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1. Introduction

Our aim is to estimate quantities such as P(X ∈ A), E(ϕ(X)|X ∈ A) and
E(ϕ(X)1X∈A) where X is a random variable which takes value in a measur-
able state space X and A ⊂ X is a small subset. Another problem of interest
is to sample from the conditional distribution X|X ∈ A, i.e. the generation
of extreme scenarios. These quantities readily appear in the context of reli-
ability for various industrial fields such as communication systems, aircraft
safety, nuclear reactors safety, and so forth. Furthermore, they are also re-
lated to financial risks, for example model, credit and actuarial risk. Notably,
the problem of extreme scenario generation is known as stress-testing in the
field of financial risk management. The current methodology is to introduce
artificial market specific and idiosyncratic shocks in the model and then to
compute the default probabilities/the expected loss. These handpicked sce-
narios are sometimes simplified and can misrepresent risks in different ways
[BC13] and, in a dynamic setting, can fail to capture the interdependence be-
tween various stochastic factors in the market (see Section 4.2 in [ECB08]).
In order to study the stability of a financial - say, banking - system, it is
essential to generate extreme scenarios given the bank/the system default.
In this work (Section 3), we present some examples where this is achieved.

In the case of a rare event, where the probability P(X ∈ A) is extremely
small, simple Monte Carlo method is inefficient. Alternatively, we can use
Importance Sampling methods which can be very efficient but require infor-
mation about the model and the rare event. The schemes based on Interact-
ing Particle System (IPS) or splitting techniques or ergodic transformations
are also well developed. These approaches can be combined. For a detailed
description, see [GL15]. We elaborate here on the splitting and shaking trans-
formation approach designed therein. To implement this approach, we first
create a nested sequence of more and more rare events:

X = A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An = A.

Then, we can write the quantities above via the following products:

P(X ∈ A) =
n∏
k=1

P(X ∈ Ak|X ∈ Ak−1), (1.1)

E(ϕ(X)1X∈A) = E(ϕ(X)|X ∈ An)
n∏
k=1

P(X ∈ Ak|X ∈ Ak−1). (1.2)

2



Thus, instead of estimating the rare event probability directly, we estimate
each conditional probability (and expectation) on the right hand side. Two
different schemes, Parallel-One-Path (POP) and Interacting Particle System
(IPS), using reversible shaking transformation, are proposed in [GL15] and
further studied in [ADGL15]. POP is based on the time average of a Markov
chain while IPS is based on the space average of a large Markovian particle
system. As is shown in the above references, the shaking transformation is
the tool which unifies IPS and POP methods. A similar approach to POP has
been developed in the engineering sciences community (see [AB01]), and is
called in that context subset simulation approach3. We emphasize that the
shaking transformation designed in [GL15] avoids using explicit transition
kernels and is presented with a simple parametrization. It facilitates quick
implementation and makes it easier to tune shaking forces. Our framework
can also handle general situations including stochastic processes driven by
Brownian motion or Poisson process. Furthermore, we have developed an
adaptive version of POP method and proved its consistency in [ADGL15].

In this paper, our aim is threefold:

• We provide efficient variants of POP and IPS methods. The IPS al-
gorithm is revisited by incorporating extra resampling to enhance the
independence property between particles and by reducing the size of
the particle system to keep the same computational cost. The adaptive
POP algorithm is modified to preserve the benefits of both adaptivity
and parallelization.

• When dealing with stochastic processes, we test the robustness of the
two algorithms w.r.t. the dimension of the discretization of the underly-
ing noise (i.e. the number of Brownian increments) in order to address
the issue of the curse of dimensionality. As a difference with usual
MCMC algorithms where the dimension effect may be significant (see
for example [PST12]), we do not observe any significant decrease of
speed of convergence.

• We illustrate the application of these methods for extreme (rare-event)
scenario generation.

3We would like to thank Robert Scheichl for directing our attention to this reference.
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2. Parallel-One-Path (POP) and Interacting Particle System (IPS)
Method

2.1. Shaking transformation

POP and IPS methods are designed to estimate each term on the r.h.s. of
(1.1) using a random transformation called shaking transformation (a local
distribution-preserving perturbation). For a given random variable X ∈ X ,
K(·) is called a shaking transformation for X if (X,K(X))

d
= (K(X), X). We

will consider the case whereK(X) = K(X, Y ), whereK(·, ·) is a deterministic
function and Y is another random variable independent of X. Then, we can
build a X -valued Markov chain as

Xi+1 = K(Xi, Yi), X0
d
= X,

where Yi are independent copies of Y . This Markov chain has the distribution
of X as its stationary distribution. Thus, we expect an ergodic theorem to
hold, i.e. for any measurable Ψ : X → R, setting Zi := Ψ(Xi) and Z = Ψ(X)
we have

1

N

N∑
i=1

Zi →
N→+∞

E (Z) a.s. (2.1)

as soon as Z is integrable. The convergence rate of the above approximation
depends on X and K. In the Gaussian case, if X = (X1, . . . , Xj, . . . ) is an
infinite-dimensional centered Gaussian vector, we define

K(X,X ′)j := ρjXj +
√

1− ρ2
jX
′
j (2.2)

given an independent copy X ′ of X and the constants ρj ∈ [−1, 1]. Then, we
show the following:
Theorem 1 (Theorem 2 [ADGL15]). Assume Z = Ψ(X) is square integrable.
If |ρ| := supj|ρj| < 1, then

E

(∣∣∣ 1

N

N∑
i=1

Zi − E (Z)
∣∣∣2) ≤ Var (Z)

N

(
1 + |ρ|
1− |ρ|

)
. (2.3)

The proof for the above general case can be conducted with the help of the
generalized Gebelein inequality. In the following, we provide an elementary
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proof in one dimension (X d
= X ′

d
= N (0, 1)) using the properties of Hermite

polynomials. Recall that the j-th Hermite polynomial is defined by H0 :=

1, Hj(x) := (−1)j

j!
e

x2

2
dj

dxj
(e−

x2

2 ), j ≥ 1, and it satisfies the following properties:

H ′j(x) = Hj−1(x), (j + 1)Hj+1(x) = xHj(x)−Hj−1(x).

Lemma 1. For ρ ∈ [−1, 1], we have E
(
Hj(ρx+

√
1− ρ2X ′)

)
= ρjHj(x).

Proof. Obviously, the result holds for j = 0 and j = 1. Now suppose it holds
for 1, 2, . . . , j. We prove it for j + 1.

(j + 1)E
(
Hj+1(ρx+

√
1− ρ2X ′)

)
= E

(
(ρx+

√
1− ρ2X ′)Hj(ρx+

√
1− ρ2X ′)−Hj−1(ρx+

√
1− ρ2X ′)

)
= ρxρjHj(x) + E

(√
1− ρ2X ′Hj(ρx+

√
1− ρ2X ′)

)
− ρj−1Hj−1(x).

It is easy to prove that for a smooth function h with polynomial growth, we
have E (h′(X ′)) = E (X ′h(X ′)) . Then take h(x′) := Hj(ρx+

√
1− ρ2x′) and

write

E
(√

1− ρ2X ′Hj(ρx+
√

1− ρ2X ′)
)

= (1− ρ2)E
(
H ′j(ρx+

√
1− ρ2X ′)

)
= (1− ρ2)ρj−1Hj−1(x),

which allows to conclude.

Proof of Theorem 1 (dimension 1). We consider the case X d
= N (0, 1). We

denote the single shaking parameter by ρ and define TρΨ(X) := E′ (Ψ(K(X,X ′)))

= E
(

Ψ(ρX +
√

1− ρ2X ′)
)

where the expectation is taken only w.r.t. X ′.
Since Hermite polynomials form a complete orthonormal system in L2(X),
there exist (aj ∈ R, j ≥ 1) such that Z = Ψ(X) = E (Ψ(X))+

∑
j≥1 ajHj(X).

Then, the above lemma gives

Tρ(Ψ(X)) = E(Ψ(X)) +
∑
j≥1

ρjajHj(X);

E
(∣∣∣Tρ(Ψ(X))− E (Ψ(X))

∣∣∣2) ≤∑
j≥1

ρ2ja2
j ≤ |ρ|2Var (Ψ(X)).
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It readily follows that, for i < i′,

Cov (Zi, Zi′) = E
((
Zi − E (Z)

)(
Tρi′−i(Ψ(Xi))− E (Z)

))
≤ |ρ|i′−iVar (Z) .

This allows us to get the upper bound (2.3), since the l.h.s. of (2.3) is equal
to 1

N2

∑
1≤i,i′≤N Cov (Zi, Zi′).

Using the shaking transformation, we define a second random transforma-
tion, called shaking with rejection, which allows to formulate POP and IPS
methods. For a fixed k ∈ {0, . . . , n}, we define

MK
k (X) := K(X)1K(X)∈Ak

+X1K(X)/∈Ak
. (2.4)

As earlier, we writeMK
k (X) = MK

k (X, Y ) when K(X) = K(X, Y ) and Y is
another random variable independent of X.

2.2. POP method

POP method is designed to estimate each conditional probability P(X ∈
Ak|X ∈ Ak−1) separately. The key observation for this technique is that the
conditional distribution X | X ∈ Ak is invariant with respect to the shaking
with rejectionMK

k (·).
Proposition 2 ([GL15, Proposition 2.2]). Let k ∈ {0, 1, · · · , n}. For any
bounded measurable ϕ, we have

E
(
ϕ(MK

k (X)) | X ∈ Ak
)

= E (ϕ(X) | X ∈ Ak) . (2.5)

This proposition enables us to define a Markov chain which has X|X ∈ Ak
as its invariant measure.
Definition 1. For each k = 0, . . . , n, given a starting point Xk,0, define

Xk,i :=MK
k (Xk,i−1) = MK

k (Xk,i−1, Yk,i−1) for i ≥ 1 (2.6)

where (Yk,i)i≥0 is a sequence of independent copies of Y , independent of Xk,0.

Therefore, if the above defined Markov chain is ergodic, from Birkhoff ergodic
Theorem, we have the following approximation:

E (ϕ(X)|X ∈ Ak) ≈
1

N

N−1∑
i=0

ϕ(Xk,i), as N → +∞. (2.7)
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Setting ϕ ≡ 1Ak+1
for k ≤ n−1 yields an approximation of P (X ∈ Ak+1|X ∈ Ak)

and the product of all the estimators provides an estimate of the rare event
probability P (X ∈ A) thanks to (1.1). Notice that POP method is espe-
cially suitable for parallel implementation and it is very economical in terms
of memory consumption.

Application to stress testing. Another application of the above approach
is to generate samples for X | X ∈ A by using the last level Markov chain
(Xn,i)i≥0. We know that for an aperiodic ergodic Markov chain, its marginal
distribution will converge to its unique stationary distribution. Thus, if we
run the Markov chain Xn,· with enough iterations, its marginal distribution
will be close to the conditional distribution of X | X ∈ A. In other words, for
N large, (Xn,N , Xn,2N , . . . , Xn,lN) will constitute a sample of size l of (almost
independent) random variables with distribution (approximately equal to)
X | X ∈ A. This can be used to build extreme scenarios, for example, in
stress testing. As recalled in the introduction, this is an important question
in risk assessment. This application is illustrated later in Section 3.

Adaptive POP. A suitable choice of nested subsets (Ak)0≤k≤n is essential for
an efficient application of POP method. If any of the conditional probabilities
P(X ∈ Ak | X ∈ Ak−1) is small, we again fall in the case of rare event.
Ideally, we would wish to have all the conditional probabilities to be of the
same order but this is not possible without some a priori knowledge. In order
to overcome this difficulty, an adaptive version of POP method is developed
in [ADGL15] together with a proof of its convergence. This adaptive version
finds good nested subsets using the quantile estimators of each intermediate
level Markov chain. However the subsets (Ak) are determined sequentially
which rules out a parallel implementation. In subsection 2.4.1 we propose a
variant of this adaptive POP method which allows to recover a fully parallel
version of the algorithm.

2.3. IPS method

With the aim of estimating the rare event probability P (X ∈ A), we define
a Markov chain as follows:
Definition 2. (Xi)0≤i≤n−1 is a X -valued Markov chain, such that

X0
d
= X, Xi :=MK

i (Xi−1) = MK
i (Xi−1, Yi−1) for 1 ≤ i ≤ n−1, (2.8)
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where (Yi)0≤i≤n−2 is a sequence of independent copies of Y , independent of
X0.

With the above definition we obtain the following result.
Theorem 3 ([GL15]). For any bounded measurable function ϕ : X → R, we
have

E (ϕ(X)1X∈A) = E

(
ϕ(Xn−1)

n−1∏
i=0

1Ai+1
(Xi)

)
. (2.9)

The interpretation of rare event probability as an expectation related to a
Markov chain, i.e. in a Feynman-Kac measure way, enables the use of IPS
method. The steps of this algorithm are described below in Algorithm 1 with
J = 1. The idea behind this procedure is to imitate the evolutionary selection
and mutation process via the interaction of a large number of particles (see,
for example, [Del04]). As seen from Algorithm 1, each generation is used to
approximate the conditional distribution X | X ∈ Ak.

2.4. Variants of POP and IPS methods

2.4.1. POP method with level refinement

As shown through the numerical examples in [GL15], POP method is efficient
when provided with good choices of nested subsets, which is possible thanks
to the aforementioned level adaptive version. However, the advantage of
parallelization is lost. Here, we propose a variant with level refinement which
allows to recover the possibility of parallelization.

To begin, we fix a threshold value q (for example q = 0.05) for each condi-
tional probability under which the estimation using one Markov chain is
considered insufficient, and we arbitrarily choose some nested subset Ak
(such as an equi-distant partition of the entire space according to some
criteria function). Then, we run one Markov chain as defined in Defini-
tion 1 at each level in parallel to estimate all the conditional probabilities
P(X ∈ Ak | X ∈ Ak−1). Next, we check if the estimator p(N)

k is larger than
q and accept the estimate for each level for which it is true. Otherwise, if
p

(N)
k0

< q for some k0, we change the algorithm to the adaptive scheme as in
[ADGL15] to estimate P(X ∈ Ak0 | X ∈ Ak0−1). Notice that the Markov
chain already used for level k0 need not be simulated again. Another scheme
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is to put new nested subsets between Ak0 and Ak0−1 and run POP method
again in parallel. Finally, the product of all the estimators provides an esti-
mate of the rare event probability.

2.4.2. IPS method with extra resampling

Initialization:
For given integers J and M , set M ′ = bM

J
c;

Draw (X
(M ′,m)
0 ,m = 1, · · · ,M ′) which are i.i.d. copies of X ;

p
(M ′)
0 = 1

M ′

∑M ′

m=1 1A1(X
(M ′,m)
0 );

for i = 0 until n− 2 do
for m = 1 until M ′ do

Selection step:
if X

(M ′,m)
i ∈ Ai+1 then

X̂
(M ′,m)
i,0 = X

(M ′,m)
i ;

else
Pick X̂(M ′,m)

i,0 uniformly in {X(M ′,m)
i ∈ Ai+1} and

independently of everything else;
end
Mutation step:
for j = 1 until J do

X̂
(M ′,m)
i,j = MK

i+1(X̂
(M ′,m)
i,j−1 , Y

(m)
i,j−1) where Y (m)

i,j are i.i.d copies
of Y ;

end
X

(M ′,m)
i+1 = X̂

(M ′,m)
i,J ;

end
p

(M ′)
i+1 = 1

M ′

∑M ′

m=1 1Ai+2
(X

(M ′,m)
i+1 );

end
Result: p(M ′) =

∏n−1
i=0 p

(M ′)
i

Algorithm 1: IPS method with extra resampling and reduced size for
computing P (X ∈ A)

An intrinsic feature of IPS method is that different generations of particles
are correlated with each other. Thus, if the empirical measure is inaccurate
at the first generation, it is likely to be inaccurate at the following genera-
tion, which amplifies the variance of the final estimator. Here, we propose
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a way to reduce this dependency between generations. As previously seen,
the shaking with rejection transformation is invariant with respect to the
conditional distribution of X. Hence, if we apply several iterations of the
transformation to obtain the next particles generation, the distribution of
the system will be less influenced by the previous state. In order to keep the
same computational cost, we reduce the size of the particle system. Thus,
we run the proposed version of IPS algorithm with particle size bM

J
c and the

transformation MK
k (X) applied J times at each time step. Regarding the

convergence analysis, we can show that for a given J , the convergence still
holds as M

J
goes to infinity. As we see in the numerical experiments, this

variant of IPS method has a better performance, compared to the standard
algorithm (Subsection 2.3) without extra resampling (J = 1).

3. Numerical experiments

In this section, we provide new and complementary numerical tests on two
examples chosen from [ADGL15]. For completeness, each example is recalled
briefly.

3.1. Credit portfolio default probability

We first consider an example of a credit portfolio based on the asset values of
N0 different firms (S1(t), . . . , SN0(t) : 0 ≤ t ≤ T ). Each Si follows a Heston
model with the same CIR volatility (σ(t) : 0 ≤ t ≤ T ) and with the same
parameters, given by

N0 Si(0) r ρW σ(0) κ σ̄ γ ρσ T

125 90 0.06 0.10 0.4 3.5 0.4 0.7 -0.06 1

The parameter r stands for the drift of Si, γ for the volatility of volatility,
σ̄ for the long-term volatility, κ for its mean-reverting rate; the correlation
between the Brownian motions driving Si and Sj is ρW and the correlation
between each asset and its volatility is ρσ.

Our aim is to calculate the probability that at least L defaults occur before
T

P(L) = P

(
N0∑
i=1

1{τi(B)≤T} > L

)
, 0 < L < N0, (3.1)
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×10−6 J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J = 8 J = 9 J = 10 POP
ρ = 0.9 2.50 1.21 1.04 1.01 1.03 1.06 1.11 1.19 1.31 1.37 0.80
ρ = 0.7 1.74 1.40 1.29 1.25 1.20 1.29 1.28 1.33 1.37 1.43 1.02
ρ = 0.5 4.46 3.69 3.56 3.11 3.18 2.90 2.67 2.73 2.63 2.61 1.94

Table 3.1: Empirical standard deviation of IPS estimators of default probability for L =
100 and B = 36 based on 1000 algorithm macro-runs, with M = 104 and particle system
size equal to M ′ = bMJ c. The last column is the empirical standard deviation of POP
method using n =M = 104 iterations at each level.

where τi(B) is the default time for the firm i with default level B:

τi(B) := inf
{
t ≥ 0 : Si(t) ≤ B

}
.

Different IPS-based methods have been proposed in [CFV09] and [ADGL15]
to compute P(L) using a dynamic and a static point of view, respectively. We
will continue with the static point view, i.e. applying shaking transformation
on the path space. In order to express P(L) in the form of (1.1), we need to
create a cascade of decreasing sets (Ak)1≤k≤n. We set

Ak :=

{
N0∑
i=1

1{τi(Si(0)−(Si(0)−Bi)
k
n

)≤T} > L

}
, 1 ≤ k ≤ n.

We estimate P(L) for different values of L with Nstep = 50 time steps in the
Euler discretization scheme for (S1, . . . , SN0 , σ) as explained in [ADGL15].
The random variable X modeling the rare event is Gaussian, associated to
the Nstep increments of the N0+1 Brownian motions and we use the Gaussian
shaker (2.2) with ρj = Cst.

For L = 100 and B = 36, a 99% confidence interval [4.92, 5.13] × 10−6

is given in [ADGL15] as reference. In Table 3.1, we report the results for
IPS estimators with different number J of shaking transformation iterations
applied at each time for fixed n = 5 levels. As we can see from Table 3.1,
the IPS method with fewer particles but extra resampling at each step have
better performance compared to the case without resampling. Heuristically,
a good choice is J = 4. However, even after extra resampling, POP method
yields smaller standard deviation.

Typically, in classical IPS method such as in [CFV09], the choice of appro-
priate discretization step (∆t) in the Euler scheme is quite delicate. On one
hand, small ∆t reduces the bias but on the other hand, small ∆t adds statis-
tical errors because the number of selection/mutation steps increases in the

11
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Figure 3.1: The impact of the number of discretization times (Nstep) on the optimal
shaking parameter (ρ) at each level of POP method.

IPS method used there. In our version of IPS and POP methods, the under-
lying random variable X lies in a large-dimensional space X = R(N0+1)Nstep .
Therefore it is important to assess how the large dimension affects the sta-
tistical errors of the methods (like in MCMC sampler, for example, see
[PST12]). The important point is that we use reversible transformation di-
rectly in the path space. This suggests that our methods are less sensitive
to time-discretization. We investigate this problem in Figure 3.1, where we
study the impact of Nstep in POP method with n = 5 levels. We report the
numerical results only for the POP method, as the qualitative phenomenon
for IPS method is the same. The graphs show that the choice of Nstep, when
large, has no significant impact on the optimal value of the shaking parameter
ρ, which corresponds to the minimum standard deviation of the conditional
probability estimator at a given level. Additionally, both the standard devia-
tion and the rejection rate are quite insensitive to Nstep. These are important
advantages of the methods studied in this work. This allows to decouple the
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problem of bias reduction and the control of statistical convergence.

Stress-testing. In Figure 3.2, we exhibit extreme scenarios for the asset
price of firm 1 and its volatility, in the situation of various defaults (level
1 and last level, n = 5, L = 100) with two different values of B. Each
scenario is obtained by using 104 iterations of shaking with rejection (with
ρ = 0.9). For this, we have used the first and last-level Markov chain X1,.

and X5,., respectively, to get samples from the distributions X | X ∈ A1 and
X | X ∈ A respectively, as explained in Subsection 2.2. We believe that such
tools can be efficiently exploited by regulators and risk managers for a better
risk assessment.
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Figure 3.2: Sample paths for the asset price of firm 1 at Level 1 and Level 5 in the POP
method and the respective volatility sample paths.

3.2. Model misspecification in financial engineering and extreme scenarios

We consider the Profit&Loss (PL) when a trader uses a Black-Scholes (BS)
model with volatility σ− > 0 in order to hedge a European call option, while

13



the true dynamics of the underlying S is given by a path-dependent volatility
model with volatility switching between σ− and σ+ > σ−. We propose a
discrete-time version of the model based on a monitoring period ∆t (say 1
week) and monitoring dates ti = i∆t: if the underlying spot price drops
below the average of previous four monitored prices, the level of volatility
becomes σ+, otherwise it sticks to σ− (see [ADGL15] for more details). This
model corresponds to the usual empirical observation that the underlying
volatility is higher when price falls.
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Figure 3.3: Typical paths of the underlying stock price which lead to large hedging loss

The call option maturity is T , and [0, T ] is the trading period under consid-
eration. For our numerical experiment, we take T = 1, ∆t = T/50 and we as-
sume that the trader’s rebalancing period is 5∆t. At times t5∆tj, 0 ≤ j < 10,
the trader holds δj assets where δj is given from the BS-Delta with volatility
σ− and spot S5∆tj. Hence at the maturity the trader’s PL is given by

PLtrader := Etrader
[
(ST −Kstrk)+

]
+

9∑
j=0

δj(S5∆t(j+1) − S5∆tj)− (ST −Kstrk)+.

Because of the mismatch between the realized model and the hedging model,
the trader may incur large losses. Large loss probability P (A) with A =
{PLtrader ≤ L} has been estimated using POP and IPS methods in [ADGL15].
Here we are more interested to know what are the typical scenarios which
generate large losses. We set S0 = Kstrk = 10, σ− = 0.2, σ+ = 0.27 and take
L = −2.4. Applying the principle of subsection 2.2 on stress-testing, we can
get samples from the distribution X | X ∈ A; 5 typical scenarios are reported
in Figure 3.3. Each scenario is obtained using 104 iterations of shaking with
rejection (with ρ = 0.9). As intuitively expected, typical extreme scenarios
exhibit large fluctuations of S.
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