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This article is dedicated to the 85th birthday of Professor Cristescu. We were fortunate,

not only to have him between the inspirational teachers we had in mechanics during

our undergraduate and graduate studies but also had the privilege to develop these early

contacts into and stimulating dialogue over the years.

Abstract - The inverse problem discussed here is the identification of
the distributed elastic moduli from overspecified boundary conditions. We
present an extension of the classical result of Ikehata from the case of an
isotropic material, for a class of anisotropic materials with cubic and or-
thotropic symmetry.
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1. Introduction

Linearized elasticity theory is one of the classical areas of mathematical
physics. Several problem settings are well understood, existence and unique-
ness results are available and closed-form or numerical solutions are ready
for the applications. One of the recent areas in linearized elasticity is re-
lated to inverse problems. The main type are related to the determination
of material parameters, boundary condition, geometrical details, damage,
inclusions or cracks. They are usually motivated by practical engineering
situations and the interest in these problems has recently blown up given the
explosion of physical measuring technique, like the digital image correlation,
which permit an easy access to an extended data field.

The inverse problem discussed next is the identification of the distributed
elastic moduli from overspecified boundary conditions. This problem has
already been addressed in the past (for a review see [5]) and several results
have been obtained.

The fundamental tool is the Betti reciprocity equation which is a stan-
dard theorem in linear elasticity textbooks. It provided the entrance of the
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first uniqueness result given by Calderon for the electrical impedance to-
mography problem[8] and was equally used in inverse elasticity problems for
the identification of cracks [4, 2, 7].

The main result for this problem has been given by Ikehata [16], who
has proven the existence and the uniqueness of the solution in the case of an
isotropic material. The advancement discussed here is an extension of the
result of Ikehata for a small class of anisotropic materials with cubic and
orthotropic symmetry.

The papers starts with a presentation of the direct and inverse elasticity
problem. The second section recalls Ikehata’s uniqueness result [16]. The
next sections are dedicated to the discussion of different cases of anisotropic
materials.

2. The direct and the inverse problem

Let us consider an elastic body Ω having the boundary ∂Ω under small
strain assumption and in the absence of residual stresses in the reference
configuration. The vector field of elastic displacements, denoted as u is the
solution of the following system of elliptic partial differentail equations:

div( c(x)∇u(x) ) = 0, x ∈ Ω. (2.1)

Here c denotes the forth order tensor of elastic moduli. c is is positive defined
and exhibits the following symmetries expressed in terms of its coefficients
using the cartesian coordinates:

cijkl = cklij = cjikl. (2.2)

The preceding relations follow from the symmetry of strain and stress tensors
and the existence of a strain energy, respectively. The constitutive equation
is now written in either form:

σ = cε = c∇u, (2.3)

where σ and ε are the stress and strain tensor, respectively.

The boundary conditions are defined either in terms of surface displace-
ments, i.e. Dirichlet conditions: u = uD defined on Su, or in terms of surface
tractions, i.e. Neumann conditions: σ · n = tD defined on St.

The direct problem provides a given boundary data pair (uD, tD) on a
complementary partition of the boundary Su and St. A solution always
exists in this case and is unique if Su 6= ∅.

The inverse problem, discussed next, seeks to identify the heterogeneous
tensor of elastic moduli c = c(x),x ∈ Ω from overspecified boundary data,
i.e. (uD, tD) on a partition of the boundary Su and St such that Su∩St 6= ∅.
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In the ideal case of the inverse problem all boundary conditions all
perfectly known, which is equivalent to the knowledge of the Dirichlet-to-
Neumann data map Λc, which maps each boundary displacements into its
corresponding boundary traction field:

Λc : uD → tD. (2.4)

The standard difficulty for this problem can be illustrated by the follow-
ing closed-form example for an elastic sphere (initially proposed in [9, 10]).
Let us consider an elastic isotropic sphere of radius R. Under radial sym-
metry, the governing equations of the problem become:

(
λ+ 2µ

r2

(
r2ur

)
,r

)

,r

− µ

r
ur = 0, (2.5)

for r ∈ [0, R]. We recall that the isotropic elastic moduli are expressed as:

cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.6)

We consider two families of solutions corresponding to two families of spheres.
First, the solution of the unperturbed problem:

ur = 1,

µ(r) = µ0 + r2,

λ(r) =
1

2
− 2µ(r),

(2.7)

and second a series of solution of perturbed problems:

uNr = 1 +
1

Nr
sinNr +

1

N2r2
cosNr,

µN (r) = µ0 +

∫ r2

r1

rdr

1 + 1
Nr

sinNr + 1
N2r2

cosNr
,

λN (r) =
1

2 + cosNr
− 2µN (r),

(2.8)

One can easily remark that the the solution of the perturbed problem con-
verges in terms of displacements to the unperturbed solution: uN → u.
However λN

9 λ !
This simple example illustrates that one can not easily expect uniqueness

or continuity for this class of inverse problems.

2.1. Variational formulation and Betti-Reciprocity

An essential tool in solving the inverse problems was provided by the vari-
ational formulation of the problem and the Betti reciprocity principle.
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Let us consider two bodies occupying the same domain Ω and having the
the elastic moduli c and c∗. If the two elastic solutions, corresponding to
the two bodies, are denoted as u and u∗, using the standard technique of the
Betti Reciprocity Principle , i.e. crossing solutions and virtual displacement
fields and integrating by parts, one obtains:

∫

∂Ω
(uΛc(u

∗)− u∗Λc∗(u))ds =

∫

∂Ω
∇u : (c∗ − c) : ∇u∗ds. (2.9)

A classical argument, involving an infinitesimal perturbation of the coeffi-
cients c∗, conducts to a linear form of the problem:

c∗ = c+ δc,

u = u0 + δu,

u∗ = u∗

0,

(2.10)

and leads to the linearized form of the Betti Reciprocity principle:

RB(u,u∗) =

∫

∂Ω
(uΛc∗(u

∗)− u∗Λc(u))dv, (2.11)

=

∫

Ω
∇uδc∇u∗dv. (2.12)

3. Ikehata’s solution for isotropic elasticity

The method discussed for the identification of anisotropic elastic moduli
is based on the technique proposed by Ikehata [16] for isotropic elasticity.
For the purpose of clarity, we shall presented briefly the main steps of this
method.

We recall that c takes the following form in the case of isotropic elasticity

cijkl = λδijδkl + µ(δikδjl + δjkδil) (3.1)

where λ and µ denote the Lamé moduli.

The inverse problem may be stated in this case:

Can γ = (λ, µ) be complete determined from the knowledge of the Dir-

ichlet-to-Neumann data map: Λc ?

The results obtained in [16] can be resumed as follows:

• The Dirichlet-to-Neumann data map:

Λ : L(Ω) ∋ γ 7−→ Λ(γ) ∈ B(H
1

2 (∂Ω, Cn), H−
1

2 (∂Ω, Cn)) (3.2)

is twice continuously differentiable in the sense of Frêchet [6].
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• Let γ = (λ, µ) ∈ L(Ω) be the nonperturbed homogeneous distribution
of elastic moduli. The Frêchet derivative:

dΛ(γ) : L∞(Ω)× L∞(Ω) → B(H
1

2 (∂Ω, Cn)) (3.3)

is injective and its inverse is computed as follows.

Consider now a small perturbation of the moduli δ(x) = (δλ(x), δµ(x)) ∈
L∞(Ω)×L∞(Ω). For all m ∈ R

n, choose a vector m⊥ ∈ R
n satisfying:

m ·m⊥ = 0,

|m| = |m⊥|
(3.4)

and define the following complex valued vectors:

ξ1 =
m+ im⊥

2
,

ξ2 =
m− im⊥

2
,

(3.5)

We consider now the two families of solutions of the non perturbed
problem:

For the first family defined by the displacement field: u = ∇(e−ξix),
using the notation φi(x) = ∇(e−ξix)|∂Ω. For the trace on the boundary
of the displacement we obtain the representation:

< φ1, dΛ(γ)(δ)φ2 >=
|m|4
4

∫

Ω
2 δµ(x) e−im·xdv (3.6)

For the second family defined using a Galerkin potential under the
form:

gij = −1

2
|ξi|−2(xξ̄i)e

−ξi·xξj ,

uij = (λ+ 2µ) ∆gij − (λ+ µ) ∇ · (∇gij),
(3.7)

and denoting the boundary values by:

φi = uij |∂Ω,
φj = uji|∂Ω.

(3.8)

we obtain the representation:

< φ1, dΛ(γ)(δ)φ2 >= µ2 |m|4
4

∫

Ω
2 (δλ(x) + δµ(x)) e−imxdv

+ (λ+ µ)2
|m|4
8

(ξ1 · ξ2)
∫

Ω
2 δµ(x) x2 e−imxdv

(3.9)
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The result implies that the perturbation of the modulus δ is uniquely
determined as an inverse Fourier transform of the first order approximation
Λ(γ) + dΛ(γ)(δ) of Λ(γ + δ). However, this representation does not directly
imply that Λ(γ + δ) determines uniquely or not δ. This was obtained using
additional lemma’s proven by Sylvester a̧nd Uhlmann [19].

We can conclude expressing the perturbation of the Lamé moduli in
terms of the inverse Fourier transforms of the Betti-Reciprocity computed on
the boundary using the two family of solutions and the ”measured” Dirichlet-
to-Neumann data map:

RB(u1,u2; δc) =
|m|4
4

∫

Ω
2 δµ(x) e−i(m⊥

x)dv,

RB(u12,u21; δc) =
|m|4
4

µ2

∫

Ω
2 (δλ(x) + δµ(x)) e−i(m⊥

x)dv

+
|m|4
8

(λ+ µ)2(ξ1 · ξ2)
∫

Ω
2 δµ(x) x2 e−i(m⊥

x)dv.

(3.10)

4. Anisotropic case

Starting from the preceding technique, Bonnet and Constantinescu [5] pro-
posed the following method to obtain a similar result for different classes of
anisotropy.

The consider a particular representation of the auxiliary vectors m si
m⊥, in an orthogonal coordinate system {a,b, c} defined by:

m = m c,

m⊥ = m (a cos(ν) + b sin(ν)).
(4.1)

As a consequence, the algebraic expansion of the term within the integral
in the Betti Reciprocity conducts to:

∇uξ1(x)δc(x)∇uξ2(x) = [A0 +
2∑

k=1

(Ak cos(2kν) +Bk sin(2kν))] δc(x).

(4.2)
As a consequence, provided the coordinate system {a,b, c} is chosen appro-
priately, one can expect to obtain explicit expression for which the Fourier
transform can be computed easily.

Using this technique, next we shall present several solutions in particular
cases of material anisotropy, especially for cubic anisotropy.

4.1. Case of cubic material symmetry

Let us consider that the tensor of elastic moduli is in the case of cubic ma-
terial symmetry [11, 12, 13, 14]. Its representation under the Voigt notation
is given as:
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c =




λ+ 2(µ− β) λ λ 0 0 0
λ λ+ 2(µ− β) λ 0 0 0
λ λ λ+ 2(µ− β) 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ




,

where λ, µ, β are the elastic moduli.
In the following, we shall consider an elastic body Ω ∈ R

3. Its moduli
are defined as the sum between a pair of homogenous isotropic moduli and
a triplet of heterogeneous moduli of cubic material symmetry. Let γ =
(λ, µ, β) ∈ L(Ω)3 denote the homogeneous unperturbed moduli and δ =
(δλ, δµ, δβ) ∈ L∞(Ω)3 the perturbed moduli.

As already discussed previously in the general case, one can write the
Betti-Reciprocity equality:

RB(u,u∗, δc) =< u|∂Ω, dΛ(γ)(δ)u∗|∂Ω > (4.3)

where u ∈ H1(Ω) and u∗ ∈ H1(Ω) are the solutions of the perturbed and
the adjoint unpertubed problems and Λ(γ) is the Dirichlet-to-Neumann data
map.

As in the isotropic case, we shall choose families of solutions for the
auxiliary problems. The first family is defined as:

u1(x) = ∇e−i ξ1x,

u2(x) = ∇e+i ξ2x.
(4.4)

The second family is based on the Galerkin representation of the displace-
ments field defined as follows:

ujk = (λ+ 2µ) ∆gjk − (λ+ µ) ∇ · (∇gjk), (4.5)

where

gjk = −1

2
(x · ξ̄j) e− ξj ·xξk, (4.6)

with j, k = ¯1, 2. The functions gij are harmonic, i.e.

∆ ∆ gjk = 0 , ∀j, k ∈ ¯1, 2. (4.7)

In the preceding computations we have considered that:

ξ1 =
1

2
(m+ im⊥), ξ2 =

1

2
(−m+ im⊥) (4.8)
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with m,m⊥ ∈ R3, such that m2 = (m⊥)2 , m · m⊥ = 0 and m2 = 1, in
order to simplify computations.

Starting with the method proposed in [5] and the preliminary results
of expression (4.2), we obtain after a change of frame, from cartesian to
spherical coordinates:

{e1, e2, e3} → {er, eθ, eφ} = {a,b, c} (4.9)

and further:

(m1,m2,m3) = (cosϕm sin θm, sinϕm sin θm, cos θm),

(m⊥

1 ,m
⊥

2 ,m
⊥

3 ) = (cos a cosϕm cos θm − sin a sinϕm,

cosϕm sin a+ cos a cos θm sinϕm,− cos a sin θm).

(4.10)

Using the first set of functions for the isotropic case (4.4), together with
(4.10) and using an appropriate value of a, the Betti reciprocity equation
writes finally in the form:

RB(u1,u2, δc) =
1

32

∫

Ω
(7 + cos 4ϕm)δµ(x) + (9− cos 4ϕm)δβ(x)) e−imxdv

(4.11)

Similarly, from the second set of functions (4.5) and relation (4.3), one
obtains:

RB(u12,u21, δc) =

∫

Ω
(δλ(x) + δµ(x))E2

1(λ, µ,x, ξ1)e
−imxdv

+

∫

Ω
(δβ(x) + δµ(x))E2

2(λ, µ,x, ξ1)e
−imxdv,

(4.12)

and

RB(u12,u11, δc) =

∫

Ω
(δβ(x)− δµ(x))E3(λ, µ,x, ξ1)e

−m
⊥
xe−imxdv.

(4.13)
Here, E2

1, E
2
2 and E3 are polinomial expressions in the corresponding vari-

ables. Furthermore, under the small strain assumptions we have: e−m
⊥
x ∼=

1.

Next we present three particular cases of theses expressions for particular
values of m where computations can be obtained in a closed form.

1. m and m⊥ are variable and coplanar,

2. m⊥ = ez , m varies within a plane such that m⊥ ⊥ plan(m) ,

3. m = −ez , m⊥ varies within a plane such that m ⊥ plan(m⊥) .
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4.1.1. First case of cubic elasticity

The first case assumes coplanar vectors m and m⊥, i.e. we assume that
ϕm = π

2 and a = 0. We shall further apply the relations in spherical
coordinates (4.10) and

m = (0, cos θm, sin θm),

m⊥ = (0, sin θm,− cos θm).
(4.14)

For the first set of functions (4.4) the reciprocity writes:

RB(u1,u2, δc) =
1

4

∫

Ω
(δµ(x) + δβ(x))e−imxdv, (4.15)

while for the second set of functions (4.5) we obtain:

RB(u12,u21, δc) = −1

4
µ2

∫

Ω
(δλ(x) + δµ(x))e−imxdv

+
1

64
(λ+ µ)2

∫

Ω
(δβ(x) + δµ(x))(y2 + z2)e−imxdv

(4.16)

and

RB(u11,u12, δc)=
1

32
(λ+3µ)(λ+µ)e−3iθm

∫

Ω
(δβ(x)−δµ(x))(−iy+z)e−imxdv.

(4.17)
As a consequence, using similar arguments as in the isotropic case, we have
been able to reduce the identification of the perturbed moduli (δλ, δµ, δβ)
to the solution of an algebraic system of equations and an inverse Fourier
transform.

Remarks

Computations performed with different starting planes: m = (0,m2,m3),
m = (m1, 0,m3), m = (m1,m2, 0) with coplanar m⊥ and m, or linear com-
binations of these vectors, implying the two families of functions proposed in
the isotropic case have conducted to different Fourier representations with-
out providing a general relation between these representations.

As a consequence of cubic anisotropy we do not have a result combining
the 2-dimensional formulae into a complet coherent 3-dimensional one.

If we further reduce the dimension of the problem, to a 1-dimensional
one, where m = (0, 0,m), then the equations (4.15), (4.16) and (4.17), are
transformed into a nonlinear system of integral-differential equations.

Using the simplifying notations:

RB1(m) = RB(u1,u2, δc)

RB2(m) = RB(u12,u21, δc)

RB3(m) = RB(u12,u11, δc)

(4.18)
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the system (4.15), (4.16) and (4.17) is transformed into:

δ̂µ(m) + δ̂β(m) =
1

4
RB1(m),

δ̂λ(m) + δ̂µ(m) = C1 RB2(m) + C2
d2RB1(m)

dm2
,

δ̂µ(m)− δ̂β(m) = C3

∫
RB3(m) dm,

(4.19)

where C1, C2 şi C3 multiplicative real constants. Here δ̂µ(m), δ̂λ(m) and

δ̂β(m) denote the Fourier transforms of the perturbed moduli: δµ(m), δλ(m)
şi δβ(m).

Finally the expressions of the Fourier transform are:

δ̂µ(m) =
1

8
RB1(m) +

C3

2

∫
RB3(m) dm,

δ̂λ(m) = C1 RB2(m) + C2
d2RB1(m)

dm2
− 1

8
RB1(m)− C3

2

∫
RB3(m) dm,

δ̂β(m) =
1

8
RB1(m)− C3

2

∫
RB3(m) dm.

(4.20)

4.1.2. Second case of cubic elasticity

For the second state, we consider θm = π
2 şi a = 0, i.e. we chose m⊥ = −ez,

m variable within a plane such that m⊥ ⊥ plan(m).

As before, we shall now use the transformations (4.10), which leads to:

m = (cosϕm, sinϕm, 0),

m⊥ = (0, 0,−1).
(4.21)

The first set of functions (4.4) conducts to the following expressions of
the Betti reciprocity:

RB(u1,u2, δc)=
1

32

∫

Ω
(7 + cos 4ϕm)δµ(x) + (9− cos 4ϕm)δβ(x)) e−imxdv

(4.22)
wether the second set of functions (4.5) leads to:

RB(u12,u21, δc) =

∫

Ω
(δλ(x) + δµ(x))E2

1(λ, µ,x, ξ1)|θm=
π
2

e−im⊥
xdv

+

∫

Ω
(δβ(x) + δµ(x))E2

2(λ, µ,x, ξ1)|θm=
π
2

e−im⊥
xdv

(4.23)
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and

RB(u11,u12, δc) =
1

256
(λ+ 3µ)

∫

Ω
(δβ(x)− δµ(x)) [(λ+ µ)(7 + cos 4ϕm)

· (iz +mx)− 8µ sin(2ϕm)2] e−im⊥
xdv.

(4.24)

4.1.3. Third case of cubic elasticity

In the third case, we consider: θm = 0 and a = 0. Our choice is then of
variable vectors in plane m = mez, such that: m⊥ m ⊥ plan(m⊥).

As before, we shall now use the transformations (4.10), which leads to:

m = (0, 0, 1),

m⊥ = (cosϕm, sinϕm, 0).
(4.25)

The first set of functions (4.4) conducts to the following expressions of
the Betti reciprocity:

RB(u1,u2, δc) =
1

32

∫

Ω
(7 + cos 4ϕm)δµ(x) + (9− cos 4ϕm)δβ(x)) e−imxdv

(4.26)
wether the second set of functions (4.5) conducts to:

RB(u12,u21, δc) =

∫

Ω
(δλ(x) + δµ(x))E2

1(λ, µ,x, ξ1)|θm=0
e−im⊥

xdv

+

∫

Ω
(δβ(x) + δµ(x))E2

2(λ, µ,x, ξ1)|θm=0
e−im⊥

xdv

(4.27)

and

RB(u11,u12, δc) =
1

256
(λ+ 3µ)

∫

Ω
(δβ(x)− δµ(x)) [(λ+ µ)(7 + cos 4ϕm)

· (z − im⊥x)− 8µ sin(2ϕm)2] e−im⊥xdv.

(4.28)

4.2. Orthotropic material symmetry

We shall now proceed with similar computations in the case of cubic sym-
metry. For this material symmetry expressions and the Fourier transform
get more complex as before.

Let us consider an tensor of elastic moduli in the case of a particular case
of orthotropic material symmetry [11, 12, 13, 14], where the representation
under the Voigt notation is given as (see also [18]):
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c =




c11 ν
√
c11c22 ν

√
c11c33 0 0 0

ν
√
c11c22 c22 ν

√
c22c33 0 0 0

ν
√
c11c33 ν

√
c22c33 c33 0 0 0

0 0 0 1−ν

2

√
c22c33 0 0

0 0 0 0 1−ν

2

√
c11c33 0

0 0 0 0 0 1−ν

2

√
c11c22




,

There are 4 moduli in this representation: c11, c22, c33 and ν, instead of
the standard 6 moduli of orthotropic materials. The mechanical motivation
for this class is to be found in [18], were a direct transformation is defined
between this class and general isotropy. This remark opens the question of
the possibility to transpose directly the isotropic proof of Ikehata [16] in the
case of materials with this class of perturbations.

The computations lead in a similar way as before, to the following ex-
pressions of the Betti reciprocity:

RB(u1,u2; δc) =
1

16

∫

Ω
(δc22 + δc33 + 2

√
δc22δ c33(1− 2δN))e−i(m⊥

x)dv.

(4.29)
and:

RB(u12,u21; δc) = − 1

16
µ2

∫

Ω
(δc22 + δc33)e

−i(m⊥
x)dv

+
1

256
(λ+ µ)2

∫

Ω
(x · x)(

√
δc22 +

√
δc33)

2e−i(m⊥
x)dv

+
1

128

∫

Ω
[−8µ2 − (λ+ µ)2(x · x)]δN

√
δc22δc33e

−i(m⊥
x)dv

+
1

32
µ(λ+ µ)

∫

Ω
i (y cos θ + z sin θ)(δc22 − δc33)e

−i(m⊥
x)dv

(4.30)

Remarks One can observe that the system is still incomplete, as one will
still need at least two equations, which can however be obtained from the
same sets of functions using particular forms. Nonetheless, it is straight-
forward that the complexity of the system was increased in a non-trivial
manner.

Let us also notice that the 1-dimensional technique could be applied in
a similar way in this case.

5. Conclusion and Perspectives

The present paper discussed some possible extension of the Calderon method
to show that an anisotropic perturbation of a isotropic homogeneous field of
elastic moduli can be recovered by means of the Betti-Reciprocity principle
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from the Dirichlet-to-Neumann boundary data map. The method exposed
uses as adjoint (auxiliary function) the families already proposed by Ikehata
in [16].

The presented results cover some special case of cubic and orthotropic
material symmetry. However, the complete problem of anisotropic material
symmetry remains still open.
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