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Abstract	
  

G-theta method with appropriated virtual crack extension (θ  field) is proposed for the 

accurate evaluation of energy release rate along a crack edge which is non-orthogonal to the 

free surface. This method is implemented in the framework of finite element procedure as 

well as extended finite element one. This numerical procedure is then applied to investigate 

the corner singularities in cracked plates. The superposition of numerical solution to 

asymptotic solution within the boundary layer of crack front allows showing the dependence 

of vertex singularity to plate thickness.  

Keywords: G-theta, θ field, corner singularity, cracked plate, critical angle 

1 Introduction	
  

Accurate evaluation of stress intensity factor or of energy release rate is an important key for 

3D modeling of surface crack growth. Due to the complexity of such problems, exact 

solutions are not available and numerical methods impose naturally. The finite element 

method has become the most commonly used numerical procedure to obtain crack surface 

evolution. Stress intensity factors can be determined from local stresses or displacement fields 

around the crack tip. The quarter-point technique is usually used to ensure the square-root 

stress singularity in the neighborhood of the crack front [2]. This technique can be combined 

with techniques such as J-integral [45], M-integral [50], G-thetha method [13] and many 

others, which allows obtaining by post-processing the relevant parameters of fracture 

mechanics. Alternative finite element approaches used with hybrid elements [1], or enriched 
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element methods [7, 23] directly include stress singularity factors as unknowns in the 

displacement fields.  

G-theta method was proposed by Destuynder et al. [13] for calculating the energy release rate 

and stress intensity factors. This method is based on domain integrals and Lagrangian 

derivation of the potential energy, with respect to a virtual crack extension velocity field (θ  

field). G-theta procedure, available in Code_Aster software [17], is used as a post-processing 

of FEM or XFEM calculations. The θ  field definition uses the local basis at the crack front 

which is normal to the crack front and tangent to the crack surface. Inside the solid, its 

direction is orthogonal to the crack front, given by the projection on the crack front, which is 

the common practice [25, 26, 27]. For a through crack surface, the θ field, at the terminal 

point of the front edge, is modified in the present paper to be tangent to the free surface. In 

case the crack front intersects non-orthogonally the free surface, the θ  field changes of 

direction between the terminal point and adjacent interior nodes on the crack front, more or 

less rapidly. In case of rapid change, numerical instabilities and inaccuracies are observed 

during the propagation of such cracks. This paper aims firstly at introducing automatically a 

modified θ field to circumvent the inconvenience of standard normal θ fields. The crack front 

of a through crack surface is divided into two or three parts: an internal part and modified 

parts connected to terminal points on the free surface, at a maximum of two. On the internal 

part, a θ field normal to the crack front is used. On the modified parts, the direction of the θ 

field varies continuously from the direction at the terminal point, where it is tangent to the 

crack surface and the free surface, and the one of the internal part where it is normal to the 

crack front. The implementation of the modified θ  field is also an opportunity to show some 

interesting properties of the G-theta method such as its independence with respect to θ  

direction and integral domain size, which are not observed with a normal θ  field in case of 

through cracks. Besides, the proposed modified θ field allows determining correctly the 

energy release rate in the boundary layer region close to the free surface. This result is used 

then to investigate numerically the corner singularity in a cracked plate. 

In three dimensional fracture mechanics, the concept of stress intensity factor is based on the 

implicit assumption that the crack front is continuous and infinite. This is not the case at a 

terminal point where the crack front intersects a free surface. As a matter of fact, the stress 

singularity order changes in the vicinity of a corner point, its value depending on Poisson’s 

ratio and on the intersection angle between the crack front and the free surface [4, 14, 22, 44]. 

Several techniques were developed to determine the vertex singularity, which can be 

classified into two categories: global and local approaches. The global approach consists in 

determining directly the stress singularity exponent from the resolution of a linear elastic 

problem containing corner singularity such as: semi-analytical method [5], finite different 
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method [6], singular integral equation method [24, 34, 35, 39, 40, 46], eigenvalue problem [3, 

4, 14, 16, 21, 22, 49].  The local approach is based on the logarithmic regression of stress or 

displacement fields in the vicinity of the crack tip [31, 32, 38, 47] or of stress intensity factors 

in the boundary layer region close to the free surface [41, 42]. Using a semi-analytical 

method, the vertex singularity of a quarter-infinite crack is calculated firstly by Benthem [5]. 

In an attempt to develop a more general method, Bazant and Estenssoro [4] turned to the finite 

element method and showed the stress singularity exponent is solution to a quadratic 

eigenvalue problem. Afterwards, several studies have been devoted to improve the numerical 

scheme in terms of convergence speed [16, 21 35, 43, 49]. However, the global approach 

deals only with vertex singularity point in a half-space. Extracting the stress singularity 

exponent from the stress or displacement field, by using the logarithmic regression, is usually 

used to evaluate corner singularity in cracked middle tension specimens [30, 38, 47, 48]. This 

technique is highly sensitive to element size around the crack tip. Moreover, the result 

obtained with the logarithmic regression of displacements sometime depends on the polar 

angle of the cylindrical local frame centered at the crack tip. Based on the asymptotic 

expression of the energy release rate in the neighborhood of a corner point singularity derived 

by Leguillon [36], Leguillon and Sanchez-Palencia [37], a technique is proposed in this work 

to investigate the vertex singularity in a cracked plate. The numerical result of the energy 

release rate obtained with the modified θ field is superposed to the asymptotic formulation 

within the boundary layer region on the crack front close to the free surface. The results bring 

out the influence of plate thickness on stress singularity exponent and critical angle.  

The numerical development related to the introduction of a modified θ field in the G-theta 

method have been implemented in Code_Aster [17], an industrial and open source finite 

element code developed by EDF R&D. This code is also used for the numerical investigation 

of the corner singularity carried out in Section 3.   

2 G-­‐theta	
  method	
  

2.1 G-­‐theta	
  formulation	
  

We consider a reference body Ω containing a crack Γ with traction-free surface. Destuynder 

et al. [13] gave the variation of the potential energy induced by an infinitesimal perturbation 

applied on the reference geometry Ω on which the solution (σ , u) is known. The geometrical 

perturbation transforms a point M of the cracked body Ω into a point Mη such that:  Mη = M + 

η.θ(M). In the framework of thermo-elasticity and in the absence of body forces, the global 

energy release rate associated to the virtual crack extension field θ  is given by: 
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 G( ) : ( ) . ( . )T d
T

Ω

∂ψ⎛ ⎞
= ∇ ∇ −ψ∇ − ∇ Ω⎜ ⎟∂⎝ ⎠
∫θ σ θ θ θu  (1) 

where, σ is the Cauchy stress tensor, u the displacement filed, T the temperature field, ψ the 

energy density. The virtual crack extension field θ  must be tangent to the crack surface at the 

crack front and must be tangent to the boundaries of the body (i.e θ .n = 0 on ∂Ω, where n is 

normal to ∂Ω). Based on a Lagrangian approach of the potential energy derivative, the local 

energy release rate G(s) along the crack front Γ is obtained from the following equation [13]: 	
  

 ( ) ( ). ( ) = G( )G s s s

Γ

∫ θ θm  (2) 

with m(s) the vector tangent to the crack surface and normal to crack front along the 

curvilinear abscissa s. 	
  

The numerical discretization of Eq. (2) is performed with a decomposition of G(s) on a basis 

pj(s) (1≤j≤N). Supposing Gj the components of G(s) in this basis, we obtain: 

 
1

( ) ( )
N

j j

j

G s G p s
=

=∑  (3) 

A set of function tests for the field θ  such as: Θ = {θ i  where θ i .n =0 on ∂Ω} (1≤i≤M) is then 

chosen. Substituting (3) into (2) leads to:	
  

 
1

) ( ). ( ) = G( )
N

j j

j

G p s s s
=Γ

( ( ) ∀ ⊂Θ∑∫ θ θ θm  (4) 

Furthermore,	
  

 
1

) ( ). ( ) = G( )
N

j j i i

j

G p s s s i Μ
= Γ

⎛ ⎞
( ∀ ∈[1, ]⎜ ⎟

⎝ ⎠
∑ ∫ θ θm  (5) 

Therefore, the components Gj constitute N unknowns of the linear system of M equations:	
  

 
1

= B

N

ij j i

j

A G i Μ
=

∈1,∑  (6) 

where:	
  

 = ( ) ( ). ( ) , B G( )ij j i i iA p s s s ds
Γ

=∫ θ θm  (7) 

In order to avoid the inaccuracy of the results near the crack front where ∇u is singular, it is 

interesting from a numerical point of view to introduce a constant θ  field in the vicinity of Γ 
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in Eq. (1). In practice, we consider two toroid surfaces surrounding the crack front Γ of radius 

Rext, Rint (Rint  < Rext) within the solid (Fig. 1a). At each point of curvilinear abscissa s on Γ,  

the θ  field θ(s) is built in the plane perpendicular to the crack front Γ as follows (Fig. 1b): 

 

( ) for 0 ( ) ( )

( ) ( )
( ) for ( ) ( ) ( )

( ) ( )

0 for ( ) ( )

int

ext

int ext

ext int

ext

s r s R s

R s r s
s R s r s R s

R s R s

r s R s

= ≤ <

−
= ≤ ≤

−

= >

θ θ

θ θ

θ

 (8) 

The introduction of the θ  field, the choice of basis pj for G(s) and the numerical 

implementation for the resolution of Eq. (6) in Aster_Code are presented in detail by Geniaut 

[19]. The function test field θ   is introduced such that θ  is normal to the crack front verifying: 

θ .m = 1 (Fig. 2a). Moreover, the θ  field must be known at every points of the cracked body in 

order to calculate the global energy release rate G(θ) in Eq.(1). Therefore, it is necessary to 

extend the θ field to each node of the mesh from the known vectors on the crack front. The 

projection algorithm of a node on the crack front in the direction of the θ  field decomposes in 

two steps: searching the segment on the discretized crack front containing the projection 

point, and then locating the projection point on this segment. For the normal θ  field, each 

node is projected orthogonally to the crack font and the θ field direction assigned to this node 

is the one of its projection point on the crack front [9, 20]. The θ field direction at the 

projection point on the crack front is then computed from the ones of the extremity nodes of 

the segment on which the projection point is located [10, 11, 12]. This choice allows 

integrating analytically Aij in Eq. (7). However, such θ  field does not give an accurate energy 

release rate when the crack front intersects non-orthogonally the free surface. In this case it 

can be shown that on the free surface the θ  field must remain tangent to the free surface and 

that the change of θ  direction must be smooth between the corner point and the adjacent 

internal points (Fig. 2b). To avoid this source of error, a modified θ  field is introduced to treat 

this situation in the next section. 

 

Fig. 1 : θ field construction in tridimensional problem.  
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Fig. 2 : θ field on the crack front of through crack surface: (a) orthogonal crack front, (b) non-

orthogonal crack front. 

2.2 Modified	
  θ 	
  fields	
  	
  

In case of through crack surface with non-orthogonal crack fronts to free surfaces, a modified 

θ  field is proposed to improve the accuracy of the numerical result. With respect to the 

previous version of Aster_Code [17], the θ  field is tangent to the free surface at the through 

point and normal to the crack front inside the solid. In the intermediary portion of length Lm, a 

linear variation of direction between the through point and the internal points is chosen (Fig. 

3). The length Lm is given by the user: it must be lower than half the crack front length 0.5L 

and larger than Lmin (Fig. 4). The value of Lmin can be determined analytically in some cases 

such as straight crack fronts, part-circular cracks and other simple geometric profiles.   

 

Fig. 3 : Modified θ field on the crack front of breaking crack surface. 

 

Fig. 4 : Length Lm on which the θ  field is modified for a non-orthogonal crack front to the free surface. 

Such a modified θ  field leads to numerical evaluation of the integration terms Aij in Eq. (7). In 

order to have the directions of the modified θ field everywhere in the solid an extension of 
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this field within the solid is used based on non orthogonal projections on the crack front along 

the θ directions defined on it. In order to have its modulus we keep on using the distance to 

the crack front. The algorithm detail of this projection as well as numerical resolution of Eq. 

(2) is expressed in [9].   

To show the improvement on the numerical results obtained with this modified θ  field 

compared to the classical normal one, a cracked plate under uniform applied stress σ (Mode I) 

is considered (Fig. 5). All results presented in this section, unless otherwise stated, refer to 

σ = 1 MPa. The material is assumed to be homogeneous and isotropic with an elastic modulus 

Ε =210 GPa and a Poisson’s ratio ν = 0.3. The geometry parameters defined in Fig. 5 are a = 

b, H = l = 10a. A value of a = 0.5 m was chosen to obtain our results. The crack front has an 

angular point at its middle and two through points on the free surface. The crack surface is 

located at the half height of plate H.  

 Exploiting the symmetry in geometry and loading, only one-fourth of the specimen was 

modeled in the finite-element analysis. Fig. 6 illustrates the finite element mesh used for 

modeling. A twenty-node isoparametric element is used everywhere except the region 

connected to the crack front where 15 node pentahedron elements are employed. Along the 

crack front, a radiating mesh part with 6 layers of equal thickness h is established. A linear 

finite element modeling is performed to obtain the displacement and stress fields in the plate. 

The global energy release rate G(θ i) corresponding to θ i field is then calculated by Eq. (1). 

This result allows computing the local energy release rate G(s) on the crack front according to 

Eq. (6). In this section, the crack front is discretized by 30 equally spaced quadratic elements.  

    

Fig. 5 : Cracked plate under tension.  

In order to normalize the energy release rate evaluated by the G-theta method, we use the 

known result of the stress intensity factor (SIF) in plane strain for a finite plate of width l 

having a crack of length a submitted to a uniform tension σ (Fig. 7):  
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and of the energy release rate obtained from Irwin’s formula [33]: 

 

2

2

0 0

1 v
G K

E

−
=  (10) 

       

Fig. 6 : Finite element mesh and mesh detail of the crack front. 

 

Fig. 7 : Two dimensional cracked plate. 

Fig. 9 presents the normalization of the energy release rate G/G0 calculated along the crack 

front for different modified lengths Lm of the θ  field. As shown in Fig. 4a, a minimum length 

Lmin = Rexttan(γ) is required to ensure θ .n = 0 on the boundary ∂Ω. On the internal portion, the 

results of G/G0 are similar for all modified lengths. However, a difference is observed on the 

boundary layer region Lmin with an increase of the energy release rate G as the modified 

length Lm gets larger which stops when Lm ≥ Lmin. Moreover, G obtained by G-theta method 
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with a modified θ field is characterized by an important value at the through point and an 

almost zero value at the angular point for the case β = 110°. This agrees with the singularity 

theory developed in the literature [4, 44] and exposed in detail in the next section.           

As a matter of fact, the local energy release rate computed by the G-theta method should 

theoretically be independent of the size of the torus. In practice, the influence of the torus 

radius is numerically observed for a normal θ  field and for non-orthogonal crack fronts to free 

surfaces. As seen in Fig. 10, G corresponding to normal θ  fields are different in the boundary 

layer region for two torus sizes with the same Rint = h but Rext = 3h and 6h, respectively. 

Nevertheless, G calculated by the modified θ  field is exactly identical for those two cases. 

Therefore, the modified θ  field ensures domain integration independence. 

The influence of the θ  field direction was studied recently by Esnault et al. [18] for the stress 

intensity factors on a simple configuration. The authors have considered a penny-shaped crack 

in an infinite body loaded in tension and shear. The SIFs were computed by the G-theta 

method using either a radial θ  field, normal to the crack front, or a θ  field tilted by an angle α 

with respect to that normal. This θ  field choice allows to avoid the numerical integration of 

the term Aij in Eq. (7). As a result, no influence of the angle between the normal to the crack 

front and the θ  field direction was found in this study. The property is demonstrated generally 

for non-orthogonal through crack surfaces with the modified θ  field in this work. Indeed, Fig. 

11 shows identical results of local energy release rate along the crack front for different 

modified θ  fields. Concretely, a uniform θ  field parallel to the free surface (e2) and four 

modified θ  fields on four modified lengths 0.2L, 0.3L, 0.4L, 0.5L are employed. Therefore, 

numerical results reproduce well the theory which states that the local energy release rate 

value G(s) represents the energy necessary to create a virtual crack surface with a unitary 

value at each calculation point which should be independent of the θ  field direction. 

 

 Fig. 8 : θ  field on the crack front of a penny-shaped crack in an infinite body: (a) normal θ  field; (b) θ  

field tilted by an angle α with respect to that normal.  
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The implementation of the modified θ  field for non-meshed crack (X-FEM) is quite similar to 

the case of meshed cracks. The evaluation of stress intensity factors using G-theta method 

with normal θ  field and level sets in Code_Aster has been presented by Geniaut et al. [20]. As 

observed in Fig. 12, the local energy release rate along the crack front obtained with the 

modified θ  field presents also an improvement in the boundary layer region when compared 

with a standard normal field in the framework of XFEM. Moreover, the results obtained by 

FEM and XFEM for the modified θ  field are similar.  

The advantages of G-theta method with the modified θ field is illustrated in this paper with 

results obtained for a cracked plate that will be used in the next section to study the corner 

singularity in a cracked plate. These advantages are also present for more complicated 

configurations such as part-elliptical cracks in a cylindrical pipe or part-circular cracks in a 

plate modeled with non-regular mesh which were tested by the authors.   
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Fig. 9 : Normalized energy release rate along the crack front for different modified lengths Lm of θ  

field (β=110°). 
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Fig. 10 : Influence of torus size on normalized energy release rate along the crack front (β = 110°).  

 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

  Modified θ field: L
m
 = 0.5L

   Modified θ field: L
m
 = 0.4L

   Modified θ field: L
m
 = 0.3L

Modified θ field: L
m

= 0.2L

   Modified θ field: θ = e
2
 G/G

0

s/L  
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Fig. 12 : Normalized energy release rate computed G by FEM or XFEM for normal or modified θ 

fields (β=105°). 

3 Corner	
  singularities	
  in	
  cracked	
  plates	
  

3.1 Theoretical	
  consideration	
  

Within the tridimensional linear fracture mechanics framework, the well-known square-root 

stress singularity is valid for smooth parts of crack front [14, 15, 16]. At non-smooth 

transitions on the crack front and at the intersection of the crack front with a free surface, 

corner singularity has to be considered. In the vicinity of these points, the displacement fields 

can be expressed locally in spherical coordinates (Fig. 13) as [5]:   

 
1 ( , , )kR

λ+
= λ φ θu g  (11) 

where k is the corner stress intensity factors depending on the external load, λ is the 

characteristic exponent and g is the angular function only depending on the local geometry 

and the material properties. The determination of exponent λ at a corner point of a through 

surface crack is widely investigated as an eigenvalue problem, in which the variational 

equation governs the displacement distribution on a unit sphere around the singular point. 

Therefore, the influence of the crack geometry or of the size of the structure (curved crack 

front, finite body) is not considered in such a method since it is established for a straight crack 

in a semi-infinite body. However, the local approach using log-log regression analysis for the 
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stress or the displacement fields can estimate the change of the stress singularity exponent for 

thin structures [30, 31, 32].  

 

Fig. 13 : Spherical coordinates system with its origin at the terminal point of the crack front at the free 

surface.  

At a point on the crack front sufficiently close to the free surface, the stress field can be 

expressed either by the classical square-root singularity for an interior point or by the vertex 

singularity (11). As shown by Benthem [5], the equality of these two equations yields the 

stress intensity factor K(s) in this layer region as follows: 

 
1

2( )K s ks
λ+

=  (12) 

where s is the curvilinear abscissa on the crack front with its origin at the end point on the free 

surface and k is the corner stress intensity factor. This asymptotic formulation is verified by 

Nakamura and Parks [41, 42] for an orthogonal crack front.     

Besides, Leguillon [36] and Leguillon and Sanchez-Palencia [37] used the matched 

asymptotic expansions to derive the following expression of the energy release rate within the 

boundary layer region near the free surface on the crack front: 

  
2 1( )G s Aks
λ+

=  (13) 

where A is a generic constant depending on the geometry and on the material properties.   

Eqs. (12) and (13) present two ways of investigating weak and strong singularities (the Irwin 

criterion and Griffith one). If λ > -1/2, the stress intensity factor K(s) and the energy release 

rate G(s) tend to 0 as s tends to 0 and thus can never reach the critical toughness. Moreover, if 

λ < -1/2, K(s) and G(s) tend to infinity and the end point of the crack front undergoes a so-

called strong singularity. For a straight crack front orthogonal to the free surface, the well-
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known value of λ is -0.4523 > -1/2 corresponding to Poisson’s ration ν = 0.3. According to 

Eqs. (12) and (13), G and K must then be equal to zero at the terminal point of the front edge 

at the free surface. This result is confirmed theoretically by Shivakumar and Raju [48] and 

experimentally by Heyer et al. [28]. Those studies in the literature emphasized the fact that the 

front edge of a crack growth must terminate at the surface obliquely at a certain angle, which 

ensures a valid square-root stress singularity and the applicability of the classical stress 

intensity factor concept.   	
  

3.2 Numerical	
  investigation	
  for	
  cracked	
  plate	
  

This section is dedicated to studying the influence of plate thickness on corner singularities on 

the front edge inside a cracked plate as drawn in Fig. 5. The energy release rate along the 

crack front is calculated by G-theta with a modified θ field to evaluate accurately the value 

within the boundary layer region near the free surface. The numerical local energy release rate 

obtained is superposed to the theoretical solution (13) in order to determine the power of the 

stress singularity λ. Nakamura and Parks [41, 42] showed the numerical solution of stress 

intensity factor behavior, within the region of 3% of the crack length near the intersection 

point of an orthogonal front edge with the free surface, which varies accordingly to the 

formulation (12) for different Poisson’s ratio. 

The load, material and geometry parameters are defined in the previous section except the 

plate thickness 2b, the angle β and Poisson’s ratio ν that vary to obtain the corresponding 

stress singularity exponent λ. The mesh structure is similar to the one shown in Fig. 6 with 

fifty layers of elements used through the thickness of the plate with increasing thickness from 

the considered end point of the crack front at the free surface towards the inside of the solid.            

The variation of normalized energy release rate G/G0 along a half-crack front, orthogonal to a 

free surface, is plotted in Fig. 14 for different Poisson’s ratio. The maximum and the 

minimum values of G/G0 are located at the points on the centerline and on the free surface, 

respectively, for non-zero Poisson’s ratio. The figure shows that the energy release rate curves 

decrease considerably in a region sufficiently close to the free surface and that the decrease 

rate is more pronounced for larger Poisson’s ratios. A new plot in log-log scale of the local 

energy release rate versus the curvilinear abscissa away from the corner point is displayed in 

Fig. 15. As expected, the profile of G in log-log scale within the boundary layer region is 

clearly affine. The slope of the curves should correspond to the coefficient 2λ+1 of Eq. (13). 

It is worth noting that the numerical values λ herein closely agree with the analytical solution 

of Benthem [5] and the numerical solution derived by eigenvalue problems [4, 6, 14, 21, 22, 

49]. Thus, G-theta provides a method to extract the power of stress singularity at a corner 

point in a cracked plate and to study the influence of plate thickness on this singularity.   
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Fig. 14 : Normalized local energy release rate G/G0 along a half-crack front for various Poisson’s ratio 

(β = 90°). 

 

Fig. 15 : Energy release rate profile in the boundary layer region near the free surface (β = 90°, b = a).   

For the crack front orthogonal to the free surface, Fig. 16 shows the variation of the stress 

singularity exponent λ, as a function of Poisson’s ratio for different plate thicknesses b. As 

observed in many others studies, the stress singularity order λ increases with the increase of 

Poisson’s ratio ν. Moreover, the result exhibits that the power λ does not depend on the plate 

thickness for thick plates (b ≥ 0.1a) and that its value corresponds to the one obtained by 

Dimitrov et al. [14]. However, λ increases with the plate thickness b for thin plates (b < 0.1a) 

until the value corresponding to b = 0.1a is reached.  

For the crack front non-orthogonal to the free surface, the dependence of the stress singularity 

order λ versus the crack front angle β is presented in Fig. 16. Using Dimitrov et al. [14] as the 

reference, we observe that the numerical results match the reference values of an orthogonal 



16 

 

crack front β = 90°. They are higher for β < 90° and lower for β > 90° for all non-zero 

Poisson’s ratio.   
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Fig. 16 : Dependence of the stress singularity order λ for the end point at the free surface of the 

orthogonal crack front with respect to Poisson’s coefficient ν for various plate thicknesses b (β=90°).  
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Fig. 17 : Dependence of the singularity order λ at the end point upon the crack front angle β for 

various Poisson’s coefficient ν  (b = 0.4a). 
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Based on an energy flux argument, Bazant and Estenssoro [4] and Pook [44] suggested that 

the front edge of a crack under fatigue loading must intersect the free surface at a certain 

angle βc to ensure λ = -0.5. This angle βc depends upon Poisson’s ratio and the inclination of 

the crack plane. Several experimental results cited by Bui [8] allow checking this 

phenomenon. Recently, the influence of a 3D corner singularity on fatigue crack growth in 

transparent specimens of PMMA was investigated experimentally by Herder et al. [28, 29]. 

Their results show that a practically constant crack front angle was observed and that the 

process of adjusting this angle occurs continuously. This experimental observation has been 

verified and confirmed by numerical results. This phenomenon is also noticed by Esnault et 

al. [18] (Fig. 18). In practice, the front edge can be modified within the boundary layer region, 

such that β = βc in numerical simulation, to enforce the square-root singularity at the terminal 

point [38]. However, the geometry of the cracked body is not taken into account in the studies 

mentioned above. Fig. 19 shows the influence of plate thickness on the curve of the critical 

crack front angle versus Poisson’s ratio. Reference results are numerical results obtained by 

Heyder et al. [28] and empirical results of Pook [44]. As observed, the angle βc decreases with 

the decrease of specimen thickness b for a constant Poisson’s ratio ν. The limit of βc is 

reached as b → ∞ is obtained by an eigenvalue analysis for a semi-infinite straight crack front 

[28]. Sevcik et al. [47] used the log-log regression of stress in the vicinity of the crack front 

for Middle Tension specimen to obtain the angle βc corresponding to λ = -0.5. In that work, 

the change of βc versus plate thickness is also observed for the thin specimen and its values 

correspond well with the results of Pook [44] for the thick plate.       

The numerical investigation on the 3D corner singularity for the end point of a crack font at 

the free surface of a cracked plate confirms that the stress singularity exponent λ depends on 

Poisson’s ration ν and on the crack front angle β. However, this shows also the dependence of 

the power λ and the critical angle βc upon plate thickness b. Therefore, the results obtained 

solving an eigenvalue problem with the assumption of a semi-infinite space for the estimation 

of the vertex singularity should be used with caution for thin plates. 
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Fig. 18 : Intersection angle of the crack front with the free surface in Mode I fatigue crack growth 

[18].  
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Fig. 19 : Variation of the critical angle between crack front and free surface βc versus Poisson’s 

coefficient ν for different plate thicknesses b. 

4 Conclusion	
  

The formulation of the G-theta method and its implementation in the framework of FEM or 

XFEM for the computation of energy release rate in linear elasticity is described. A modified 

virtual crack extension (θ field) is proposed to evaluate accurately the energy release rate for 

the through crack surface with front edge non-orthogonal to the free surface. The modified θ 

field changes its direction linearly on a certain modified length between the end point, where 

the θ field is tangent to free surface, and the interior region, where the θ field is normal to the 

crack front. This modified θ field allows to avoid a brutal change of θ direction between the 

end point and the nearby adjacent nodes on the non-orthogonal crack front. The numerical 

results of the energy release rate along the crack front obtained with this modified θ field are 

independent of the θ field direction and of the torus radius choices. This is not observed 

numerically for a normal θ field.  
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The energy release rate along the crack front is then used to evaluate the vertex singularity at 

the end point of the front edge at the free surface for a cracked plate composed of a singularity 

exponent and a critical angle. Within the end point region, it is generally only possible to 

define stress intensity factors and energy release rate in an asymptotic sense. The numerical 

energy release rate is expressed in logarithmic scale within the boundary layer close to the end 

point to extract the power of singularity. The critical crack front angle corresponds to the 

classical square-root stress singularity. For a crack surface perpendicular to the free surface, 

the stress singularity exponent increases with the increase of Poisson’s ratio for a considered 

intersection angle and decreases with the increase of crack front angle for a considered 

Poisson’s ratio. This tendency corresponds to the one obtained by an eigenvalue problem for a 

quarter-infinite crack. However, the values of stress singularity exponent are different 

between these two approaches since this work shows the dependence of vertex singularity to 

plate thickness. Stress singularity order increases as a function of thickness plate and reaches 

the value of the eigenvalue problem for the thick plate. The critical crack front angle increases 

likewise with the increase of plate thickness for a non-zero Poisson’s ratio. This numerical 

investigation on the corner singularity in cracked plates leads us to be careful in using the 

singularity resulting from the eigenvalue problem for the numerical modeling of crack growth 

in a finite structure. As this paper considers only straight crack front forms, the influence of 

the curvature crack front in the boundary layer region close to the end point will be addressed 

later as well as the case of mixed mode loading. 
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