now (see Appendix B for the definition of d and X and the derivation):

€ΘþΘ¼ 2Γ _Θ _Φ sin ðϕbþΦÞ� €Θð cos ðϕbþΦÞ� cosϕbÞ
� �1

4
ΓM _Θ

j2j
�ΓMdΛ

Z Λ

0
ð _ΘXþ _ΦxÞj2j
�

þð _ΘX� _ΦxÞj2j
�

X dx €ΦþΩ2Φ¼ � _Θ
2
sin ϕbþΦ
� �

�MdΛ
Z Λ

0
ð _ΘXþ _ΦxÞj2j�ð _ΘX� _ΦxÞj2j
� �

x dx (10)

In order to compare DBB with the case presented in Section 2, the same initial condition is considered
ðΘ0a0; _Θ0 ¼ _Φ0 ¼Φ0 ¼ 0Þ. However, the effective damping must be defined differently since the trunk mode is now
damped even when the branch mode is blocked. We define the effective damping specific to DBB by comparison with the
situation where the branch mode is blocked, for the same values of the parameters Ω, Γ, ϕb, Λ, d andM. The dynamical
equation of the trunk with blocked branches is derived from the first equation of (10) with _Φ ¼Φ¼ 0, yielding

€Ψ þΨ ¼ � _Ψ
j2j
ΓM

1
4
þ2 dΛ

Z Λ

0
xΛþ cosϕb ðx Λþ cosϕbÞ2 dx

!�

�

�

�

�

�

�

�

�

�

 

(11)

where Ψ denotes the motion of the trunk in this particular situation. The effective damping is now defined as

ξeff ¼
EðΨ ;0; _Ψ ;0Þ�EðΘ;Φ; _Θ; _ΦÞ

4π E0
(12)

Fig. 6. Effective damping of the lumped-element branched model with nonlinear damping of the branch mode, as a function of the initial normalised
energy. Solid lines (——): n¼ 2, 3, 4 and 5. Dashed line (– – –): linear damping (n¼ 1). The parameters of the structure are those given in [1] for optimal
damping: ϕb ¼ π=2, ξb ¼ 0:2%, with Γ ¼ 0:2.
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where energies in the numerator are evaluated at a normalised time τ¼ 2π. It appears in Fig. 9 that DBB is observed in this
situation, and that it is quantitatively very close to the linear damping of the branch mode. This robustness is confirmed by
the dependency of ξeff on ϕb,M, Ω, Γ, Λ and d (Fig. 10). The dependencies on ϕb, Ω and Γ appear again to be similar to
what was shown in Fig. 7.

Fig. 7. Dependence of the effective damping ξeff on the parameters ϕb , ξb , Ω, Γ of the lumped-element branched model with initial normalised energy
E0 ¼ 1. Solid lines (——): nonlinear damping of the branch mode with n¼ 2, 3, 4, 5. Dashed line (– – –): linear damping (n¼ 1). Non-varying parameters are
set to the reference values given in Fig. 6 and indicated by a vertical dash-dotted line –U in the other diagrams. (a) Effect of the branching angle ϕb . (b)
Effect of the damping of the branch mode ξb . (c) Effect of the ratioΩ between the frequency of the branch mode and that of the trunk mode. (d) Effect of the
mass number Γ.

Fig. 8. Model for aerodynamical damping. (a) Elementary branched structure in a fluid at rest, similar to the model of Section 2, Fig. 1 (note here the
relevance of the trunk and branch diameters d1 and d2). (b) Model of the aerodynamical forces exerted on a point of the left branch.
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4.3. Multiple branching

At this point, one may wonder whether multiple branching significantly alters the efficiency of the DBB mechanism.
Since the potential number of parameters increases dramatically with the number of ramifications, we restrict the attention
to the branched structure obtained with a symmetrical self-similar branching scheme (Fig. 11) based on the reference model
(Section 2, Fig. 1) where N is the number of ramification levels. As in Section 2, only the symmetrical motion of each branch
level is considered, leaving only one mode, or effective degree of freedom, per branching level and Nþ1 degrees of freedom
altogether. The same branching angle ϕb and damping ξb are kept at each branching level. The non-dimensional dynamical
equations read (see Appendix C for the definition and expressions ofΩn, Υn, Cn;k and Hn;k and for an outline of the derivation
of the dynamical equations):

€Φnþ2Ωnξb
_ΦnþΩ2

nΦn ¼ �Υ n
€Φnþ _Φn

X

Nþ1

k ¼ nþ1

Hn;k
_Φkþ

X

n�1

k ¼ 1

Cn;k
_Φ
2
k : (13)

For reasons given after Eq. (C.13) in Appendix C, Ωn cannot be expressed as a simple function of Ω.
Three additional choices are made in order to make the multiply branched model comparable with the elementary

model: the overall branch mass, the mass ratio Γ2 pertaining to the first branch level and the normalised frequency Ω2 of
the first branch mode are the same as the corresponding quantities of the elementary model (see the related equations
(C.15)–(C.17)).

The coupling scheme for N¼ 2 is presented in Fig. 12. At a given branching level n, nonlinear coupling terms with higher
order modes are of the form Hn;k

_Φn
_Φk whereas nonlinear coupling with lower order modes are in Cn;k

_Φ
2
k . Direct couplings

appear between modes of orders i and j (with ia j71). Due to the values of Cn;k and Hn;k (Eqs. (C.12) and (C.13)) they are
more efficient than indirect couplings corresponding to a cascade path.

Again, a semi-analytical solution for small motions with initial energy on the trunk mode Φ1 can be obtained by the
harmonic balance method [12]. The effective damping is the result of energy dissipation at all the levels of branches:

ξeff ðNÞ ¼ E0
X

Nþ1

n ¼ 2

ΓnC
lin2
n;1 ξðΩn; ξbÞ: (14)

In this expression, Γn is given by Eq. (C.14), E0 ¼ ð4=π2ÞΦ2
1jτ ¼ 0 is the initial energy and the Clin

n;1 coefficients are the linear
parts of the Cn;1 coefficients given by Eqs. (C.12) and (C.11). The ξ function has been introduced in Section 2. This result is an
extension of Eq. (3) at N ramification levels.

For large amplitudes of motion, the dynamics is obtained by numerical integration of Eq. (13). The effective damping is
presented in Fig. 13 and the parameter sensitivity in Fig. 14, for up to N¼ 4 orders of branching.

Besides the robustness of DBB, it also appears that the convergence is very rapid with N. In this self-similar system, each
level is damped by the upper level(s) and therefore, branches of the first level vibrate less than in the elementary model.
This may explain why the effective damping is less for multiple branching than for simple branching, at least for these values
of the parameters.

The relative insensitivity to the branching order can be explained by the fact that DBB is due to a 2:1 internal resonance
and thus, is quite sensitive to Ω. Since Ωn increases rapidly, it also departs rapidly from the optimal range, as far as direct
couplings are concerned.

Fig. 9. Effective damping due to branching and aerodynamical distributed forces (see Eq. (12)) for the structure shown in Fig. 8, as a function of the initial
normalised energy (solid ——). Dashed line (– – –): linear damping as in Section 2 or in Fig. 6 with n¼ 1. Values of the parameters: Λ¼ 1,
d¼ 1=

ffiffiffi

2
p

;M¼ 0:2. The other parameters are those given in [1] for optimal damping: ϕb ¼ π=2, ξb ¼ 0:2% and Γ¼ 0:2.
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As suggested by a reviewer of this paper, tuning the eigenfrequencies of the branches in a 1:2:4:8 series might increase
the efficiency of the (overall) damping mechanism. Such a tuning would require that the relationships ruling the self-similar
system be different from those given by Eq. (C.1). However, the above remark on the decreasing vibration level (with
branching order) would presumably still limit the amount of attainable damping.

5. A Tuned Mass Branched Damper

Damping the vibrations of engineered structures (buildings, cars, etc.) can often be done with Tuned Mass Dampers
(TMD) [15]: a damped spring–mass system, light compared to the mass of the main structure, is tuned to absorb energy in
the vicinity of a frequency of interest. We propose to use DBB as the damping mechanism in a rotational TMD (Fig. 15): given
the nonlinear character of DBB, this arrangement is expected to provide increasing damping when the amplitude of motion
increases, which occurs naturally at resonance. We coin such a device as Tuned Mass Branched Damper (TMBD). Its damping
performance are assessed below in comparison to an equivalent and optimal TMD design.

Fig. 10. Dependence of the effective damping ξeff as defined in Eq. (12) on the six parameters of the elementary structure (Fig. 8(a)). The initial normalised
energy is E0 ¼ 1. Solid lines (——): aerodynamical damping. Dashed line (– – –): linear damping in the branch mode only. The values of the non-varying
parameters are those given in Fig. 9 and indicated by a vertical dash-dotted line (–U) in the other diagrams. (a) Effect of the branching angle ϕb . (b) Effect of
the mass numberM. (c) Effect of the ratio Ω between the frequency of the branch mode and that of the trunk mode. (d) Effect of the mass number Γ. (e)
Effect of the square root of the ratio of the branch and trunk lengths Λ. (f) Effect of the ratio of the branch and trunk diameters d.
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5.1. Models

A to-be-damped mode ψ of a main rotational structure with moment of inertia Js and resonance angular frequency ωs is
schematically represented in Fig. 15. The TMBD consists of the elementary model of Section 2 mounted on the main

Fig. 11. Multiply branched structure: the elementary model shown in Fig. 1 is duplicated according to a symmetrical self-similar scheme. Left: geometry at
rest. Right: motion of the structure and definition of the effective degrees of freedom ϕn for nA1;Nþ1.

Fig. 12. Nonlinear couplings between effective degrees of freedom for a structure with N ¼ 2 levels of branching. Arrows denote energy transfers between
modes. All upcoming arrows originating at a given level n are associated with the same variable _Φ

2
n .

Fig. 13. Effective damping in a self-similar multiply branched symmetrical structure (Fig. 11) as a function of the initial normalised energy.
Solid lines (——): increasing values of the maximum branching order from N¼ 2 up to N ¼ 4. Dashed line (– – –): reference case N¼ 1 (Section 2). The
parameters values are given by solving Eqs. (C.15)–(C.17) using the reference values ϕb ¼ π=2, Ω¼ 2 and Γ ¼ 0:2.
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structure with a rotational spring kt and a damping element ct in order to damp their relative motion (Fig. 15(a) and (b)). The
mass ratio J ¼ Jθ=Js is set to 1 percent, a classical value in engineering practice. The parameters of the main structure are
defined in reference to those of the branched structure (see Appendix A) with the following normalised motions: Ψ ¼ψ=Λ,
Θ¼ θ=Λ, Ωs ¼ωs=ωt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J ks=kt
p

.
When the main structure is forced by a moment of amplitude m0 at a frequency ωf , the dynamical dimensionless

equations are obtained from Eqs. (16) and (1):

€Ψ þ2Jξt
_Ψ þðΩ2

s þ JÞΨ ¼ JðΘþ2ξt
_ΘÞþ JM0 cos ðΩsΩf τÞ

€Θþ2ξt
_ΘþΘ¼Ψ þ2ξt

_Ψ þ2Γ _Θ _Φ sin ðϕbþΦÞ� €Θð cos ðϕbþΦÞ� cosϕb

� �

€Φþ2Ωξb
_ΦþΩ2Φ¼ � _Θ

2
sin ðϕbþΦÞ (15)

Here, the dimensionless parameters are M0 ¼m0=ðksλÞ;Ωf ¼ωf =ωs and ξt ¼ ct=2
ffiffiffiffiffiffiffiffi

Jθkt
p

.
The TMBD performance needs to be evaluated in comparison to the performance of an equivalent and optimal TMD

design. The equivalence on inertia and frequency is achieved with an equivalent TMD being the TMBD with the branches
blocked (Fig. 15).

The equivalence on damping is discussed below. For the time being, we simply assume that a given damping element
cTMD is put in place of ct (see Fig. 15). The dynamical reduced equations are

€Ψ þ2JξTMD
_Ψ þðΩ2

s þ JÞΨ ¼ JðΘþ2ξTMD
_ΘÞþ JM0 cos ðΩsΩf τÞ €Θþ2ξTMD

_ΘþΘ¼Ψþ2ξTMD
_Ψ (16)

with M0 ¼m0=ðksΛÞ, Ωf ¼ωf =ωs and ξTMD ¼ cTMD=ð2
ffiffiffiffiffiffiffiffiffiffi

JθktÞ
p

.

Fig. 14. Dependence of the effective damping ξeff on the four parameters used for designing the self-similar multiply branched symmetrical structure (see
Eqs. (C.15)–(C.17)). The initial normalised energy is E0 ¼ 1. Solid lines (——): increasing values of the maximum branching order from N¼ 2 up to N ¼ 4.
Dashed line (– – –): reference case N¼ 1 (Section 2). Non-varying parameters are set to the reference values given in Fig. 13 and indicated by a vertical
dash-dotted line (–U) in the other diagrams. (a) Effect of the branching angle ϕb . (b) Effect of the damping of the branch modes ξb . (c) Effect of the ratio Ω

between the frequency of the branch mode and that of the trunk mode. (d) Effect of the mass number Γ.
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For a given mass ratio J, the optimal values ofΩs and of the damping ratio ξTMD are chosen according to the optimisation
method described in [15]. The minimal peak frequency response criterion yields Ωs ¼ 1 and ξTMD ¼ 6 percent. The
equivalence on damping is given by imposing that an equal amount of damping material is used in the TMBD and in the
TMD, i.e. ctþcb ¼ cTMD.

Other choices have to be made on the dimensioning of the branched structure. Somewhat arbitrarily, and after a number
of tests on the performance of the TMBD (see below for their characterisation), the amount of dissipative material is equally
split between the trunk and the branches: ct ¼ cb. These two choices on the dissipative material yield

ξt ¼
1
2
ξTMD ξb ¼

1
2

1

Λ2ΩΓ
ξTMD: (17)

With Λ¼
ffiffiffiffiffiffiffi

1:5
p

;ϕb ¼ π=2;Ω¼ 2 and Γ ¼ 0:2 as in Section 2, it comes ξt ¼ 3 percent and ξb ¼ 5 percent.

5.2. Results

The performance of the TMBD is compared to that of the TMD by considering the maximum amplitude of the stabilised
response to a forced motion. The system equations (16) and (15) are solved numerically in order to obtain the amplitude Ψ
of the steady state for a forcing moment M0 atΩf . The resonance factor Q ðΩf Þ ¼Ψ =Ψ stat, with Ψ stat ¼M0J=Ω

2
s , is defined by

an extension of the usual resonance factor of a single-degree-of-freedom oscillator. It is displayed in Fig. 16 as a function of
the normalised forcing frequency Ωf for M0 ¼ 0:5. The performance of the damping system can be estimated by the
maximum of the resonance factor [15]: Qmax ¼maxΩf

Q ðΩf Þ is found to be about 13 for the TMD and only 11 for the TMBD.

Fig. 15. (a) Geometry and (b) motion of the lumped parameter model of the rotational Tuned Mass Branched Damper (TMBD) coupled to a main undamped
structure (see text for symbols). (c) Geometry and (d) motion of the equivalent Tuned Mass Damper (TMD) realised by blocking the branches of the TMBD.
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The TMBD being nonlinear, it must be compared to the linear TMD for a large range of M0 (Fig. 17). The TMBD performs
better than the TMD for Q ¼QTMBD=QTMD;maxo1.

For low forcing amplitudes ðM0o0:4Þ, the two peaks correspond to the pattern observed in Fig. 16 and denote a low
excitation level of the branch mode. Moreover, since ξt is far from the optimal damping ξTMD, the TMBD brings a lower
damping performance than the TMD for this range of amplitude. For high forcing amplitudes ðM040:6Þ, a single peak
appears at Ωf ¼ 1, denoting again a lower damping performance than the TMD. This behaviour is similar to that of a TMD
having a larger damping ratio than the optimal value [15]. In-between ð0:4oM0o0:6Þ, the TMBD performs better than
the TMD.

It must be emphasised that the parameters of the TMBD have been chosen somewhat arbitrarily and might be optimised.
However, contrary to the TMD, it seems difficult to approach this question by analytical means.

6. Concluding remarks

A first and important result of the paper is the experimental evidence of the mechanism of damping by branching that
was predicted theoretically in [1]. We have shown in Section 2 that a system with well-tuned flexible branches has an
effective damping larger than with rigid branches. Moreover, the magnitude of this additional damping and its dependence
on the amplitude of motion were well estimated by the models proposed in [1]. It should be noted that this experimental
validation was achieved with a system of flexible beams, much more complex than the elementary system of branched
articulated segments analysed in [1]; this confirms the numerical results given in this previous paper whereby the DBB
mechanism also exists with flexible branched beams.

Following this validation and going back to simple articulated branched systems and numerical predictions, we have
analysed in Section 5 a simple implementation: the Tuned Mass Branched Damper. The aim was to explore not only the
possibility of using branched systems as tuned dampers, but, more importantly, to compare its efficiency with that of

Fig. 16. Resonance factor Q of the main structure as a function of the normalised forcing frequency Ωf . Dotted line (� � � � � � ��): response of the main
structure damped by an optimal TMD, independent of the forcing amplitude. Solid line (——): response of the main structure damped by an equivalent
TMBD (see text) for a normalised forcing amplitude M0 ¼ 0:5.

Fig. 17. Map of the steady-state amplitude of the main structure damped by the TMBD, normalised by the performance of the TMD PTMD , as a function of
the relative forcing frequency Ωf and of the normalised forcing amplitude M0.
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classical tuned dampers. The results shown in Figs. 16 and 17 show that, in some region of parameter space, a better
efficiency is obtained. Still, the improvement is rather minor.

The results of Section 4 allow to draw a much stronger conclusion on the robustness of the mechanism of damping by
branching. The analysis was done by systematically exploring variations of the elementary system of branched articulated
segments, using numerical simulations and analytical approaches. We have analysed the effect of the source of dissipation
(linear or nonlinear, localised or resulting from distributed interaction with a fluid), as well as the effect of multiple
branching. In all those cases, the mechanism of damping by branching was observed. Moreover, the dependence of the
added damping with the amplitude of motion was always found to be qualitatively similar to that of the generic case
described in [1] and recalled in Section 2. Multiple branching was not found to enhance damping by branching, an
unexpected result which could be understood using simple arguments.

Overall, this paper does confirm that damping by branching exists as a very robust mechanism in a large variety of
branched systems. Promising developments can be expected, considering the simplicity of the concept.
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Appendix A. Dimensionless quantities for the elementary lumped-element model

The notations and dimensionless quantities in use in this paper are

Jθ ¼m1ℓ
2
1þ2m2 ℓ

2
1þ2ℓ1ℓ2 cosϕbþℓ

2
2

� �

(A.1)

ω2
1 ¼

k1
Jθ
; ω2

2 ¼
2k2

2m2ℓ
2
2

; Ω¼ω2

ω1
(A.2)

Λ¼
ffiffiffiffiffi

ℓ2

ℓ1

s

; Γ ¼ 2m2ℓ
2
2

Jθ

1

Λ2; ξb ¼
cb

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2m2l
2
2

q (A.3)

τ¼ω1t; Θ τð Þ ¼ θðtÞ
Λ

; Φ τð Þ ¼ϕ tð Þ (A.4)

Appendix B. Dynamical equations and dimensionless quantities in the case of aerodynamical damping

The dimensional equations of motion are those of the elementary model established in [1] with added torques due to the
fluid drag:

Jθ
€θþk1θ¼ 4m2ℓ1ℓ2

_θ _ϕ sin ðϕbþΦÞ� €θðϕbþΦÞ� cosϕb

h i

þMθ ; Jϕ
€ϕþ2k2ϕ¼ �2m2ℓ1ℓ2

_θ
2
sin ðϕbþΦÞþMϕ; (B.1)

where Jϕ ¼ 2m2ℓ
2
2. The added torque Mθ on the trunk motion is the integral on each beam length of the product of the local

force (Eq. (8)) by the distance from the base of the trunk. It reads

Mθ ¼ �1
2
ρf CD d1 _θ

j2jℓ4
1

4
þd2

Z

ℓ2

0
ð _θSþ _ϕsÞj2jþð _θS� _ϕsÞj2j
� �

S ds
� 	

; (B.2)

where S¼ sþℓ1 cos ðϕbþϕÞ. Similarly, the added torque Mϕ on the branches motion is

Mϕ ¼ �1
2
ρf CDd2

Z

ℓ2

0
ð _θSþ _ϕsÞj2j�ð _θS� _ϕsÞj2j
� �

s ds: (B.3)

Using the dimensionless notations of Appendix A and d¼ d2=d1; x¼ s=
ffiffiffiffiffiffiffiffiffiffi

ℓ1ℓ2
p

;X ¼Λxþ cos ðϕbþϕÞ, the dynamical system
(B.1) yields Eq. (10).

Appendix C. Dynamical equations of the multibranched structure and dimensionless quantities

The parameters of the self-similar symmetrical branching scheme of the multibranched structure studied in Section 4.3
are adjusted as follows. The mass mnþ1, the length lnþ1 and the stiffness knþ1 of the branches of order nþ1 (formed at the
n-th branching level, with noN) are given by

μN ¼mnþ1

mn
; λN ¼ ℓnþ1

ℓn
and κN ¼ knþ1

kn
8n (C.1)
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Establishing the dynamical equations is done as for the elementary model. The total kinetic and potential energies are

Ec ¼
1
2
m1ℓ

2
1

X

Nþ1

p ¼ 1

μp�1
N

X

2p� 1

m ¼ 1

v2p;m (C.2)

Ep ¼
1
2
k1ℓ2

1

X

Nþ1

p ¼ 1

2p�1κp�1
N ψ2

p (C.3)

where vp;m is the velocity of the m-th mass of level p:

v2p;m ¼
X

p

i ¼ 1

X

p

j ¼ 1

λ
i�1
N λ

j�1
N

X

i

k ¼ 1

ð7 Þp;m;k _ψ k

!

X

j

k ¼ 1

ð7 Þp;m;k _ψ k

!

cosVp;m;i;j; (C.4)

In the above expressions, the angles Vp;m;i;j are

Vp;m;i;j ¼
X

i

k ¼ 1

7p;m;kðψ kþϕbÞ�
X

j

k ¼ 1

7p;m;kðψ kþϕbÞ; (C.5)

making use of the auxiliary functions 7p;m;k ¼ �ð�1Þ⌈m=2n� k
⌉ (with krp), being equal to 1 or �1 depending on the indices

p, m and k, and ⌈x⌉¼minfnAZ∣nZxg. Table 1 gives the values of 7p;m;k for p¼ 1 to 3.
One defines the inertia Jn which is split into a linear part Jlinn and a nonlinear part JNLn :

Jn ¼m1ℓ
2
1

X

Nþ1

p ¼ n

μp�1
N

X

p

i ¼ n

λ
i�1
N

X

p

j ¼ n

λ
j�1
N

X

2p� 1

m ¼ 1

cosVp;m;i;j (C.6)

Jlinn ¼m1ℓ
2
1

X

Nþ1

p ¼ n

μp�1
N

X

p

i ¼ n

λ
i�1
N

X

p

j ¼ n

λ
j�1
N

X

2p� 1

m ¼ 1

cos
X

i

k ¼ 1

7p;m;kϕb�
X

j

k ¼ 1

7p;m;kϕb

!

(C.7)

JNLn ¼ Jn� Jlinn (C.8)

Applying the Lagrange equations to the kinetic and potential energies yields (see Appendix C of [13] for a detailed
derivation) the following dynamical equations (with linear terms in the right members):

Jlinn €ψ nþ2n�1k1κn�1
N ψn ¼ JNLn €ψ nþ _ψ n

X

Nþ1

k ¼ nþ1

hn;k _ψ k

!

þ
X

n�1

k ¼ 1

cn;k _ψ
2
k (C.9)

where the coefficients hn;k and cn;k are given by

hn;k ¼ �2m1ℓ
2
1

X

Nþ1

p ¼ k

μp�1
N

X

p

i ¼ n

λ
i�1
N

X

p

j ¼ k

λ
j�1
N

X

2p� 1

m ¼ 1

7p;m;k sinVp;m;i;j (C.10)

cn;k ¼ �m1ℓ
2
1

X

Nþ1

p ¼ k

μp�1
N

X

p

i ¼ n

λ
i�1
N

X

p

j ¼ k

λ
j�1
N

X

2p� 1

m ¼ 1

7p;m;n sinVp;m;i;j (C.11)

With the following dimensionless quantities, defined for nA ½1;Nþ1�

ω2
n ¼

2n�1k1κn�1
N

Jlinn
; τ¼ω1t; Cn;k ¼

cn;k
Jlinn

(C.12)

Table 1

Values of the function ð7Þp;m;k for p¼1–3.

p m k¼ 1 k¼ 2 k¼ 3

1 1 1

2 1 1 1
2 2 1 �1

3 1 1 1 1
3 2 1 1 �1
3 3 1 �1 1
3 4 1 �1 �1
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Ωn ¼
ωn

ω1
; Φn τð Þ ¼ψn tð Þ; Hn;p ¼

hn;k
Jlinn

(C.13)

Υ n ¼
JNLn
Jlinn

; Γn ¼
Jlinn
Jlin1

1

Λ
2 (C.14)

the dynamics equation (C.9) becomes Eq. (13).
Unfortunately, there is no obvious recurrence relationship between Jlinn and Jlinn�1 and consequently, neither ωn nor Ωn

cannot be expressed as simple functions of the same quantities at lower orders.
Choosing the overall branch mass, the frequency ratio Ω2 between the first branch mode and the trunk mode and the

mass ratio Γ2 pertaining to the first branch level to be the same as the corresponding quantities of the elementary model
implies that

2μN
ð2μNÞN�1
2μN�1

¼ 1

Λ4þΛ2ð2 cos ϕb�1=ΓÞþ1
(C.15)

Γ2ðλN ;μN ;ϕbÞ ¼Γ (C.16)

Ω2ðκN ; λN ;μN ;ϕbÞ ¼Ω (C.17)

where Ω, Γ and Λ are defined in Appendix A.
In order to solve this set of equations for μN, λN and κN, we arbitrarily set Λ¼

ffiffiffiffiffiffiffi

0:7
p

. One finds μN with Eq. (C.15) (setting
that the masses of the elementary and of the multibranched structures are the same). The value of λN is obtained with Eq.
(C.16) and finally κN with Eq. (C.17).
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