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Abstract: Electricity production via solar energy is tackled via short-term forecasts and risk
management. Our main tool is a new setting on time series. It allows the definition of “confidence
bands” where the Gaussian assumption, which is not satisfied by our concrete data, may be
abandoned. Those bands are quite convenient and easily implementable. Numerous computer
simulations are presented.
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1. INTRODUCTION

1.1 Generalities

The following lines by Reikard (2009) provide an excellent
introduction to our subject: The increasing use of solar
power as a source of electricity has led to increased in-
terest in forecasting radiation over short time horizons.
Short-term forecasts are needed for operational planning,
switching sources, programming backup, and short-term
power purchases, as well as for planning for reserve usage,
and peak load matching. There are many approaches as
summarized by Trapero, Kourentzes & Martin (2015): The
diversity of solar radiation forecasting methodologies can
be classified according to the input data and the objec-
tive forecasting horizon. For instance, NWP (Numerical
Weather Prediction) models, which are based on physical
laws of motion and conservation of energy that govern the
atmospheric air flow, are operationally used to forecast
the evolution of the atmosphere from about 6 h onward.
Although NWP models are powerful tools to forecast solar
radiation at places where ground data are not available,
many near-surface physical processes occur within a single
grid box and are too complex to be represented and solved
by equations. Thus, NWP models cannot successfully re-
solve local processes smaller than the model resolution.
Satellite-derived solar radiation images are a useful tool

for quantifying solar irradiation at ground surface for large
areas, but they need to set an accurate radiance value un-
der clear sky conditions and under dense cloudiness from
every pixel and every image . . .These limitations have
placed time series analysis as the dominant methodology
for short-term forecasting horizons from 5 min up to 6 h.
See Kleissl (2013) for a slightly different standpoint.

Diverse viewpoints on time series have of course been
employed. See, e.g., Bacher, Madsen & Nielsen (2009);
Diagne, David, Lauret, Boland & Schmutz (2013); Duchon
& Hale (2012); Lauret, Voyant, Soubdhari, David &
Poggi (2015); Martín, Zarzalejo, Polo, Navarro, Marchante
& Cony (2010); Reikard (2009); Trapero, Kourentzes &
Martin (2015); Voyant, Muselli & Nivet (2011); Voyant,
Paoli, Muselli & Nivet (2013); Voyant, Soubdhan, Lauret,
David & Muselli (2015); Yang, Sharma, Ye, Lim, Zhao &
Aryaputer (2015), and the references therein. We follow
here another model-free setting 1 (Fliess & Join (2009,
2015a,b); Fliess, Join & Hatt (2011a,b)). With respect to
solar energy production they have already been compared
to techniques stemming especially from persistence and
from artificial neural nets by Join, Voyant, Fliess, Nivet,

1 See Fliess & Join (2013) for the importance of the model-free
viewpoint in control. It might worthwhile in our context to stress
that this approach has also been successful for the renewable energy
production (Jama, Noura, Wahyudie & Assi (2015); Join, Robert &
Fliess (2010)).



Muselli, Paoli & Chaxel (2014) and by Voyant, Join, Fliess,
Nivet, Muselli & Paoli (2015). Let us emphasize that our
techniques are quite far from today’s dominant viewpoint
on time series (see, e.g., Meuriot (2012) and the references
therein).

1.2 Forecasting and risk

According to a theorem due to Cartier & Perrin (1995) the
following additive decomposition holds for any time series
X under quite weak assumptions:

X(t) = E(X)(t) +Xfluctuation(t) (1)

where

• the mean, or average, or trend, E(X)(t) is quite
smooth,

• Xfluctuation(t) is quickly fluctuating.

The decomposition (1) is unique up to a “small” additive
quantity. Our short-term forecast techniques are based on
a local mathematical analysis of E(X)(t) (Fliess & Join
(2009); Fliess, Join & Hatt (2011b)), which is inspired
by recent advances in the field of estimation. They yield
good results and are quite easy to implement. Their
application to solar energy by Join, Voyant, Fliess, Nivet,
Muselli, Paoli & Chaxel (2014) and by Voyant, Join,
Fliess, Nivet, Muselli & Paoli (2015) do not necessitate
contrarily to most other approaches big data, i.e., large
historical data. Any type of forecast is always approximate.
Here, according to Formula (1), the quick fluctuations
Xfluctuation(t) explain to a large extent this discrepancy.
This inherent risk does not seem to have been seriously
investigated in the literature on solar energy although
it plays obviously a key rôle in the energy production.
We follow (Abouaïssa, Fliess & Join (2016)) and exploit
the viewpoint on volatility developed by Fliess, Join &
Hatt (2011a,b). Classic normality tests show that our
concrete time series are not related to Gaussian processes.
We replace therefore the well known confidence intervals,
which do not make much sense in this situation, by the
confidence bands which bear some similarity with the
famous Bollinger bands in technical analysis (Bollinger
(2001)). 2 This might be an important advance in risk
analysis.

Remark 1. See, e.g., Willink (2013) for a most rewarding
account on confidence intervals.

1.3 Organization of the paper

The paper by Abouaïssa, Fliess & Join (2016) in this
conference already presents a summary of our approach
to time series. Therefore this material will not be repeated
here. It gives more room to Section 2 where

• a type of volatility is considered,
• confidence bands are defined,
• we report quite numerous numerical experiments

which are based on real meteorological data.

Some thoughts about solar energy forecasting and risk
management are discussed in Section 3.

2 Compare with Trapero (2015).

2. NUMERICAL EXPERIMENTS

2.1 Presentation

Write X(t) the solar irradiance at time t. Those data are
given by measurements every minute in Nancy, France,
during the year 2013. In order to simplify the presentation
of our computer calculations, we only utilize here the
months of February and June.

Write Xpred60(t) the forecast 1 h ahead of X(t) as obtained
by Join, Voyant, Fliess, Nivet, Muselli, Paoli & Chaxel
(2014). 3 The results in Figures 2 and 6 are borrowed from
the same reference.

2.2 Volatility

Define the volatility via

Vol(t) = |X(t)−Xpred60(t− 60)| (2)

where Xpred60(t−60) is the forecast 1 h ahead of X(t−60).
As stated before, it is obtained via the mean E(X)(t) (see
Equation (1)). Figures 3 and 7 display the results. For
simplicity’s sake, set the following elementary persistence
scheme for volatility

Volpred60(t) = Vol(t)

where Volpred60(t) is the forecast 1 h ahead of Vol(t).

2.3 Normality tests

Let us associate to Equation (2) the Equation

Diff(t) = X(t)−Xpred60(t− 60)

Three classic normality tests (see, e.g., Bourbonnais &
Terraza (2010); Cryer & Chan (2008); Jarque & Bera
(1987); Judge, Griffiths, Hill, Lütkepol & Lee (1988);
Thode (2002)), namely

• Jarque-Bera,
• Kolmogorov-Smirnov,
• Lilliefors,

reject the Gaussian property of the signal Diff(t) for the
twelve months of 2013. This is illustrated by Figures 1-(a)
and 1-(b).

2.4 Towards confidence bands

Define a first confidence band CB1, pred60(t) by its fron-
tiers

Xpred60(t)± Volpred60(t)

See Figures 4 and 8.

In order to improve CB1, pred60(t), define CB2, pred60(t)
by new frontiers

Xpred60(t)± αVolpred60(t)

where the parameter α is determined here by asking that
during the three last days 68% of the measured data were
in CB2, pred60(t).

4 See Figures 5 and 9 .

3 Here again, we do not reproduce the calculations.
4 The quantity 68% is obviously inspired by the confidence intervals.
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Fig. 1. Signal distribution (blue) and the Gaussian distribution (red)
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Fig. 2. February : irradiance (blue) and its prediction (red)
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Fig. 3. February : volatilty (blue) and its trend prediction (red)
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Fig. 4. February: irradiance (blue), its prediction (red), confidence band (black - -) (case: CB1)
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Fig. 5. February: irradiance (blue), its prediction (red), confidence band (black - -) (case: CB2)

3. CONCLUSION

Improving short-term forecasting and the corresponding
confidence bands will be tackled in future publications.
Seasonalities (see, e.g., Fliess & Join (2015b)) will of course
play some rôle.

This communication shows that a “good” forecast (see,
e.g., Murphy (1993)) should incorporate a measure of
risk. Since, according to Section 2.3, classic statistical
confidence intervals are meaningless, we have introduced
confidence bands, which do not necessitate any a priori
probabilistic knowledge. Those bands will of course be
further developed and applied to other domains.

The fact that no probabilistic description is needed has
been already addressed in Fliess (2006); Fliess & Join
(2009); Fliess, Join & Hatt (2011b). It is quite new in ap-
plied academic sciences, where a probabilistic description
plays too often a key rôle. This fundamental epistemolog-
ical issue ought to be further developed (see also Ayache
(2010)).
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Fig. 6. June : irradiance (blue) and its prediction (red)
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Fig. 7. June : volatilty (blue) and its trend prediction (red)
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Fig. 8. June: irradiance (blue), its prediction (red), confidence band (black - -) (case: CB1)
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