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Abstract

Given Y a graph process defined by an incomplete information observation of a
multivariate Ornstein-Uhlenbeck process X, we investigate whether we can estimate
the parameters of X. We define two statistics of Y . We prove convergence properties
and show how these can be used for parameter inference. Finally, numerical tests
illustrate our results and indicate possible extensions and applications.
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1 Introduction

1.1 Statement of the problem

Take an Ornstein-Uhlenbeck process X = (Xt : t ≥ 0) with values in Rd (d ∈ N+),
solution to the stochastic differential equation:

dXt = −AXtdt+ ΣdWt, X0 given. (1.1)

We consider the model of stochastic graphs generated as follows: the adjacency value
between vertices i and j is

Y ij
t = 1Xt∈Sij

where
(
Sij
)
i,j

are subsets of Rd.
The topic of random graphs is a well-developed research area. Since the Erdős–Rényi

model, many other ways of generating a random graph have been proposed, most notably
the preferential attachment model, the Chung-Lu model or the Kronecker graph model
[Bol01, MX07]. Most models have the goal to create a single instance of a random graph.
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Some proceed by ”growing” the graph, i.e. by successively adding nodes and edges, as in
the preferential attachment model. Other models also enable deleting nodes and edges.

In contrast, in our model the nodes are fixed, hence it is not a ”growing” graph, but
the edges are evolving continuously in time. One could in principle fix a T and consider
the random graph YT , but the real richness of our model resides in the evolution of the
graph in continuous time. For instance, it adds correlation between graphs at arbitrary
time-scales.

Y gives only partial information about X. Hence, usual results on inference for stochas-
tic processes can not be applied. We therefore aim at extending these results to our setting
and ask then the question of finding A,Σ from Equation (1.1), given the sole observation
of Y .

We will consider that we have access to one realization of the process Y observed at
discrete times (k∆n)0≤k≤n, n ≥ 1. Therefore, we hope to get results in the long time limit
n∆n → +∞ as n→ +∞, in which we can expect to use ergodic properties of the process
X. Intuitively, doing so we will estimate parameters arising in the stationary distribution.
Also, to estimate parameters related to local fluctuations (i.e. Σ), we are interested in the
high frequency limit ∆n → 0.

1.2 Applications in systemic risk modeling

In [CFS15, FI13], authors present a model for inter-bank lending in which d bank reserves
are modeled through real-valued random processes Xi. Whenever bank i has more reserves
than bank j, i lends money to j, thus reducing reserve Xi and increasing Xj . Gaussian
noise is added in order to model random variations of the reserves. We will refer to this
model through Equation (1.2) (which is exactly the model from [CFS15] without a central
bank):

dXi
t = −a

d

d∑
j=1

(
Xi
t −X

j
t

)
dt+ σdW i

t . (1.2)

In this model, authors define a systemic event when the mean reserve falls below some
predetermined value. The analysis of the model shows that the probability of the systemic
event can be computed and the result depends explicitly on the values of the parameters,
especially on the correlation of the Brownian motions with a common noise.

Therefore, it is crucial to know how to estimate the values of the parameters of the
equation, even in the realistic situation where one wouldn’t have complete information of
the banks’ reserves. We consider for instance that the regulator, whose perspective we are
analysing here, would fix a regulatory threshold r and would observe all variables of the
form

Y ij
t := 1

Xi
t−X

j
t>r

.

1.3 Summary of results

In this article, we define two statistics and show the following convergences.
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• An ”occupation time” statistic OTn, which counts the number of times the process
is present in a given set. Normalized by n, this number converges to the stationary
measure of that set, in the following ways:

– in L2, with a speed of convergence bounded by
√
n∆n, which is the square root

of the time horizon of the estimation;

– with the right normalization, convergence in law to a Gaussian variable, for
one-dimensional processes.

• A ”crossings” statistic Cn, which counts the number of times the process X goes in
or out of a given set Sij , i.e. the number of changes of the Y i,j-value. We show a
convergence in L2 of this - suitably normalized - statistic.

We show then how to use this in order to estimate the parameters of model (1.1).

1.4 Related work

The question that we investigate in this article is on the recovery of the parameters of an
Ornstein-Uhlenbeck equation given the n observations of a single realization of the process.
It relates therefore to the largely developed field of inference for stochastic processes. Many
results exist on this subject: for instance, see [Kut04] for continuous-time observations and
[KLS12] for discrete-time ones.

In this work, we are specifically interested in discrete-time observation schemes. We
observe three distinct discrete-time settings. First, the low-frequency long-time (LF-LT)
setting consists in fixing a time step ∆ and observing at times (i∆)i≤n with n → +∞
[Yos92]. Second, the high-frequency fixed-time (HF-FT) setting, where a time horizon T
is fixed and observations are taken at (i∆n)i≤n with ∆n = T/n → 0 [GJ93]. Third, the
high-frequency long-time (HF-LT) setting where one assumes observations at (i∆n)i≤n
with the time step ∆n → 0 and the time horizon n∆n → +∞ [Kes97, Gob02, ASM04].
Our work is placed in the latter HF-LT setting.

Some results already exist on problems with observation of crossings of a given thresh-
old. For instance, [Flo87] considers the estimation using only the observation of the sign
of the process. However this is done in the LF-LT setting and in dimension 1. The same
remark applies to [Flo89, Flo91]. We will extend her CLT results to the HF limit.

The HF-LT setting is combined with partial information observation in [IUY09]. The
authors consider, for ε > 0, the observation of 1|Xt|≥εXt. Our assumption of a binary
observation leaves us with even scarcer information, thus making the inference problem
more delicate.

To sum up, the closest work to ours is seemingly [IUY09] and [Flo87] but our main orig-
inal contribution concerns the multi-dimensional scope and the case of binary observation
in the HF-LT setting.

Organisation of the paper. In the next subsection, we define the notations and
assumptions used throughout this work. Then in Section 2, we study the first statistic
based on occupation time. We first prove general convergence results useful to analyse the
convergence of all estimators (Theorem 2.1). L2 and CLT results are proved (Theorems
2.2 and 2.3). Section 3 is devoted to the study of the second estimator based on crossings
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(Theorem 3.1). Last in Section 4, we report numerical experiments. Applications to
parameters inference are discussed along the sections. Technical results are postponed to
Appendix.

1.5 Notations and assumptions

1.5.1 Notations

For d ∈ N+, take m ∈ Rd and V a symmetric positive definite d × d matrix. We call
N (m,V ) the law of a Gaussian r.v. with mean m and covariance matrix V . For m = 0,
this centered Gaussian distribution is denoted by νV and its density by µV :

µV (x) = (2π)−d/2 det(V )−1/2 exp

(
−1

2
x∗V −1x

)
, x ∈ Rd,

where x∗ is the transpose of x. In dimension d = 1, we introduce additionally the CDF of
N (0, 1):

N (x) =

∫ x

−∞
µ1(s)ds, x ∈ R.

Given a measurable function f : Rd → R and a probability measure ν on Rd, we
denote ν(f) =

∫
f(x)ν(dx). For a measurable set S ⊂ Rd, we write ν(S) = ν(1S) by a

slight abuse of notation.

1.5.2 Restatement of the model and standing assumptions

Consider two matrices A ∈ Md,d(R) and Σ ∈ Md,q(R) where d, q ∈ N+, which serves to
model (1.1). The standing assumptions on A and Σ are the following.

(H) The matrix ΣΣ∗ is invertible and the spectrum of A has strictly positive real parts:

a0 := min
λ∈Sp(A)

Re(λ) > 0. (1.3)

We define an important class of covariance matrices:

Vt =

∫ t

0
e−AuΣΣ∗e−A

∗udu, V∞ =

∫ +∞

0
e−AuΣΣ∗e−A

∗udu.

We easily check that V∞ is well defined, symmetric positive definite. For one-dimensional
processes, we simply have:

vt =
σ2

2a

(
1− e−2at

)
, v∞ =

σ2

2a
.

Let
(
Ω,F , (Ft)t∈R+ ,P

)
be a filtered space and (Wt)t∈R+ a q-dimensional Brownian

motion with respect to F . In this setting, we consider the multi-dimensional Ornstein-
Uhlenbeck equation for X as introduced in (1.1):

dXt = −AXt + ΣdWt, X0
d
= N (0, V∞) , (1.4)
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where X0 is a r.v. independent of W . In the following X = (Xt : t ≥ 0) stands for the
Rd-valued solution of (1.4). We recall some properties from [KS91, Chapter 5.6]. First X
is stationary:

∀t ∈ R+, Xt
d
= N (0, V∞) . (1.5)

To simplify we denote by ν∞ the Gaussian distribution N (0, V∞) and by µ∞ its density.
In the subsequent analysis, the initial distribution could be different from ν∞, it would
not change significantly the analysis since the OU-process converges exponentially fast to
its stationary regime.

Second, X is Markovian and ergodic. Take t > s, we can write:

Xt = e−A(t−s)Xs +

∫ t

s
e−A(t−u)ΣdWu, (1.6)

from which we deduce
Xt | Xs

d
= N

(
e−A(t−s)Xs, Vt−s

)
. (1.7)

Equality (1.6) gives also an important insight on decorrelation of the process:

Cov (Xt, Xs) = e−A(t−s)Var (Xs) = e−A(t−s)V∞, t ≥ s. (1.8)

In the following, all the limits will be considered as n→ +∞, under the asymptotics of
high frequency data (∆n → 0) on a long-time interval (n∆n → +∞). Also, for simplicity,
we assume ∆n ≤ 1.

Remark 1.1. In Equations (1.4) and (1.7), we see that the distribution of X0 and Xt | Xs

depend on Σ only through ΣΣ∗. Hence we shall restate our inference problem as the
estimation of (A,ΣΣ∗).

2 Occupation time statistic

Consider the d-dimensional process governed by Equation (1.4). We define the first statis-
tic:

Definition 2.1. Let S be a measurable subset of Rd. Define:

Y S
t = 1Xt∈S .

The occupation time statistic is defined as:

OTS
n =

1

n

n−1∑
k=0

Y S
k∆n

=
1

n

n−1∑
k=0

1Xk∆n∈S .

This statistic gives the frequency of occupation of S by the process X, hence the name.
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2.1 Preliminary tools

The study of convergence of OTS
n and further statistics will be made possible by using

some tight controls related to the mixing properties of X at different times. Note that we
cannot directly invoke general mixing properties of Markov chains since here the Markov
chain (Xk∆n : k ≥ 0) depends on n through ∆n: this is the main difficulty. The current
estimates are made possible using the Gebelein inequality (a.k.a. Lancaster inequality)
about maximal correlation between Gaussian spaces.

Theorem 2.1 (Mixing properties). Assume that X solves the Ornstein-Uhlenbeck Equa-
tion (1.4), and recall the definition of a0 in (1.3). There exists a finite constant C(2.1),
depending only on the stationary distribution covariance matrix V∞, such that for any
t ≥ s ≥ 0 and for any functions ϕ : C0([0, s],Rd)→ R, φ : C0([t,+∞),Rd)→ R such that
ϕ, φ are square-integrable w.r.t. the law of X, we have

|Cov (ϕ ((Xu)u≤s) , φ ((Xv)v≥t))| ≤ C(2.1)e
−a0|t−s|

√
Var (ϕ ((Xu)u≤s))Var (φ ((Xv)v≥t)).

(2.1)

The proof is done in Appendix B. A very useful corollary is related to the convergence
study of sum of general local functionals of X.

Corollary 2.1. Consider a measurable function g : N×N× C0([0, 1],Rd)→ R such that
E
[
g(k, n, (Xs)k∆n≤s≤(k+1)∆n

)2
]
< +∞ for any k, n ∈ N. For n ∈ N define

v2
n = sup

k<n
Var

(
g(k, n, (Xs)k∆n≤s≤(k+1)∆n

)
)
,

ξ
(n)
k =

√
∆n

n
g(k, n, (Xs)k∆n≤s≤(k+1)∆n

).

Then, there is a finite constant C(2.2), dependent only on the parameters A,Σ of the model,
such that:

Var

(
n−1∑
k=0

ξ
(n)
k

)
≤ C(2.2)v

2
n. (2.2)

Remark 2.1. If E
[∑n−1

k=0 ξ
(n)
k

]
→ l for some l ∈ R, then vn → 0 implies

n−1∑
k=0

ξ
(n)
k

L2

−→ l.

Proof of Corollary 2.1. Denote gk = g(k, n, (Xs)k∆n≤s≤(k+1)∆n
); without loss of general-

ity, we can assume that E [gk] = 0. We have

Var

(
n−1∑
k=0

ξ
(n)
k

)
=

∆n

n

n−1∑
k=0

Var (gk) +
2∆n

n

n−1∑
k=0

n−1∑
l=k+1

Cov (gk, gl) .

For l > k, we have [k∆n, (k + 1)∆n] ⊂ [0, (k + 1)∆n] and [l∆n, (l + 1)∆n] ⊂ [l∆n,+∞[.
Apply Theorem 2.1:

Cov (gk, gl) ≤ C(2.1)e
−a0|k+1−l|∆n

√
Var (gk)Var (gl).
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Then we deduce

Var

(
n−1∑
k=0

ξ
(n)
k

)
≤ ∆n

n
nv2

n +
2∆n

n
n
∑
m≥0

C(2.1)v
2
ne
−a0m∆n

≤ v2
n

(
∆n + 2C(2.1)

∆n

1− e−a0∆n

)
≤ C(2.2)v

2
n,

where we set C(2.2) = supx∈[0,1]

(
x+ 2C(2.1)

x
1−e−a0x

)
.

2.2 L2 convergence of occupation time statistics

Theorem 2.2. For any measurable set S ⊂ Rd, OTS
n converges to ν∞ (S) in L2 and

E
[
(OTS

n − ν∞ (S))2
]

= O

(
1

n∆n

)
.

Proof. As the process is stationary, E
[
OTS

n

]
= E [1X0∈S ] = ν∞ (S). Next, we apply

Corollary 2.1 to OTS
n =

∑n−1
k=0 ξ

(n)
k with

ξ
(n)
k =

1

n
1Xk∆n∈S =

√
∆n

n
g(k, n,Xk∆n),

g(k, n,Xk∆n) =
1√
n∆n

1Xk∆n∈S ,

Var (g(k, n,Xk∆n)) =
1

n∆n
Var

(
1Xk∆n∈S

)
=
ν∞ (S) (1− ν∞ (S))

n∆n
.

Therefore, we get E
[
(OTS

n − ν∞ (S))2
]

= Var
(
OTS

n

)
≤ C(2.2)

n∆n
.

2.3 Central Limit Theorem for one-dimensional processes

Here we restrict the study to the one-dimensional situation. There are two technical
reasons for this: we solve explicitly the Poisson equation (see Lemma C.2) and derive
tractable bounds on it. Additionally, we take advantage of the one-dimensional situation
to handle explicit computations. The validity of a Central Limit Theorem in the multi-
dimensional setting remains an open question to us.

For d = 1, the model becomes

dXt = −aXtdt+ σdWt. (2.3)

Assumption (H) reads a > 0 and σ 6= 0. We consider the case S = [1,+∞[. The extension
of the following results to the case where S is a finite union of intervals is straightforward,
and it is left to the reader.
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Theorem 2.3. As n→ +∞, we have√
n∆n

(
OT[1,+∞[

n − ν∞ ([1,+∞[)
)

d−→ N
(
0, ν∞

(
σ2F ′2

))
where F is defined in (C.2) and is such that

F ′(x) =
2

σ2

N
(
x∧1√
v∞

)
−N

(
1√
v∞

)
N
(

x√
v∞

)
µ∞(x)

∈
[
0, 2

√
π

aσ2

]
.

Proof. A simple inspection on F ′ shows that it is non-negative. The upper bound is proved
in Lemma C.3 (see inequality (C.7)). This proves the inclusion of F ′(x).

We now prove the Central Limit Theorem. We follow the approach by [Flo84]. The
main difference is that the function x 7→ 1x≥1 is non continuous, which raises technical
issues.

Consider first the continuous time extension of OT
[1,+∞[
n , i.e.

OTc
t =

1

t

∫ t

0
1Xs≥1ds.

Denote in this proof f(x) = 1x≥1 and f̂(x) = f(x)− ν∞ ([1,+∞[), so that∫ t

0
f̂(Xs)ds = t (OTc

t − ν∞ ([1,+∞[)) .

Introduce then L = −ax ∂
∂x + σ2

2
∂2

∂x2 the infinitesimal generator of X: Lemma C.2 in
Appendix C ensures that F defined in (C.2) verifies the Poisson equation

LF = −f̂ .

Introduce Mt = F (Xt)−F (X0)+
∫ t

0 f̂(Xs)ds. F is twice differentiable but F ′′ has a single
point of discontinuity at 1. However, we can still apply Itô’s formula in that case (see
Lemma C.1). We get:

Mt =

∫ t

0
σF ′(Xs)dWs, 〈M〉t =

∫ t

0
σ2F ′(Xs)

2ds.

F ′ being bounded, M is a martingale. As we have t−1〈M〉t → ν∞
(
σ2F ′2

)
in probability

(ergodic theorem) as t → +∞, we can use a CLT for martingales (see Lemma C.4 with
Kt = t−1/2) to get

Mt√
t

=
F (Xt)− F (X0) + (OTc

t − ν∞ ([1,+∞[)) t√
t

d−→ N
(
0, ν∞

(
σ2F ′2

))
.

Finally, F is sublinear (F ′ bounded), thus 1√
t

(F (Xt)− F (X0))
L2

−→ 0. Consequently we

have proved √
t (OTc

t − ν∞ ([1,+∞[))
d−→ N

(
0, ν∞

(
σ2F ′2

))
.
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We now aim at proving that the above result extends to the discrete version OT
[1,+∞[
n .

For this, define

Dn :=
√
n∆n

(
OT[1,+∞[

n −OTc
n∆n

)
=

√
∆n

n

n−1∑
k=0

∫ ∆n

0

f (Xk∆n)− f (Xk∆n+u)

∆n
du

:=

√
∆n

n

n−1∑
k=0

g(k, n, (Xs)k∆n≤s≤(k+1)∆n
).

Observe that it remains to prove that Dn
P−→ 0. In view of Corollary 2.1 and since

E
[
g(k, n, (Xs)k∆n≤s≤(k+1)∆n

)
]

= 0,

it is enough to prove that

v2
n := sup

k<n
E
[
g(k, n, (Xs)k∆n≤s≤(k+1)∆n

)2
]
→ 0.

Actually, by Jensen inequality, the stationarity property and since f takes values in {0, 1},
we have

v2
n ≤

1

∆n

∫ ∆n

0
E
[
|f(X0)− f(Xu)|2

]
du =

∫ 1

0
E [|f(X0)− f(Xt∆n)|] dt.

With probability 1, f(Xt∆n) → f(X0), since f is continuous except on a set of zero ν∞-

measure: by the dominated convergence theorem, we obtain vn → 0, then Dn
P−→ 0. From

this we have: √
n∆n

(
OT[1,+∞[

n − ν∞ ([1,+∞[)
)

d−→ N
(
0, ν∞

(
σ2F ′2

))
.

2.4 Application to parameter inference

Lemma 2.1. Fix S ⊂ Rd and recall (H). Then ν∞ (S) is a continuous function of V∞.

Proof. Write

ν∞ (S) =

∫
S
µ∞(x)dx =

∫
S

(2π)−d/2 det(V∞)−1/2 exp

(
−1

2
x∗V −1

∞ x

)
dx.

As the determinant and the inverse are continuous functions, µ∞(x) is continuous in V∞
for any x. We also have:

µ∞(x) ≤ (2π)−d/2v−d/2m exp

(
−
v−1
M

2
|x|2
)

where vM = maxλ∈Sp(V∞) λ, vm = minλ∈Sp(V∞) λ.

9
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Applying the Hoffman-Wielandt theorem ([HJ86, Theorem 6.3.5]) we know that vM
and vm are continuous functions of V∞, which are also non-zero in the neighborhood of
invertible V∞. From this follows that there is a local bound (in the neighbourhood of
every invertible V∞) by an integrable function of the form:

µ∞(x) ≤ Cst exp
(
−Cst|x|2

)
with a positive constant Cst. Conclude using the dominated convergence theorem.

For one-dimensional processes. We consider here Equation (2.3). The limit value of
OTn depends on the stationary distribution of the process, which is a centered Gaussian
r.v. with variance v∞ = σ2/2a (see Section 1.5). If ν∞ (S) is monotonous with respect to
v∞, then we can construct an estimator of v∞.

For instance, if S = [1,+∞[, then ν∞ (S) = N
(
−1/
√
v∞
)

which is strictly increasing
with v∞.

However, v∞ is not a one-to-one function of a and σ hence we need more information
to find the parameters of the process, using for instance the crossings statistic of Section
3.

For multi-dimensional processes. Here again the limit value of OTS
n is the measure

of S under the stationary distribution. This distribution depends on the value of the
matrix V∞. Without further information or assumptions, V∞ is a symmetric d×d matrix,
representing d(d+ 1)/2 unknowns. We can expect to be able to find these unknowns only
if we consider more than one set S and the corresponding statistics.

In the following, we will use the fact that the covariance matrices of the marginals of
a Gaussian variable are the restrictions of its covariance matrix to the relevant spaces.

Consider first for i ≤ d the set Si = {x : xi ≥ 1}. Then ν∞
(
Si
)

depends only on the

value of (V∞)ii. Applying the result from the preceding paragraph, we can construct an
estimator of that value.

Consider then for i 6= j the set Sij = {x : xi ≥ 1, xj ≥ 1}. Then ν∞
(
Sij
)

depends

only on the values of (V∞)ii , (V∞)jj , (V∞)ij . From the previous point, we know we can
construct estimators of (V∞)ii , (V∞)jj . For the last parameter, we use the following result.

Proposition 2.1. Take (G1, G2) a non-degenerate centered Gaussian vector. Denote ρ the
correlation between G1 and G2. Denote S = [1,+∞[2 and µρ the density of the distribution
of (G1, G2). Then µρ(S) is a strictly increasing function of ρ.

Proof. Denote σ1 =
√
Var (G1), σ2 =

√
Var (G2). By symmetry between G1 and G2, we

can safely assume σ1 ≥ σ2. Introduce a standard centered Gaussian G. We can write

(G1, G2)
d
=

(
ρ
σ1

σ2
G2 + σ1

√
1− ρ2G,G2

)
,

µρ (S) = E

[
1G2≥1E

[
1
ρ
σ1
σ2
G2+σ1

√
1−ρ2G≥1

| G2

]]
=

∫
R

1y≥1N

(
ρσ1
σ2
y − 1

σ1

√
1− ρ2

)
µσ2

2
(y)dy.

10
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Set g(ρ, y) =
ρ
σ1
σ2
y−1

σ1

√
1−ρ2

: then dg
dρ(ρ, y) =

σ1
σ2
y−ρ

σ1(1−ρ2)3/2 . This is strictly positive for y ≥ 1 since

σ1
σ2
≥ 1 and ρ < 1. Therefore N (g(ρ, y)) is strictly increasing in ρ, and so is µρ (S) on

]− 1, 1[.

This shows that we can construct an estimator of (V∞)ij given the knowledge of
(V∞)ii , (V∞)jj , which we have as noted before. Therefore,using d(d + 1)/2 estimators,
we can recover the whole matrix V∞.

3 Crossings statistic

Given a binary observation Yt, a function of Xt, we will count how many times Y goes
from 0 to 1 and vice-versa. The following defines a statistic counting the number of jumps
between 0 and 1 of the discretization of Y .

Definition 3.1. We define the crossings statistic by:

CSn =
1

n

n−1∑
k=0

1Y Sk∆n
6=Y S

(k+1)∆n
.

In the following, we restrict the convergence analysis to sets which are half-spaces
Si = {x : xi ≥ 1}; by symmetry, we assume that i = 1. Therefore we drop the superscript
S and

Yt = 1X1
t≥1.

Cn counts the number of times the discretised projection of X on the first coordinate
crosses 1.

3.1 L2 convergence

Theorem 3.1. Assume that n∆
3/2
n → +∞. We have the following convergence:

Cn√
∆n

L2

−→ 2

√
(ΣΣ∗)11

2π
µV 11
∞

(1),

Var

(
Cn√
∆n

)
= O

(
1

n∆
3/2
n

)
.

Proof. For ease of writing, introduce a new notation:

Z
(n)
k = 1X1

k∆n
<11X1

(k+1)∆n
≥1.

Now, divide the sum in two similar parts:

Cn = C+−
n + C−+

n ,

C+−
n =

1

n

n−1∑
k=0

1X1
k∆n
≥11X1

(k+1)∆n
<1, C−+

n =
1

n

n−1∑
k=0

Z
(n)
k .

11
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Although the two sums aren’t perfectly symmetric, we will show that our reasoning
will apply to both sums. Concentrate then on the second sum. In order to apply Corollary
2.1, we introduce the following notations:

C−+
n√
∆n

:=
n−1∑
k=0

ξ
(n)
k ,

ξ
(n)
k =

1

n
√

∆n
Z

(n)
k :=

√
∆n

n
g
(
k, n, (Xs)k∆n≤s≤(k+1)∆n

)
,

v2
n := sup

k<n
Var

(
g
(
k, n, (Xs)k∆n≤s≤(k+1)∆n

))
.

We obviously have v2
n = 1

n∆2
n

supk<nVar
(
Z

(n)
k

)
and Corollary A.1 we have Var

(
Z

(n)
k

)
=

O
(√

∆n

)
. Therefore v2

n = O
(

1

n∆
3/2
n

)
= o (1) by assumption. Thus, Corollary 2.1 gives us

the convergence to 0 of the variance.
Using again Corollary A.1 we get

E

[
C−+
n√
∆n

]
=
E
[
Z

(n)
k

]
√

∆n
∼

√
(ΣΣ∗)11

2π
µV 11
∞

(1).

Therefore, recalling Remark 2.1 gives

C−+
n√
∆n

L2

−→

√
(ΣΣ∗)11

2π
µV 11
∞

(1).

The same reasoning would apply to C+−
n if only we replaced Z

(n)
k by Z̃

(n)
k = 1X1

k∆n
≥11X1

(k+1)∆n
<1.

Observe

E
[
Z̃∆n

]
= E

[(
1− 1X1

0<1

)(
1− 1X1

∆n
≥1

)]
= 1− E

[
1X1

0<1

]
− E

[
1X1

∆n
≥1

]
+ E [Z∆n ]

= E [Z∆n ]

using stationarity. Thus, we can transfer the estimate on Z
(n)
k to Z̃

(n)
k , i.e. on C−+

n to
C+−
n , which gives the final result.

3.2 Application to parameter inference

For one-dimensional processes. For d = 1, Theorem 3.1 simplifies to

Cn√
∆n

L2

−→ 2σ√
2π
µ∞(1).

Thus the renormalized Cn converges to a value that depends on σ and the density µ∞(1),
which itself depends on v∞ = σ2/2a. In Section 2.4, we show how to estimate the value of
v∞. Using this estimate, we can compute µ∞(1) and construct simply an estimator of σ.
Finally, as we estimate both σ and µ∞, we also estimate a. Therefore, the two statistics
OTn and Cn are sufficient to estimate the parameters of the model (2.3).

12
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For multi-dimensional processes. As we show above, we can estimate parameters of
one-dimensional processes. The extension to multi-dimensional processes is not obvious.
However, in specific cases, we can leverage Theorem 3.1. Consider specifically that A is a
diagonal matrix with diagonal terms (a1, . . . , ad). Then

(V∞)ij =

∫ +∞

0
e−aiu (ΣΣ∗)ij e−ajudu =

(ΣΣ∗)ij

ai + aj
.

Assuming we know V∞, which we can estimate using results from Section 2.4, and as we
can estimate (ΣΣ∗)ii using Theorem 3.1, we can estimate the values of ai:

ai =
(ΣΣ∗)ii

2 (V∞)ii
.

We complete the inference by using the relation (ΣΣ∗)ij = (ai + aj) (V∞)ij .

4 Numerical tests

In the following, we present some inference results in the case of one-dimensional Ornstein-
Uhlenbeck process. The observations are obtained via simulation and we consider simu-
lation lengths n between 10 and 10 · 214 and discretization time-steps ∆ between 0.1 and
0.1 · 2−7.

We simulate trajectories using σ = a = 1:

dXt = −Xtdt+ dWt.

For each data point characterized by (n,∆), we compute the expectation and standard
deviation of OTn and Cn. These are empirically computed using 50000 simulated trajec-
tories, independently initialized in the stationary distribution. Each figure will show these
values plotted against either n or ∆ in blue, and regression lines are added to each series
in red. The figures are plotted in log-log scale, in order to show dependence of the results
as powers of n and ∆.

For some plots, the regressions don’t give a clear answer on the power dependence.
Because we know many of our results come from the long-time limit, we privilege data
series that maximize n∆n, the horizon of the simulation.

Plots. For programming and plotting purposes, it is clearer to define statistics OTn and
Cn omitting normalization. Therefore, only in this paragraph, we use

ÕTn =

n−1∑
k=0

1Xk∆n>1, C̃n =
n−1∑
k=0

1Xk∆n 6=X(k+1)∆n
.

Additionally, we use ts as a notation for ∆n.
Figures 1 and 2 show a linear dependence in n and no dependence in ∆. This is in

agreement with the stationarity of the process.
The lines fitted to the scatter in Figure 3 are somewhat misleading. Their slopes vary

from from 0.52 to 0.75. However, given our analysis in the paper, it is n∆, the inferring

13
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Figure 1: Expectation of ÕTn versus n for different values of time steps ∆n (ts)

Figure 2: Expectation of ÕTn versus ∆n (ts) for different values of n

Figure 3: Standard deviation of ÕTn versus n for different values of time steps ∆n (ts)

Figure 4: Standard deviation of ÕTn versus ∆n (ts) for different values of n

14
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Figure 5: Expectation of C̃n versus n for different values of time steps ∆n (ts)

Figure 6: Expectation of C̃n versus ∆n (ts) for different values of n

Figure 7: Standard deviation of C̃n versus n for different values of time steps ∆n (ts)

Figure 8: Standard deviation of C̃n versus ∆n (ts) for different values of n
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horizon, that has the largest impact on the quality of the convergence. For this reason, we
should concentrate on high values of n. Further work on the last 5 points of the scatters
concludes with a consistent slope of 0.5. The same applies to Figure 4: although slopes
vary from −0.07 to −0.5, we have the most confidence in the line corresponding to the
highest value of n. We retain then the value of −0.5.

Thus, we numerically observe (up to constants)

E
[
ÕTn

]
∼ n,

√
Var

(
ÕTn

)
∼ n1/2∆−1/2.

Regarding C̃n, Figures 5 and 6 show clear power dependencies of 1 and 0.5 with respect
to n and ∆. Again, Figures 7 and 8 have to be observed only at the largest values of n.
We conclude with slopes of 0.5 and 0.

E
[
C̃n
]
∼ n∆1/2,

√
Var

(
C̃n
)
∼ n1/2.

Summary. Taking the results from the preceding paragraph and rewriting them using
our regular expressions of OTn and Cn, as in Definitions 2.1 and 3.1, we get from these
numerical tests:

• For OTn:

– E [OTn] ∝ 1,

– Var (OTn) ∝ 1
n∆n

.

This is in agreement with Theorem 2.2.

• For Cn:

– E [Cn] ∝ ∆
1/2
n ,

– Var
(
Cn√
∆n

)
∝ 1

n∆n
.

The expectation estimate is in agreement with Theorem 3.1. However, our variance

estimate is seemingly not optimal: the missing factor ∆
1/2
n may come from sub-

tle cancellations in small time, in conjonction with the low regularity of indicator
function. This issue is left to future research.

In Table 1 we can compare our theoretical limits with the estimates from simulation.

Numerical investigation regarding a central limit theorem for Cn. Our experi-

mental observation of Var
(
Cn√
∆n

)
∝ 1

n∆n
suggests we may expect a central limit theorem

for
√
n∆n

(
Cn√
∆n
−m

)
where m = limn→+∞E

[
Cn
∆n

]
. However, this result is out of the

scope of the present paper.
Nonetheless we use the results of our simulations in order to see whether this conjecture

is likely. In Figure 9, we compare the normalized histogram of Cn to the probability density
function of a fitted Gaussian. The agreement of the two seems to show that the validity
of a central limit theorem is likely.
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Simulation result Theoretical value

E [OTn] 0.07977 0.07865

E
[
Cn√
∆n

]
0.16418 0.16560

n∆nVar (OTn) 0.25902 N/A

n∆nVar
(
Cn√
∆n

)
0.43324 N/A

Table 1: Observed versus theoretical values of the limits of the expressions on the left

Figure 9: Normalized histogram of Cn, for n = 10 ·214 and ∆n = 0.1 ·2−7 and plot of PDF
of Gaussian fit

A Expectation of threshold crossing for OU processes in
small time

In this section, X is the d-dimensional Ornstein-Uhlenbeck process of Equation (1.4).
Define the indicator of the crossing of the threshold 1 by the first coordinate of X:

Z∆ = 1X1
0<11X1

∆≥1.

From Section 1.5.2, the first coordinate ofX∆|X0 is a Gaussian vector centered at
(
e−A∆X0

)1
with variance V 11

∆ . Therefore E
[
1X1

∆≥1 | X0

]
= N

(
(e−A∆X0)

1−1√
V 11

∆

)
and

E [Z∆] =

∫
Rd
1x1<1N

(e−A∆x
)1 − 1√

V 11
∆

µ∞(x)dx. (A.1)

Lemma A.1. Let h be a boundedcontinuous increasing non-negative function, integrable
in −∞ and define:

Ih(∆) :=

∫
Rd
1x1<1h

(e−A∆x
)1 − 1√

V 11
∆

µ∞(x)dx.

Then when ∆→ 0,

Ih(∆) ∼
√

∆

√
(ΣΣ∗)11µV 11

∞
(1)

∫ 0

−∞
h(x)dx.

17
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Proof. We use the following change of variables:

(y1, y2, . . . yd) =

x1 − 1√
V 11

∆

, x2, . . . xd

 ,

Ih(∆)√
V 11

∆

=

∫
Rd
1y1<0h

(e−A∆
)11

y1 +

(
e−A∆

)11 − 1 +
∑

i≥2

(
e−A∆

)1i
yi√

V 11
∆


× µ∞

(
1 +

√
V 11

∆ y1, y2, . . . , yd
)

dy. (A.2)

Using the power expansion of the matrix exponential e−A∆ = Id−∆A+O
(
∆2
)
, we have:(

e−A∆
)11

= 1 +O (∆) ,(
e−A∆

)1i
= ∆A1i +O

(
∆2
)
, i ≥ 2.

Simultaneously, we know that V∆ ∼ ∆ (ΣΣ∗) as ∆ → 0. Hence in the integral (A.2),
h(. . . ) and µ∞(. . . ) converge pointwise to h(y1) and µ∞(1, y2, . . . , y2) respectively, for any
y. To pass to the limit for (A.2), it remains to dominate h(. . . )µ∞(. . . ) uniformly in ∆,
by an integrable function on Rd.

• On the one hand, using the monotone and non-negative properties of h, we observe
that h(. . . ) is bounded by h(1

2y
1 + 2

∑
j≥2 |yj |) for any y such that y1 < 0, provided

that ∆ is small enough.

• On the other hand, since V −1
∞ is symmetric definite positive, µ∞(. . . ) is bounded by

Cst exp(−
∑

j≥2 |yj |2/Cst) for some positive constant Cst.

Finally, we easily check that the product of the two bounds is integrable, using in particular
that h is integrable on R− and bounded over R. Thus the dominated convergence theorem
yields

Ih(∆)√
V 11

∆

→
∫ 0

−∞

∫
Rd−1

h(y1)µ∞(1, y2, . . . yd)dy,

Ih(∆) ∼
√

∆

√
(ΣΣ∗)11

∫ 0

−∞
h(x)dx

∫
Rd−1

µ∞(1, y2, . . . yd)dy.

We can simply rewrite the last integral. Let G
d
= N (0, V∞):∫ x

−∞

∫
Rd−1

µ∞(y1, z)dy1dz = P
[
G1 ≤ x

]
=

∫ x

−∞
µV 11
∞

(y1)dy1

where we have used that G1 d
= N

(
0, V 11
∞
)

at the second equality. It gives, for any x ∈ R,∫
Rd−1

µ∞(x, y2, . . . yd)dy = µV 11
∞

(x),

and therefore the announced result.
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Corollary A.1. In the limit ∆→ 0, we have

E [Z∆] ∼ Var (Z∆) ∼
√

∆

√
(ΣΣ∗)11

2π
µV 11
∞

(1).

Proof. Since Z∆ takes values in {0, 1}, if E [Z∆] → 0, we have Var (Z∆) = E [Z∆] (1 −
E [Z∆]) ∼ E [Z∆]. Thus, it remains to show the estimate on E [Z∆].

Start from (A.1) and apply Lemma A.1 with h(·) = N (·). We have
∫ 0
−∞N (x) dx =

1√
2π

, hence the result.

B Maximal correlation inequality

In this section, we aim at proving the very useful Theorem 2.1.

B.1 Gebelein’s inequality

We start by an abstract version.

Theorem B.1 ([Jan97, Theorem 10.11]). Take H, K two closed subspaces of some Gaus-
sian Hilbert space. Define PHK the restriction to H of the orthogonal projection onto K.
Define the maximal correlation coefficient between variables A,B respectively measurable
w.r.t. the sigma field generated by H and K:

ρ(H,K) = sup
A∈L2(H),B∈L2(K)

|Cor (A,B)| .

Then we have:
ρ(H,K) = ‖PHK‖

where ‖ · ‖ is the operator norm.

We now restate in a more convenient way the above result in a finite dimensional case
and for given Gaussian vectors: we believe such a statement may exist in the literature but
we could not find a ready reference. Consider a Gaussian Hilbert space and two Gaussian
vectors X,Y in this space. Define then HX and HY the subspaces spanned respectively
by X and Y .

Denoting PXY the orthogonal projection on HY restricted to HX , from Theorem B.1
we have that ρ(HX , HY ) = ‖PXY ‖. This value is independent of the enclosing Gaussian
Hilbert Space.

Using the notations stated above, set

ρ (X,Y ) = ρ(HX , HY ) = ‖PXY ‖.

Corollary B.1. Take X,Y two Gaussian vectors in the same Gaussian Hilbert space and
f, g two functions such that f(X), g(Y ) are square-integrable. Then we have:

|Cov (f(X), g(Y )) | ≤ |ρ(X,Y )|
√
Var (f(X))Var (g(Y )).

In preparation of Theorem 2.1, we now aim at making more explicit the coefficients
ρ(X,Y ) in terms of the correlations of the components of X and Y , or of their transforms.
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B.2 Finite-dimensional Gaussian vectors

Notation. We denote Cov (X) the covariance matrix of X and Cov (X,Y ) the covariance
matrix of X and Y , which is also the upper-right part of the covariance matrix of
the vector (X,Y ). We reserve the notation Var (X) for the variance of a real-valued
X.

We set KXX = Cov (X), KY Y = Cov (Y ) and KXY = Cov (X,Y ). As KXX and KY Y

are symmetricnon-negative definite matrices, there exist OX , OY orthogonal matrices and
DX , DY diagonal non-negative definite matrices such that we have:

KXX = O∗XDXOX =
(
O∗XD

1/2
X OX

)(
O∗XD

1/2
X OX

)∗
,

KY Y = O∗YDYOY =
(
O∗YD

1/2
Y OY

)(
O∗YD

1/2
Y OY

)∗
.

Note that
(
O∗XD

1/2
X OX

)
and

(
O∗YD

1/2
Y OY

)
are symmetric.

Take now X ′ and Y ′ orthonormal basis of respectively HX and HY . It is easy to
see that the covariance matrix R of X ′ and Y ′ is the projection matrix from HX on HY

written in the basis X ′ and Y ′ and therefore ρ(X,Y ) = ‖R‖.

B.2.1 Non-degenerate case

Assume, in this paragraph, DX and DY are non-degenerate or, equivalently, that KXX

and KY Y are non-degenerate.

We can choose X ′ =
(
O∗XD

1/2
X OX

)−1
X and Y ′ =

(
O∗YD

1/2
Y OY

)−1
Y . Our calculation

shows then that

R =
(
O∗XD

1/2
X OX

)−1
KXY

(
O∗YD

1/2
Y OY

)−1
.

From the other side, O∗XD
1/2
X OX and O∗YD

1/2
Y OY are symmetric matrices which square

to KXX and KY Y . Therefore we have

(KXX)1/2 = O∗XD
1/2
X OX , (KY Y )1/2 = O∗YD

1/2
Y OY .

From this we have the following proposition.

Proposition B.1. Take (X,Y ) a Gaussian vector. Assume that Cov (X), Cov (Y ) are
non-degenerate. Then we have

ρ(X,Y ) = ‖Cov (X)−1/2
Cov (X,Y )Cov (Y )−1/2 ‖.

Corollary B.2. If X and Y are orthogonal with non degenerate components (Var
(
Xi
)
6=

0, Var
(
Y j
)
6= 0, for any i, j), then we have ρ(X,Y ) = ‖R‖ with

Rij = Cor
(
Xi, Y j

)
=

Cov
(
Xi, Y j

)√
Var (Xi)Var (Y j)

.
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B.2.2 Degenerate case

In this part, we consider that X or Y is degenerate (or both). We know there are or-
thonormal matrices OX and OY such that OXX and OY Y both have diagonal covariances.
These diagonals can have zero values; taking only the variables of OXX and OY Y that
have non-zero variances, we get a couple of orthonormal families. Applying results from
previous paragraph and using the fact that extending a matrix with zeroes doesn’t change
its operator norm, we have the following.

Proposition B.2. Let (X,Y ) be a Gaussian vector and OX , OY two orthogonal matrices
such that XO := OXX and YO := OY Y are respectively orthogonal families. Then the
maximal correlation coefficient verifies ρ(X,Y ) = ‖R‖ with

Rij = Cor
(
Xi
O, Y

j
O

)
=


Cov(Xi

O,Y
j
O)√

Var(Xi
O)Var(Y jO)

if Var
(
Xi
O

)
Var

(
Y j
O

)
6= 0,

0 if Var
(
Xi
O

)
Var

(
Y j
O

)
= 0.

B.3 Application to functions of Gaussian processes

We are now in a position to give the maximal correlation between Xs and Xt for t, s ∈ R+,
in terms of the OU parameters (A, Σ) (Assumption (H)).

Proposition B.3. Using the previous notation, we have for any s, t ∈ R+

ρ(Xs, Xt) ≤
√
vM
vm

e−a0|t−s|,

where a0 := minλ∈Sp(A)Re(λ), vM = maxλ∈Sp(V∞) λ, vm = minλ∈Sp(V∞) λ.

Proof. Let t ≥ s ≥ 0. From (1.5) and (1.8), we have

Cov (Xs) = Cov (Xt) = V∞, Cov (Xt, Xs) = e−A(t−s)V∞.

Since V∞ is non degenerate (owing to Assumption (H)), we can apply proposition B.1, to
get

ρ(Xs, Xt) = ‖V −1/2
∞ e−A(t−s)V 1/2

∞ ‖.

The bound on ρ(Xs, Xt) is a consequence of sub-multiplicativity of the operator norm.

We immediately deduce the following.

Corollary B.3. For any ϕ, φ : Rd → R square-integrable w.r.t. ν∞, we have

|Cov (ϕ(Xs), φ(Xt))| ≤
√
vM
vm

e−a0|t−s|
√
Var (ϕ(Xs))Var (φ(Xt)).

We can proceed to the proof of Theorem 2.1. In its setting we have t > s ≥ 0 and ϕ,
φ take as arguments respectively (Xu)0≤u≤s and (Xv)v≥t.
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Proof. For ease of writing, denote ϕs = ϕ
(

(Xu)0≤u≤s

)
and φt = φ

(
(Xv)v≥t

)
. Without

loss of generality, we can assume E [ϕs] = E [φt] = 0.We repeatedly use the Markov
property and the tower property of conditional expectation to write

Cov (ϕs, φt) = E [ϕsφt]

= E [ϕsE [φt | Fs]]
= E [ϕsE [φt | Xs]]

= E [E [ϕs | Xs]E [φt | Xs]]

= E [E [E [ϕs | Xs]φt | Xs]]

= E [E [ϕs | Xs]φt]

= E [E [ϕs | Xs]E [φt | Xt]]

= Cov (E [ϕs | Xs] ,E [φt | Xt]) .

We define now f(Xs) = E [ϕs | Xs], g(Xt) = E [φt | Xt] and apply Corollary B.3:

Cov (f(Xs), g(Xt)) ≤
√
vM
vm

e−a0|t−s|
√
Var (f(Xs))Var (g(Xt)).

Then, the announced inequality of Theorem 2.1 stems from the standard decomposition
Var (h) = Var (E [h | G]) + E [Var (h | G)] ≥ Var (E [h | G]) for any sigma-field G and any
square-integrable variable h.

C Central limit theorem for discontinuous functions of OU
processes

In this section, we broaden the domain of application of the properties from [Flo84],
precisely extending it to the case of a bounded function with a single point of irregularity,
as x 7→ 1x≥1. In this section, the process X is one-dimensional.

C.1 Itô formula for piecewise C2 function

First, we recall a generalization of Itô’s lemma to functions that are not C2.

Lemma C.1. Let g be a function g : R → R, twice differentiable and g′′ is continuous
except at a single point z. Assume also that ∀x 6= z, |g′′(x)| ≤ K. Then Itô’s formula
applies to g, i.e.:

dg(Xt) = g′(Xt)dXt +
σ2

2
g′′(Xt)dt.

Proof. As we have g ∈ C1 and g′′ is integrable on any interval, we can apply [RW87,
Lemma 45.9].
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C.2 Solution to Poisson equation LF = −f

Consider now a function f smooth with the exception of a single point. Consider also L
the infinitesimal generator associated to X verifying (2.3):

Lφ(x) = −ax∂φ
∂x

(x) +
σ2

2

∂2φ

∂x2
(x).

The next lemma gives a solution to the Poisson equation LF = −f .

Lemma C.2. Let f be a bounded function. Then

F (x) := − 2

σ2

∫ x

0

dy

µ∞(y)

∫ y

−∞
f(u)µ∞(u)du (C.1)

is a solution to LF = −f .
With f = 1[1,+∞[ −N

(
−1/
√
v∞
)
, we have:

F (x) =
2

σ2

∫ x

0

N
(
u∧1√
v∞

)
−N

(
1√
v∞

)
N
(

u√
v∞

)
µ∞(u)

du. (C.2)

Proof. Simple computations give:

∂F

∂x
(x) = − 2

σ2µ∞(x)

∫ x

−∞
f(u)µ∞(u)du,

∂2F

∂x2
(x) = −2

2ax

σ2µ∞(x)

∫ x

−∞

f(u)

σ2
µ∞(u)du− 2

f(x)

σ2
.

We then deduce LF = −f .
Choosing f = 1[1,+∞[ − N

(
−1/
√
v∞
)

= 1 − 1]−∞,1[ − N
(
−1/
√
v∞
)

= −1]−∞,1[ +
N
(
1/
√
v∞
)
, we get:

F (x) =
2

σ2

∫ x

0

dy

µ∞(y)

∫ y∧1

−∞
µ∞(u)du−

∫ x

0

N
(

1√
v∞

)
µ∞(y)

dy

∫ y

−∞
µ∞(u)du


=

2

σ2

∫ x

0

N
(
u∧1√
v∞

)
−N

(
1√
v∞

)
N
(

u√
v∞

)
µ∞(u)

du.

We now establish bounds on F and its derivatives.

Lemma C.3. Assume that f is bounded and such that ν∞(f) = 0. Define F as in (C.1).
Then there exist finite constants C(C.3), C(C.4), C(C.5) (depending only on the model) such
that, for any x ∈ R,

|F (x)| ≤ C(C.3)|f |∞|x|, (C.3)

|F ′(x)| ≤ C(C.4)|f |∞
(

1 ∧ 1

|x|

)
, (C.4)

|F ′′(x)| ≤ C(C.5)|f |∞. (C.5)
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Proof. Using the assumption that ν∞(f) =
∫
R
f(x)µ∞(x)dx = 0, we can write:

F ′(x) = − 2

σ2µ∞(x)

∫ x

−∞
f(u)µ∞(u)du

=
2

σ2µ∞(x)

∫ +∞

x
f(u)µ∞(u)du,

|F ′(x)| ≤ 2

σ2µ∞(x)

(∫ x

−∞
|f(u)|µ∞(u)du ∧

∫ +∞

x
|f(u)|µ∞(u)du

)
.

Applying now the assumption that f is bounded, we have:

|F ′(x)| ≤ 2|f |∞
σ2

N
(
− |x|√

v∞

)
µ∞(x)

. (C.6)

Using the classic inequality N(−|x|) ≤ e−x2/2 yields

|F ′(x)| ≤ 2|f |∞
σ2

exp
(
− x2

2v∞

)
1√

2πv∞
exp

(
− x2

2v∞

) ≤ 2

√
π

aσ2
|f |∞. (C.7)

By integrating, we complete the proof of Equation (C.3). Next, we use the Mills inequality,

N (−|x|) ≤ e−x
2/2

√
2π|x|

,

which combined with (C.6) gives

|x||F ′(x)| ≤ 2|f |∞
σ2
|x|
N
(
− |x|√

v∞

)
µ∞(x)

≤ 2|f |∞
σ2
|x|

1√
2π

|x|√
v∞

1√
2πv∞

≤ 2|f |∞
σ2

v∞.

Thus, joined with (C.7), Inequality (C.4) is proved. Last, as LF = −f ,

|F ′′(x)| = 2

σ2

∣∣axF ′(x)− f(x)
∣∣ ≤ 2

σ2

(
a

2v∞
σ2

+ 1

)
|f |∞ =

4

σ2
|f |∞,

which proves (C.5).

C.3 CLT for multi-dimensional continuous-time martingales

Lemma C.4 ([van00, Theorem 4.1]). Let (Mt;Ft : t ≥ 0) be a d-dimensional continuous
local martingale. If there exist invertible, non-random d × d-matrices (Kt : t ≥ 0) such
that as t→∞

• Kt〈M〉tK∗t
P−→ ηη∗ where η is a random d× d-matrix;

• |Kt| → 0;

then, for each Rk-valued random vector X defined on the same probability space as M , we
have

(KtMt, X)
d−→ (ηZ,X) as t→∞,

where Z
d
= N (0, Id) and Z is independent of (η,X).
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