
HAL Id: hal-01291056
https://polytechnique.hal.science/hal-01291056v1

Submitted on 20 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A NON-INTRUSIVE STRATIFIED RESAMPLER
FOR REGRESSION MONTE CARLO: APPLICATION

TO SOLVING NON-LINEAR EQUATIONS
Emmanuel Gobet, Gang Liu, Jorge Zubelli

To cite this version:
Emmanuel Gobet, Gang Liu, Jorge Zubelli. A NON-INTRUSIVE STRATIFIED RESAMPLER FOR
REGRESSION MONTE CARLO: APPLICATION TO SOLVING NON-LINEAR EQUATIONS .
SIAM Journal on Numerical Analysis, 2018, 56 (1), pp.50-77. �10.1137/16M1066865�. �hal-01291056�

https://polytechnique.hal.science/hal-01291056v1
https://hal.archives-ouvertes.fr


A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION1

MONTE CARLO: APPLICATION TO SOLVING NON-LINEAR2

EQUATIONS∗3

EMMANUEL GOBET† , GANG LIU† , AND JORGE P. ZUBELLI‡4

Abstract. Our goal is to solve certain dynamic programming equations associated to a given5
Markov chain X, using a regression-based Monte Carlo algorithm. More specifically, we assume that6
the model for X is not known in full detail and only a root sample X1, . . . , XM of such process7
is available. By a stratification of the space and a suitable choice of a probability measure ν, we8
design a new resampling scheme that allows to compute local regressions (on basis functions) in each9
stratum. The combination of the stratification and the resampling allows to compute the solution to10
the dynamic programming equation (possibly in large dimensions) using only a relatively small set11
of root paths. To assess the accuracy of the algorithm, we establish non-asymptotic error estimates12
in L2(ν). Our numerical experiments illustrate the good performance, even with M = 20 − 40 root13
paths.14

Key words. discrete Dynamic Programming Equations, empirical regression scheme, resam-15
pling methods, small-size sample16

AMS subject classifications. 62G08, 62G09, 93Exx17

1. Introduction. Stochastic dynamic programming equations are classic equa-18

tions arising in the resolution of nonlinear evolution equations, like in stochastic con-19

trol (see [18, 4]) or non-linear PDEs (see [6, 9]). In a discrete-time setting they take20

the form:21

YN = gN (XN ), Yi = E [gi(Yi+1, . . . , YN , Xi, . . . , XN ) | Xi] , i = N − 1, . . . , 0,2223

for some functions gN and gi which depend on the non-linear problem under consid-24

eration. Here X = (X0, . . . , XN ) is a Markov chain valued in Rd, entering also in25

the definition of the problem. The aim is to compute the value function yi such that26

Yi = yi(Xi).27

Among the popular methods to solve this kind of problem, we are concerned with28

Regression Monte Carlo (RMC) methods that take as input M simulated paths of X,29

say (X1, . . . , XM ) =: X1:M , and provide as output simulation-based approximations30

yM,L
i using Ordinary Least Squares (OLS) within a vector space of functions L:31

yM,L
i = arg inf

ϕ∈L

1

M

M∑
m=1

∣∣∣gi(yM,L
i+1 (Xm

i+1), . . . , yM,L
N (Xm

N ), Xm
i , . . . , X

m
N )− ϕ(Xm

i )
∣∣∣2 .32

33

This Regression Monte Carlo methodology has been investigated in [9] to solve Back-34

ward Stochastic Differential Equations associated to semi-linear partial differential35

equations (PDEs) [16], with some tight error estimates. Generally speaking, it is well36

known that the number of simulations M has to be much larger than the dimension37

of the vector space L and thus the number of coefficients we are seeking.38
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2 E. GOBET, G. LIU, AND J. P. ZUBELLI

In contradistinction, throughout this work, we focus on the case where M is39

relatively small (a few hundreds) and the simulations are not sampled by the user but40

are directly taken from historical data (X1:M is called root sample), in the spirit of41

[17]. This is the most realistic situation when we collect data and when the model42

which fits the data is unknown.43

Thus, as a main difference with the aforementioned references:44

• We do not assume that we have full information about the model for X and45

we do not assume that we can generate as many simulations as needed to46

have convergent Regression Monte Carlo methods.47

• The size M of the learning samples X1, . . . , XM is relatively small, which48

discards the use of a direct RMC with large dimensional L.49

To overcome these major obstacles, we elaborate on two ingredients:50

1. First, we partition Rd in strata (Hk)k, so that the regression functions can51

be computed locally on each stratum Hk; for small stratum this allows to52

use only a small dimensional approximation space Lk, and therefore it puts53

a lower constraint on M . In general, this stratification breaks the properties54

for having well-behaved error propagation and we provide a precise way to55

sample in order to be able to aggregate the error estimates in different strata.56

We use a probabilistic distribution ν that has good norm-stability properties57

with X (see Assumptions 3.2 and 4.2).58

2. Second, by assuming a mild model condition on X, we are able to resample59

from the root sample of size M , a training sample of M simulations suitable60

for the stratum Hk. This resampler is non intrusive in the sense that it only61

requires to know the form of the model but not its coefficients: for example,62

we can handle models with independent increments (discrete inhomogeneous63

Levy process) or Ornstein-Uhlenbeck processes. See Examples 2.1-2.2-2.3-64

2.4. We call this scheme NISR (Non Intrusive Stratified Resampler), it is65

described in Definition 2.1 and Proposition 2.1.66

The resulting regression scheme is, to the best of our knowledge, completely new.67

To sum up, the contributions of this work are the following:68

• We design a non-intrusive stratified resample (NISR) scheme that allows to69

sample from M paths of the root sample restarting from any stratum Hk.70

See Section 2.71

• We combine this with regression Monte Carlo schemes, in order to solve one-72

step ahead dynamic programming equations (Section 3), discrete backward73

stochastic differential equations (BSDEs) and semi-linear PDEs (Section 4).74

• In Theorems 3.4 and 4.1, we provide quadratic error estimates of the form75

quadratic error on yi ≤ approximation error + statistical error76

+ interdependency error .7778

The approximation error is related to the best approximation of yi on each79

stratum Hk, and averaged over all the strata. The statistical error is bounded80

by C/M with a constant C which does not depend on the number of strata:81

only relatively small M is necessary to get low statistical errors. This is in82

agreement with the motivation that the root sample has a relatively small83

size. The interdependency error is an unusual issue, it is related to the strong84

dependency between regression problems (because they all use the same root85

sample). The analysis as well as the framework are original. The error es-86

timates take different forms according to the problem at hand (Section 3 or87
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A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION MONTE CARLO 3

Section 4).88

• Finally we illustrate the performance of the methods on two types of ex-89

amples: first, approximation of non-linear PDEs arising in reaction-diffusion90

biological models (Subsection 5.1) and optimal sequential decision (Subsec-91

tion 5.2), where we illustrate that root samples of size M = 20− 40 only can92

lead to remarkably accurate numerical solutions.93

The paper is organized as follows. In Section 2 we present the model structure that94

leads to the non-intrusive stratified resampler for regression Monte Carlo (NISR), to-95

gether with the stratification. Main notations will be also introduced. The algorithm96

is presented in a generic form of dynamic programming equations in Algorithm 1. In97

Section 3 we analyze the convergence of the algorithm in the case of one-step ahead98

dynamic programming equations (for instance optimal stopping problems). Section 499

is devoted to the convergence analysis for discrete BSDEs (probabilistic representa-100

tion of semi-linear PDEs arising in stochastic control problems). Section 5 is devoted101

to numerical examples. Technical results are postponed to the Appendix.102

2. Setting and the general algorithm.103

2.1. General dynamic programming equation. Suppose we have N discrete104

dates, and we aim at solving numerically the following dynamic programming equation105

(DPE for short), written in general form:106

YN = gN (XN ), Yi = E [gi(Yi+1:N , Xi:N ) | Xi] , 0 ≤ i < N.107108

Here, (Xi)0≤i≤N is a Markov chain with state space Rd, (Yi)0≤i≤N is a random process109

taking values in R and we use for convenience the generic short notation zi:N :=110

(zi, . . . , zN ). Note that the argument of the conditional expectation is path-dependent,111

thus allowing greater generality. Had we considered Y to be multidimensional, the112

subsequent algorithm and analysis would remain essentially the same.113

Later (Sections 3 and 4), specific forms for gi will be considered, depending on114

the model of DPE to solve at hand: it will have an impact on the error estimates that115

we can derive. However, the description of the algorithm can be the same for all the116

DPEs, as seen below, and this justifies our choice of unifying the presentation.117

Thanks to the Markovian property of X, under mild assumptions we can easily118

prove by induction that there exists a measurable function yi such that Yi = yi(Xi),119

our aim is to compute an approximation of the value functions yi(.) for all i. We120

assume that a bound on yi is available.121

Assumption 2.1 (A priori bound). The solution yi is bounded by a constant |yi|∞.122

2.2. Model structure and root sample. We will represent yi(.) through its123

coefficients on a vector space, and the coefficients will be computed thanks to learning124

samples of X.125

Assumption 2.2 (Data). We have the observation of M independent paths of X,126

which are denoted by ((Xm
i : 0 ≤ i ≤ N), 1 ≤ m ≤ M). We refer to this data as the127

root sample.128

For our needs, we adopt a representation of the flow of the Markov chain for129

different initial conditions, i.e., the Markov chain Xi,x starting at different times130

i ∈ {0, . . . , N} and points x ∈ Rd. Namely, we write131

(2.1) Xi,x
j = θi,j(x, U), i ≤ j ≤ N,132

where133

This manuscript is for review purposes only.



4 E. GOBET, G. LIU, AND J. P. ZUBELLI

• U is some random vector, called random source,134

• θi,j are (deterministic) measurable functions.135

We emphasize that, for the sake of convenience, U is the same for representing all136

Xi,x
j , 0 ≤ i ≤ j ≤ N, x ∈ Rd.137

Assumption 2.3 (Noise extraction). We assume that θi,j are known and we can
retrieve the random sources (U1, . . . , UM ) associated to the root sample X1:M = (Xm :
1 ≤ m ≤M), i.e.,

Xm
j = X

0,xm0 ,m
j = θ0,j(x

m
0 , U

m).

Observe that this assumption is much less stringent than identifying the distribution138

of the model. We exemplify this now.139

Example 2.1 (Arithmetic Brownian motion with time dependent parameters). Let
(ti : 0 ≤ i ≤ N) be N times and define the arithmetic Brownian motion by

Xi = x0 +

∫ ti

0

µsds+

∫ ti

0

σsdWs

where µt ∈ Rd, σt ∈ Rd×q,Wt ∈ Rq and µ, σ are deterministic functions of time. In
this case, the random source is given by

U := (Xi+1 −Xi)0≤i≤N−1

and the functions by

θij(x, U) := x+
∑
i≤k<j

Uk.

This works since Ui =
∫ ti+1

ti
µsds +

∫ ti+1

ti
σsdWs. The crucial point is that, in order140

to extract U from X, we do not assume that µ and σ are known.141

Example 2.2 (Levy process). More generally, we can set Xi = Xti with a time-
inhomogeneous Levy process X. Then take

U := (Xi+1 −Xi)0≤i≤N−1, θij(x, U) := x+
∑
i≤k<j

Uk.

Example 2.3 (Geometric Brownian motion with time dependent parameters). With
the same kind of parameters as for Example 2.1, define the geometric Brownian mo-
tion (component by component)

Xi = X0 exp

(∫ ti

0

µsds+

∫ ti

0

σsdWs

)
.

Then, we have that

U :=

(
log(

Xi+1

Xi
)

)
0≤i≤N−1

, θij(x, U) := x
∏

i≤k<j

exp(Uk).

Example 2.4 (Ornstein-Uhlenbeck process with time dependent parameters). Given
N times (ti : 0 ≤ i ≤ N), set Xi = Xti where X has the following dynamics:

Xt = x0 −
∫ t

0

A(Xs − X̄s)ds+

∫ t

0

ΣsdWs

This manuscript is for review purposes only.



A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION MONTE CARLO 5

where A is d × d-matrix, Xt and X̄t are in Rd, Σt is a d × q-matrix, Wt ∈ Rq. X̄t

and Σt are both deterministic functions of time. The explicit solution is

Xt = e−A(t−s)Xs + e−At
∫ t

s

eAr(AX̄rdr + ΣrdWr).

Assume that we know A: in this case, an observation of X0:N enables to retrieve the
random source

U :=
(
Xj − e−A(tj−ti)Xi

)
0≤i≤j≤N

and then

θij(x, U) := e−A(tj−ti)x+ Ui,j .

The noise extraction works since Ui,j = e−Atj
∫ tj
ti
eAr(AX̄rdr + ΣrdWr).142

As illustrated above, through Assumption 2.2, all we need to know is the general143

structure of the Markov chain model but we do not need to estimate all the model144

parameters, and sometimes none of them (Examples 2.1, 2.2, 2.3). Our approach is145

non intrusive in this sense.146

2.3. Stratification and resampling algorithm. On the one hand, we can rely147

on a root sample of size M only (possibly with a relatively small M , constrained by148

the available data), which is very little to perform accurate Regression Monte-Carlo149

methods (usually M has to be much larger than the dimension of approximation150

spaces, as reminded in introduction).151

On the other hand, we are able to access the random sources so that resampling152

the M paths is possible. The degree of freedom comes from the flexibility of initial153

conditions (i, x), thanks to the flow representation (2.1). We now explain how we take154

advantage of this property.155

The idea is to resample the model paths for different starting points in different156

parts of the space Rd and on each part, we will perform a regression Monte Carlo157

using M paths and a low-dimensional approximation space. These ingredients give158

the ground reasons for getting accurate results.159

Let us proceed to the details of the algorithm. We design a stratification approach:160

suppose there exist K strata (Hk)1≤k≤K such that161

Hk ∩Hl = ∅ for k 6= l,

K⋃
k=1

Hk = Rd.162

An example for Hk is a hypercube of the form Hk =
∏d
l=1[x−k,l, x

+
k,l). Then, we are163

given a probability measure ν on Rd and denote its restriction on Hk by164

νk(dx) :=
1

ν(Hk)
1Hk(x)ν(dx).165

The measure ν will serve as a reference to control the errors. See Paragraph 3.1.2 and166

Section 5 for choices of ν.167

Definition 2.1 (Non-intrusive stratified resampler, NISR for short). We define the168

M -sample used for regression at time i and in the k-th stratum Hk:169

• let (Xi,k,m
i )1≤m≤M be an i.i.d. sample according to the law νk;170

This manuscript is for review purposes only.



6 E. GOBET, G. LIU, AND J. P. ZUBELLI

• for j = i+ 1, . . . , N , set

Xi,k,m
j = θi,j(X

i,k,m
i , Um) ,

where U1:M are the random sources from Assumption 2.3.171

In view of Assumptions 2.2 and 2.3, the random sources U1, . . . , UM are indepen-172

dent, therefore we easily prove the following.173

Proposition 2.1. The M paths (Xi,k,m
i:N , 1 ≤ m ≤M) are independent and iden-174

tically distributed as Xi:N with Xi
d∼ νk.175

2.4. Approximation spaces and regression Monte Carlo schemes. On176

each stratum, we approximate the value functions yi using basis functions. We can177

take different kinds of basis functions:178

- LP0 (partitioning estimate): Lk = span(1Hk),179

- LP1 (piecewise linear): Lk = span(1Hk , x11Hk , · · · , xd1Hk),180

- LPn (piecewise polynomial): Lk = span( all the polynomials of degree less than or181

equal to n on Hk).182

To simplify the presentation, we assume hereafter that the dimension of Lk does not
depend on k, we write

dim(Lk) =: dim(L).

To compute the approximation of yi on each stratum Hk, we will use the M samples183

of Definition 2.1. Our NISR-regression Monte Carlo algorithm takes the form:184

Algorithm 1 General NISR-regression Monte Carlo algorithm

1: set y
(M)
N (·) = gN (·)

2: for i = N − 1 until 0 do
3: for k = 1 until K do
4: sample (Xi,k,m

i:N )1≤m≤M using the NISR (Definition 2.1)

5: set S(M)(xi:N ) = gi(y
(M)
i+1 (xi+1), . . . , y

(M)
N (xN ), xi:N )

6: compute ψ
(M),k
i = OLS(S(M),Lk, Xi,k,1:M

i:N )

7: set y
(M),k
i = T|yi|∞

(
ψ

(M),k
i

)
where TL is the truncation operator,

8: defined by TL(x) = −L ∨ x ∧ L
9: end for

10: set y
(M)
i =

∑K
k=1 y

(M),k
i 1Hk

11: end for

In the above, the Ordinary Least Squares approximation of the response function
S̃ : (Rd)N−i+1 7→ R in the function space Lk using the M sample Xi,k,1:M

i:N is defined
and denoted by

OLS(S̃,Lk, Xi,k,1:M
i:N ) = arg inf

ϕ∈Lk

1

M

M∑
m=1

|S̃(Xi,k,m
i:N )− ϕ(Xi,k,m

i )|2.

The main difference with the usual regression Monte-Carlo schemes (see [8] for185

instance) is that here we use the common random numbers U1:M for all the regression186

problems. This is the effect of resampling. The convergence analysis becomes more187

delicate because we lose nice independence properties. Figure 1 describes a key part188

in the algorithm, namely the process of using the root paths to generate new paths.189

This manuscript is for review purposes only.



A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION MONTE CARLO 7

Fig. 1. Description of the use of the root paths to produce new paths in an arbitrary hypercube.

3. Convergence analysis in the case of the one-step ahead dynamic190

programming equation. We consider here the case191

YN = gN (XN ), Yi = E [gi(Yi+1, Xi, . . . , XN ) | Xi] , 0 ≤ i < N,192193

where we need the value of Yi+1 (one step ahead) to compute the value Yi (at the194

current date) through a conditional expectation. To compare with Algorithm 1, we195

take gi(Yi+1:N , Xi:N ) = gi(Yi+1, Xi:N ).196

Equations of this form are quite natural when solving optimal stopping problems
in the Markovian case. Indeed, if Vi is the related value function at time i, i.e., the
essential supremum over stopping times τ ∈ {i, . . . , N} of a reward process fτ (Xτ ),
then Vi = max(Yi, fi(Xi)) where Yi is the continuation value defined by

Yi = E [max(Yi+1, fi+1(Xi+1)) | Xi] ,

see [18] for instance. This corresponds to our setting with

gi(yi+1, xi:N ) = max(yi+1, fi+1(xi+1)) .

Similar dynamic programming equations appear in stochastic control problems. See197

[4].198

3.1. Standing assumptions. The following assumptions enable us to provide199

error estimates (Theorem 3.4 and Corollary 3.1) for the convergence of Algorithm 1.200

3.1.1. Assumptions on gi.201

Assumption 3.1 (Functions gi). Each function gi is Lipschitz w.r.t. the variable202

yi+1, with Lipschitz constant Lgi and Cgi := supxi:N |gi(0, xi:N )| < +∞.203

It is then easy to justify that yi (such that yi(Xi) = Yi) is bounded (Assumption 2.1).204

3.1.2. Assumptions on the distribution ν. We assume a condition on the205

probability measure ν and the Markov chain X, which ensures a suitable stability in206

the propagation of errors.207

Assumption 3.2 (norm-stability). There exists a constant C(3.1) ≥ 1 such that208

for any ϕ : Rd 7→ R ∈ L2(ν) and any 0 ≤ i ≤ N − 1, we have209

(3.1)

∫
Rd

E
[
ϕ2(Xi,x

i+1)
]
ν(dx) ≤ C(3.1)

∫
Rd
ϕ2(x)ν(dx).210

We now provide some examples of distribution ν where the above assumption211

holds, in connection with Examples 2.1, 2.2 and 2.4.212

This manuscript is for review purposes only.



8 E. GOBET, G. LIU, AND J. P. ZUBELLI

Proposition 3.1. Let α = (α1, . . . , αd) ∈]0,+∞[d and assume that Xi,x
i+1 = x +213

Ui (as in Examples 2.1 and 2.2) with E
[∏d

j=1 e
αj |Uji |

]
< +∞. Then, the tensor-214

product Laplace distribution ν(dx) :=
∏d
j=1

αj

2 e
−αj |xj |dx satisfies Assumption 3.2.215

Proof. The L.H.S. of (3.1) writes216

E
[∫

Rd
ϕ2(x+ Ui)ν(dx)

]
= E

∫
Rd
ϕ2(x)

d∏
j=1

αj

2
e−α

j |xj−Uji |dx

217

≤ E

∫
Rd
ϕ2(x)

d∏
j=1

αj

2
e−α

j |xj |+αj |Uji |dx

218

219

which leads to the announced inequality (3.1) with C(3.1) := E
[∏d

j=1 e
αj |Uji |

]
.220

Proposition 3.2. Let k > 0 and assume that Xi,x
i+1 = Dx + Ui for a diago-221

nal invertible matrix D := diag(D1, . . . , Dd) (a form similar to Example 2.4) with222

E
[
(1 + |Ui|)d(k+1)

]
< +∞. Then, the tensor-product Pareto-type distribution ν(dx) :=223 ∏d

j=1
k
2 (1 + |xj |)−k−1dx satisfies Assumption 3.2.224

Proof. The L.H.S. of (3.1) equals225

E
[∫

Rd
ϕ2(Dx+ Ui)ν(dx)

]
226

= E

∫
Rd
ϕ2(x) det(D−1)

d∏
j=1

k

2
(1 + |(xj − U ji )/Dj |)−k−1dx

227

≤
∫
Rd
ϕ2(x) det(D−1)

d∏
j=1

k

2

(
E
[
(1 + |(xj − U ji )/Dj |)−d(k+1)

])1/d

dx.(3.2)228

229

On the set {|U ji | ≤ |xj |/2} we have (1 + |(xj − U ji )/Dj |) ≥ (1 + (|xj | − |U ji |)/Dj |) ≥
(1 + |xj |/(2Dj)). On the complementary set {|U ji | > |xj |/2}, the random variable
inside the j-th expectation in (3.2) is bounded by 1 and furthermore

P
(
|U ji | > |x

j |/2
)
≤

E
[
(1 + 2|U ji |)d(k+1)

]
(1 + |xj |)d(k+1)

.

By gathering the two cases, we observe that we have shown that the j-th expectation230

in (3.2) is bounded by Cst(1 + |xj |)−d(k+1), for any xj , whence the advertised result.231

Remarks.232

• Since we will apply the inequality (3.1) only to functions in a finite dimen-233

sional space, the norm equivalence property of finite dimensional space may234

also give the existence of a constant C(3.1). But the constant built in this235

way could depend on the finite dimensional space (and may blow up when its236

dimension increases) while here the constant is valid for any ϕ.237

• The previous examples on ν are related to distributions with independent238

components: this is especially convenient when one has to sample ν restricted239

to hypercubes Hk, since we are reduced to independent one-dimensional sim-240

ulations.241
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A NON-INTRUSIVE STRATIFIED RESAMPLER FOR REGRESSION MONTE CARLO 9

• In Proposition 3.2, had the matrix D been symmetric instead of diagonal, we242

would have applied an appropriate rotation to the density ν.243

3.1.3. Covering number of an approximation space. To analyze how the244

M -samples (Xi,k,m
i:N , 1 ≤ m ≤ M) from NISR approximates the exact distribution of245

Xi:N with Xi
d∼ νk over test functions in the space Lk, we will invoke concentration of246

measure inequalities (uniform in Lk). This is possible thanks to complexity estimates247

related to Lk, expressed in terms of covering numbers. Note that the concept of248

covering numbers is mainly used to introduce Assumption 3.3 and it intervenes in the249

main theorems only through the proof of Proposition 3.5.250

We briefly recall the definition of a covering number of a dictionary of functions G,251

see [10, Chapter 9] for more details. For a dictionary G of functions from Rd to R and252

for M points x1:M := {x(1), . . . , x(M)} in Rd, an ε-cover (ε > 0) of G w.r.t. the L1-253

empirical norm ‖g‖1 := 1
M

∑M
m=1 |g(x(m))| is a finite collection of functions g1, . . . , gn254

such that for any g ∈ G, we can find a j ∈ {1, · · · , n} such that ‖g − gj‖1 ≤ ε.255

The smallest possible integer n is called the ε-covering number and is denoted by256

N1(ε,G, x1:M ).257

Assumption 3.3 (Covering the approximation space). There exist three constants

α(3.3) ≥
1

4
, β(3.3) > 0, γ(3.3) ≥ 1

such that for any B > 0, ε ∈ (0, 4
15B] and stratum index 1 ≤ k ≤ K, the minimal size258

of an ε-covering number of TBLk := {TBϕ : ϕ ∈ Lk} is bounded as follows:259

(3.3) N1(ε, TBLk, x1:M ) ≤ α(3.3)

(β(3.3)B

ε

)γ(3.3)
260

independently of the points sample x1:M .261

We assume that the above constants do not depend on k, mainly for the sake of262

simplicity. In the error analysis (see also Proposition A.1), the constants α(3.3) and263

β(3.3) appear in log and thus, they have a small impact on error bounds. On the264

contrary, γ(3.3) appears as a multiplicative factor and we seek to have the smallest265

estimate.266

Proposition 3.3. In the case of approximation spaces Lk like LP0, LP1 or LPn,267

Assumption 3.3 is satisfied with the following parameters: for any given η > 0, we268

have269
α(3.3) β(3.3) γ(3.3)

LP0 1 7/5 1

LP1 3 [4cη6η]1/(1+η)e (d+ 2)(1 + η)

LPn 3 [4cη6η]1/(1+η)e ((d+ 1)n + 1)(1 + η)

270

where cη = supx≥ 45e
2
x−η log(x).271

The proof is postponed to the Appendix.272

3.2. Main result: Error estimate. We are now in the position to state a
convergence result, expressed in terms of the quadratic error of the best approximation
of yi on the stratum Hk:

Ti,k := inf
ϕ∈Lk

|yi − ϕ|2νk where |ϕ|2νk :=

∫
Rd
|ϕ|2(x)νk(dx).
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10 E. GOBET, G. LIU, AND J. P. ZUBELLI

Our goal is to find an upper bound for the error E
[
|y(M)
i − yi|2ν

]
where

|ϕ|2ν :=

∫
Rd
|ϕ|2(x)ν(dx).

Note that the above expectation is taken over all the random variables, including273

the random sources U1:M , i.e., we estimate the quadratic error averaged on the root274

sample.275

Theorem 3.4. Assume Assumptions 2.2-2.3-3.2-3.3 and define y
(M)
i as in Algo-276

rithm 1. Then, for any ε > 0, we have277

E
[
|y(M)
i − yi|2ν

]
≤4(1 + ε)L2

giC(3.1)E
[
|y(M)
i+1 − yi+1|2ν

]
+ 2

K∑
k=1

ν(Hk)Ti,k + 4c(3.8)(M)
|yi|2∞
M

278

+ 2(1 +
1

ε
)
dim(L)

M
(Cgi + Lgi |yi+1|∞)2 + 8(1 + ε)L2

gic(3.7)(M)
|yi+1|2∞
M

.279280

We emphasize that whenever useful, the constant 4(1 + ε)L2
giC(3.1) could be reduced281

to (1+δ)(1+ε)L2
giC(3.1) (for any given δ > 0) by slightly adapting the proof: namely,282

the term 4 = 22 comes from two applications of deviation inequalities stated in Propo-283

sition A.1. These inequalities are valid with (1 + δ)
1
2 instead of 2, up to modifying284

the constants c(A.2)(M) and c(A.3)(M).285

As a very significant difference with usual Regression Monte-Carlo methods (see286

[9, Theorem 4.11]), in our algorithm there is no competition between the bias term287

(approximation error) and the variance term (statistical error), while in usual algo-288

rithms as the dimension of the approximation space K dim(L) goes to infinity, the289

statistical term (of size K dim(L)
M ) blows up. This significant improvement comes from290

the stratification which gives rise to decoupled and low-dimensional regression prob-291

lems.292

Since y
(M)
N = yN , we easily derive global error bounds.293

Corollary 3.1. Under the assumptions and notations of Theorem 3.4, there294

exists a constant C(3.4)(N) (depending only on N , sup0≤i<N Lgi , C(3.1)), such that295

for any j ∈ {0, . . . , N − 1},296

E
[
|y(M)
j − yj |2ν

]
≤ C(3.4)(N)

N−1∑
i=j

[ K∑
k=1

ν(Hk)Ti,k(3.4)297

+
1

M

(
c(3.8)(M)|yi|2∞ + dim(L)(Cgi + Lgi |yi+1|∞)2 + L2

gic(3.7)(M)|yi+1|2∞
)]
.298

299

It is easy to see that if 4(1+ε)L2
giC(3.1) ≤ 1, then interestingly C(3.4)(N) can be taken300

uniformly in N . This case corresponds to a small Lipschitz constant of gi. In the case301

4(1 + ε)L2
giC(3.1) � 1, the above error estimates deteriorate quickly as N increases.302

We shall discuss that in Section 4 which deals with BSDEs and where we propose a303

different scheme that allows both large Lipschitz constant and large N .304

3.3. Proof of Theorem 3.4. Let us start by setting up some useful notations:305

S(xi:N ) := gi(yi+1(xi+1), xi:N ), ψki := OLS(S,Lk, Xi,k,1:M
i:N ),306

|f |2i,k,M :=
1

M

M∑
m=1

f2(Xi,k,m
i:N )307
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308

(or |f |2i,k,M := 1
M

∑M
m=1 f

2(Xi,k,m
i ) when f depends only on one argument).309

We first aim at deriving a bound on E
[
|y(M)
i − yi|2i,k,M

]
. First of all, note that

|y(M)
i − yi|2i,k,M =

∣∣∣T|yi|∞(ψ
(M),k
i )− T|yi|∞(yi)

∣∣∣2
i,k,M

≤ |ψ(M),k
i − yi|2i,k,M

since the truncation operator is 1-Lipschitz. Now we define310

(3.5) E
[
S(Xi,k,m

i:N )|Xi,k,1:M
i

]
= E

[
S(Xi,k,m

i:N )|Xi,k,m
i

]
= yi(X

i,k,m
i )311

where the first equality is due to the independence of the paths (Xi,k,m
i:N , 1 ≤ m ≤M)312

(Proposition 2.1) and where the last equality stems from the definition of yi.313

According to [9, Proposition 4.12] which allows to interchange conditional expec-
tation and OLS, we have

E
[
ψki (·)|Xi,k,1:M

i

]
= OLS(yi,Lk, Xi,k,1:M

i:N ).

Since the expected values
(
E
[
ψki (Xi,k,m

i )|Xi,k,1:M
i

])
1≤m≤M

can be seen as the projec-314

tions of (yi(X
i,k,m
i ))1≤m≤M on the subspace of RM spanned by {(ϕ(Xi,k,m

i ))1≤m≤M , ϕ ∈315

Lk} and (ψ
(M),k
i (Xi,k,m

i ))1≤m≤M is an element in this subspace, Pythagoras theorem316

yields317

|ψ(M),k
i − yi|2i,k,M =

∣∣∣ψ(M),k
i − E

[
ψki (·)|Xi,k,1:M

i

]∣∣∣2
i,k,M

+
∣∣∣E [ψki (·)|Xi,k,1:M

i

]
− yi

∣∣∣2
i,k,M

318

=
∣∣∣ψ(M),k
i − E

[
ψki (·)|Xi,k,1:M

i

]∣∣∣2
i,k,M

+ inf
ϕ∈Lk

|ϕ− yi|2i,k,M .319
320

For any given φ ∈ Lk, we have321

E
[

inf
ϕ∈Lk

|ϕ− yi|2i,k,M
]
≤ E

[
|φ− yi|2i,k,M

]
= E

[
1

M

M∑
m=1

|φ(Xi,k,m
i )− yi(Xi,k,m

i )|2
]

322

=

∫
Rd
|φ(x)− yi(x)|2νk(dx).323

324

Taking the infimum over all functions φ on the R.H.S. gives

E
[

inf
ϕ∈Lk

|ϕ− yi|2i,k,M
]
≤ Ti,k.

So, for any ε > 0, we have325

E
[
|ψ(M),k
i − yi|2i,k,M

]
≤ Ti,k + (1 + ε)E

[
|ψ(M),k
i − ψki |2i,k,M

]
326

+ (1 +
1

ε
)E
[∣∣∣ψki − E

[
ψki (·)|Xi,k,1:M

i

]∣∣∣2
i,k,M

]
.327

328

By [9, Proposition 4.12], the last term is bounded by dim(L)
M (Cgi +Lgi |yi+1|∞)2 where329

(Cgi + Lgi |yi+1|∞)2 clearly bounds the conditional variance of S(Xi,k
i:N ). This is the330
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12 E. GOBET, G. LIU, AND J. P. ZUBELLI

statistical error contribution. Here, we have used the independence of (Xi,k,m
i:N , 1 ≤331

m ≤M) (Proposition 2.1).332

The control of the term E
[
|ψ(M),k
i − ψki |2i,k,M

]
is possible due to the linearity and333

stability of OLS [9, Proposition 4.12]:334

|ψ(M),k
i − ψki |2i,k,M ≤ |S(M) − S|2i,k,M ≤ L2

gi

1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(Xi,k,m

i+1 ),335

336

where we have taken advantage of the Lipschitz property of gi w.r.t. the component337

yi+1. So far we have shown338

E
[
|y(M)
i − yi|2i,k,M

]
≤ Ti,k + (1 + ε)L2

giE

[
1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(Xi,k,m

i+1 )

]
339

+ (1 +
1

ε
)
dim(L)

M
(Cgi + Lgi |yi+1|∞)2.(3.6)340

341

This shows a relation between the errors at time i and time i + 1, but measured in342

different norms. In order to retrieve the same L2(ν)-norm and continue the analysis,343

we will use the norm-stability property (Assumption 3.2) and the following result344

about concentration of measures. The proof is a particular case of Proposition A.1 in345

the Appendix, with ψ(x) = (−2|yi+1|∞ ∨ x ∧ 2|yi+1|∞)2, B = |yi+1|∞,K = Lk, η =346

yi+1.347

Proposition 3.5. Define (c(3.7)(M), c(3.8)(M)) by considering (c(A.2)(M), c(A.3)(M))348

from Proposition A.1 with the values (α(3.3), β(3.3), γ(3.3)) instead of (α, β, γ). Then349

we have350

E

[
1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(Xi,k,m

i+1 )

]
≤ 2E

[
|y(M)
i+1 (Xi,νk

i+1 )− yi+1(Xi,νk
i+1 )|2

]
351

+ 4c(3.7)(M)
|yi+1|2∞
M

,(3.7)352

E
[
|y(M)
i − yi|2νk

]
≤ 2E

[
|y(M)
i − yi|2i,k,M

]
+ 4c(3.8)(M)

|yi|2∞
M

.(3.8)353
354

Multiply both sides of Equation (3.7) by ν(Hk), sum over k, and use the norm-stability355

property (Assumption 3.2): it readily follows that356

K∑
k=1

ν(Hk)E

[
1

M

M∑
m=1

(y
(M)
i+1 − yi+1)2(Xi,k,m

i+1 )

]
357

≤ 2E
[
|y(M)
i+1 (Xi,ν

i+1)− yi+1(Xi,ν
i+1)|2

]
+ 4c(3.7)(M)

|yi+1|2∞
M

358

≤ 2C(3.1)E
[
|y(M)
i+1 − yi+1|2ν

]
+ 4c(3.7)(M)

|yi+1|2∞
M

.359
360

Similarly, we can get from Equation (3.8) that361

E
[
|y(M)
i − yi|2ν

]
≤ 2

K∑
k=1

ν(Hk)E
[
|y(M)
i − yi|2i,k,M

]
+ 4c(3.8)(M)

|yi|2∞
M

.362

363
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Finally, by combining the above estimates with (3.6), we get364

E
[
|y(M)
i − yi|2ν

]
≤4c(3.8)(M)

|yi|2∞
M

+ 2

K∑
k=1

ν(Hk)Ti,k + 2(1 +
1

ε
)
dim(L)

M
(Cgi + Lgi |yi+1|∞)2

365

+ 2(1 + ε)L2
gi

(
2C(3.1)E

[
|y(M)
i+1 − yi+1|2ν

]
+ 4c(3.7)(M)

|yi+1|2∞
M

)
.366

367

This links E
[
|y(M)
i − yi|2ν

]
with E

[
|y(M)
i+1 − yi+1|2ν

]
as announced.368

4. Convergence analysis for the solution of BSDEs with the MDP rep-
resentation. Let us consider the semi-linear final value problem for a parabolic PDE
of the form{

∂tu(t, x) + 1
2∆u(t, x) + f(t, u(t, x), x) = 0, t < 1, x ∈ Rd,

u(1, x) = g(x).

This is a simple form of the Hamilton-Jacobi-Bellman equation of stochastic control
problems [13]. Under fairly mild assumptions (see [16] for instance), the solution
to the above PDE is related to a Backward Stochastic Differential Equation (Y,Z)
driven by a d-dimensional Brownian motion W . Namely,

Yt = g(W1) +

∫ 1

t

f(s,Ys,Ws)ds−
∫ 1

t

ZsdWs

and Yt = u(t,Wt), Zt = ∇u(t,Wt). Needless to say, the Laplacian ∆ and the process
W could be replaced by a more general second order operator and its related diffusion
process, and that f could depend on the gradient Z as well. We stick to the above
setting which is consistent with this work. Taking conditional expectation reduces to

Yt = E
[
g(W1) +

∫ 1

t

f(s,Ys,Ws)ds |Wt

]
.

There are several time discretization schemes of Y (explicit or implicit Euler369

schemes, high order schemes [6]) but here we follow the Multi-Step Forward Dynamic370

Programming (MDP for short) Equation of [9], which allows a better error propagation371

compared to the One-Step Dynamic Programming Equation:372

Yi = E

gN (XN ) +
1

N

N∑
j=i+1

fj(Yj , Xj , . . . , XN )|Xi

 = yi(Xi), 0 ≤ i < N.373

374

Here, we consider a more general path-dependency on fj , actually this does not affect
the error analysis. In comparison with Algorithm 1, we take

gi(yi+1:N , xi:N ) = gN (xN ) +
1

N

N∑
j=i+1

fj(yj , xj:N ).

In [2] similar discrete BSDEs appear but with an external noise. That corresponds to375

time-discretization of Backward Doubly SDEs, which in turn are related to stochastic376

semi-linear PDEs.377
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14 E. GOBET, G. LIU, AND J. P. ZUBELLI

4.1. Standing assumptions. We shall now describe the main assumptions that378

are needed in the methodology proposed in this paper.379

4.1.1. Assumptions on fi and gN .380

Assumption 4.1 (Functions fi and gN ). Each fi is Lipschitz w.r.t. yi, with Lip-381

schitz constant Lfi and Cfi = supxi:N |fi(0, xi:N )| < +∞. Moreover gN is bounded.382

The reader can easily check that yi is bounded.383

4.1.2. Assumptions on the distribution ν.384

Assumption 4.2 (norm-stability). There exists a constant C(4.1) ≥ 1 such that385

for any ϕ ∈ L2(ν) and any 0 ≤ i < j ≤ N , we have386

(4.1)

∫
Rd

E
[
ϕ2(Xi,x

j )
]
ν(dx) ≤ C(4.1)

∫
Rd
|ϕ(x)|2ν(dx).387

It is straightforward to extend Propositions 3.1 and 3.2 to fulfill the above assumption.388

4.2. Main result: error estimate. We express the error in terms of the best
local approximation error and the averaged one:

Ti,k := inf
ϕ∈Lk

|yi − ϕ|2νk , ν(Ti,.) :=

K∑
k=1

ν(Hk)Ti,k.

In this discrete time BSDE context, Theorem 3.4 becomes the following.389

Theorem 4.1. Assume Assumptions 2.2-2.3-3.3-4.2 and define y
(M)
i as in Algo-

rithm 1. Set

Ē(Y,M, i) := E
[
|y(M)
i − yi|2ν

]
=

K∑
k=1

ν(Hk)E
[
|y(M)
i − yi|2νk

]
.

Define390

δi = 4c(3.8)(M)
|yi|2∞
M

+ 2ν(Ti,.) + 16
1

N

N−1∑
j=i+1

L2
fjc(3.7)(M)

|yj |2∞
M

+391

+ 4
dim(L)

M

|yN |∞ +
1

N

N∑
j=i+1

(Cfj + Lfj |yj |∞)

2

.392

393

Then, letting Lf := supj Lfj , we have394

Ē(Y,M, i) ≤ δi + 8C(4.1)L
2
f exp

(
8C(4.1)L

2
f

) 1

N

N−1∑
j=i+1

δj .395

396

The above general error estimates become simpler when the parameters are uniform397

in i.398

Corollary 4.1. Under the assumptions of Theorem 4.1 and assuming that Cfi , Lfi399

and |yi|∞ are bounded uniformly in i and N , there exists a constant C(4.2) (indepen-400

dent of N and of approximation spaces Lk) such that401

Ē(Y,M, i) ≤ C(4.2)

c(3.8)(M) + c(3.7)(M) + dim(L)

M
+ ν(Ti,.) +

1

N

N−1∑
j=i+1

ν(Tj,.)

 .

(4.2)

402

403
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We observe that this upper bound is expressed in a quite convenient form to let404

N → +∞ and K → +∞. As a major difference with the usual Regression Monte405

Carlo schemes, the impact of the statistical error (through the parameter M) is not406

affected by the number K of strata.407

4.3. Proof of Theorem 4.1. We follow the arguments of the proof of Theo-408

rem 3.4 with the following notation:409

S(xi:N ) := gN (xN ) +
1

N

N∑
j=i+1

fj(yj(xj), xj:N ),410

S(M)(xi:N ) := gN (xN ) +
1

N

N∑
j=i+1

fj(y
(M)
j (xj), xj:N ),411

ψki := OLS(S,Lk, Xi,k,1:M
i:N ), ψ

(M),k
i := OLS(S(M),Lk, Xi,k,1:M

i:N ).412413

The beginning of the proof is similar and we obtain (here, there is no need to optimize414

ε and we take ε = 1)415

E
[
|y(M)
i − yi|2i,k,M

]
≤ E

[
|ψ(M),k
i − yi|2i,k,M

]
416

≤ Ti,k + 2E
[
|ψ(M),k
i − ψki |2i,k,M

]
+ 2E

[∣∣∣ψki − E
[
ψki (·)|Xi,k,1:M

i

]∣∣∣2
i,k,M

]
.417

418

The last term is a statistical error term, which can be controlled as follows:419

E
[∣∣∣ψki − E

[
ψki (·)|Xi,k,1:M

i

]∣∣∣2
i,k,M

]
≤ dim(L)

M

|yN |∞ +
1

N

N∑
j=i+1

(Cfj + Lfj |yj |∞)

2

420

421

where (. . . )2 is a rough bound of the conditional variance of S(Xi,k
i:N ).422

We handle the control of the term E
[
|ψ(M),k
i − ψki |2i,k,M

]
as in Theorem 3.4 but423

the results are different because the dynamic programming equation differs:424

E
[
|ψ(M),k
i − ψki |2i,k,M

]
≤ E

[
|S(M) − S|2i,k,M

]
425

≤ E

 1

M

M∑
m=1

 1

N

N−1∑
j=i+1

Lfj |y
(M)
j − yj |(Xi,k,m

j )

2
426

≤ E

 1

M

M∑
m=1

1

N

N−1∑
j=i+1

L2
fj |y

(M)
j − yj |2(Xi,k,m

j )

 .427

428

We multiply the above by ν(Hk), sum over k, apply the extended Proposition 3.5429

valid also for the problem at hand, and the Assumption 4.2. Then, it follows that430

K∑
k=1

ν(Hk)E
[
|ψ(M),k
i − ψki |2i,k,M

]
≤ 2

1

N

N−1∑
j=i+1

L2
fj

(
C(4.1)E

[
|y(M)
j − yj |2ν

]
+ 2c(3.7)(M)

|yj |2∞
M

)
.431

432

On the other hand, from Equation (3.8) we have433

E
[
|y(M)
i − yi|2ν

]
≤ 2

K∑
k=1

ν(Hk)E
[
|y(M)
i − yi|2i,k,M

]
+ 4c(3.8)(M)

|yi|2∞
M

.434
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435

Now collect the different estimates: it writes436

Ē(Y,M, i) := E
[
|y(M)
i − yi|2ν

]
≤ 4c(3.8)(M)

|yi|2∞
M

+ 2

K∑
k=1

ν(Hk)Ti,k437

+ 8
1

N

N−1∑
j=i+1

L2
fj

(
C(4.1)E

[
|y(M)
j − yj |2ν

]
+ 2c(3.7)(M)

|yj |2∞
M

)
+438

+ 4
dim(L)

M

|yN |∞ +
1

N

N∑
j=i+1

(Cfj + Lfj |yj |∞)

2

439

:= δi + 8C(4.1)

1

N

N−1∑
j=i+1

L2
fj Ē(Y,M, j).440

441

It takes the form of a discrete Gronwall lemma, which easily allows to derive the442

following upper bound (see [2, Appendix A.3]):443

Ē(Y,M, i) ≤ δi + 8C(4.1)

1

N

N−1∑
j=i+1

Γi,jL
2
fjδj ,444

where Γi,j :=

{∏
i<k<j(1 + 8C(4.1)

1
NL

2
fk

), for i+ 1 < j,

1, otherwise.
445

446

Using now Lf = supj Lfj , we get Γi,j ≤ exp
(∑

i<k<j 8C(4.1)
1
NL

2
fk

)
≤ exp(8C(4.1)L

2
f ).447

This completes the proof.448

5. Numerical tests. We shall now illustrate the methodology in two numerical449

examples coming from practical problems. The first one concerns a reaction-diffusion450

PDE connected to spatially distributed populations, whereas the second one deals451

with a stochastic control problem.452

5.1. An Application to Reaction-Diffusion Models in Spatially Dis-453

tributed Populations. In this section we consider a biologically motivated example454

to illustrate the strength of the stratified resampling regression methodology pre-455

sented in the previous sections. We selected an application to spatially distributed456

populations that evolve under reaction diffusion equations. Besides the theoretical457

challenges behind the models, it has recently attracted attention due to its impact458

in the spread of infectious diseases [14, 15] and even to the modeling of Wolbachia459

infected mosquitoes in the fight of disease spreading Aedes aegypti [3, 11].460

The use of reaction diffusion models to describe the population dynamics of a sin-461

gle species or genetic trait expanding into new territory dominated by another one goes462

back to the work of R. A. Fisher [7] and A. Kolmogorov et al. [12]. The mathematical463

model behind it is known as the (celebrated) Fisher-Kolmogorov-Petrovski-Piscounov464

(FKPP) equation.465

In a conveniently chosen scale it takes the form, in dimension 1,466

(5.1) ∂tu+ ∂2
xu+ au(1− u) = 0 , u(T, x) = h(x), x ∈ R, t ≤ T ,467

where u = u(t, x) refers to the proportion of members of an invading species in a468

spatially distributed population on a straight line. The equation is chosen with time469
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running backwards and as a final value problem to allow direct connection with the470

standard probabilistic interpretation.471

It is well known [1] that for any arbitrary positive C, if we define472

(5.2) h(x) :=
(

1 + C exp (±
√

6a

6
x)
)−2

473

then

u(t, x) =
(

1 + C exp (
5a

6
(t− T )±

√
6a

6
x)
)−2

is a traveling wave solution to Equation (5.1). The behavior of h(x) as x → ±∞ is474

either one or zero according to the sign chosen inside the exponential. Thus describing475

full dominance of the invading species or its absence.476

The probabilistic formulation goes as follows: Introduce the system, as in Sec-477

tion 4,478

dPs =
√

2dWs ,479

dYs = −f(Ys)ds+ ZsdWs, where f(x) = ax(1− x), and Zs =
√

2∂xu(s, Ps)480

YT = u(T, PT ) = h(PT ) .481

Then, the process Yt = E
[
YT +

∫ T
t
f(Ys)ds|Pt

]
satisfies Yt = u(t, Pt).482

To test the algorithms presented herein, we shall start with the following more483

general parabolic PDE484

(5.3) ∂tW +
∑

1≤i,j≤d

Aij∂yi∂yjW + aW (1−W ) = 0 , t ≤ T , and y ∈ Rd .485

Here, the matrix A is chosen as an arbitrary positive-definite constant d × d matrix.486

Furthermore, we choose, for convenience, the final condition487

(5.4) W (T, y) = h(y′Σ−1θ) ,488

where Σ = Σ′ =
√
A and θ is arbitrary unit vector. We stress that this special choice489

of the final condition has the sole purpose of bypassing the need of solving Equa-490

tion (5.4) by other numerical methods for comparison with the present methodology.491

Indeed, the fact that we are able to exhibit an explicit solution to Equation (5.3) with492

final condition (5.4) allows an easy checking of the accuracy of the method. We also493

stress that the method developed in this work does not require an explicit knowledge494

of the diffusion coefficient matrix A of Equation (5.3) since we shall make use of the495

observed paths. Yet the knowledge of the function W 7→ aW (1−W ) is crucial.496

It is easy to see that if u = u(t, x) satisfies Equation (5.1) with final condition497

given by Equation (5.2) then498

(5.5) W (t, y) := u(t, y′Σ−1θ)499

satisfies Equation (5.3) with final condition (5.4).500

An interpretation of the methodology proposed here is the following: If we were501

able to observe the trajectories performed by a small number of free individuals ac-502

cording to the diffusion process associated to Equation (5.3), even if we did not know503

the explicit form of the diffusion (i.e., we did not have a good calibration of the co-504

variance matrix) we could use such trajectories to produce a reliable solution to the505

final value problem (5.3) and (5.4).506
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18 E. GOBET, G. LIU, AND J. P. ZUBELLI

We firstly present some numerical results in dimension 1 (Tables 1-2-3). We have
tested both the one-step (Section 3) and multi-step schemes (Section 4). The final
time T is fixed to 1 and we use time discretization ti = i

N T, 0 ≤ i ≤ N with N = 10
or 20. We divide the real line R into K subintervals (Ii)1≤i≤K by fixing A = 25
and dividing [−A,A] into K − 2 equal length intervals and then adding (−∞,−A)
and (A,+∞). We implement our method by using piecewise constant estimation on
each interval. Then finally we get a piecewise constant estimation of u(0, y), noted as
û(0, y). Then we approximate the squared L2(ν) error of our estimation by∑

1≤k≤K

|u(0, yk)− û(0, yk)|2ν(Ik)

where yk is chosen as the middle point of the rectangle if Ik is finite and the boundary507

point if Ik is infinite. We take ν(dx) = 1
2e
−|x|dx and we use the restriction of ν on508

Ik to sample initial points. The squared L2(ν) norm of u(0, ·) is around 0.25. Finally509

remark that the error of our method includes three parts: time discretization error,510

approximation error due to the use of piecewise constant estimation on hypercubes511

and statistical error due to the randomness of trajectories. In the following tables, M512

is the number of trajectories that we use (i.e., the root sample).513

We observe in Tables 1 and 3 that the approximation error (visible for small K)514

contributes much more to the global error for the one-step scheme, compared to the515

multi-step one. This observation is in agreement with those of [5, 9].516

When N gets larger with fixed K and M (Tables 1 and 2), we may observe an517

increase of the global error for the one-step scheme, this is coherent with the estimates518

of Corollary 3.1.

K = 10 K = 20 K = 50 K = 100 K = 200 K = 400
M = 20 0.0993 0.0253 0.0038 0.0014 0.0014 0.0019
M = 40 0.0997 0.0252 0.0034 9.01e-04 5.16e-04 6.17e-04
M = 80 0.0993 0.0249 0.0029 6.15e-04 3.92e-04 3.91e-04
M = 160 0.0990 0.0248 0.0029 3.15e-04 1.57e-04 1.71e-04
M = 320 0.0990 0.0248 0.0028 2.47e-04 1.02e-04 1.19e-04
M = 640 0.0990 0.0246 0.0028 2.26e-04 5.46e-05 4.94e-05

Table 1
Average squared L2 errors with 50 macro runs, N = 10, one-step scheme.

K = 10 K = 20 K = 50 K = 100 K = 200 K = 400
M = 20 0.1031 0.0299 0.0073 0.0018 0.0011 0.0012
M = 40 0.1031 0.0294 0.0066 0.0014 7.86e-04 7.28e-04
M = 80 0.1027 0.0293 0.0065 0.0010 3.18e-04 3.86e-04
M = 160 0.1027 0.0294 0.0064 8.91e-04 2.46e-04 1.04e-04
M = 320 0.1026 0.0293 0.0064 8.39e-04 1.42e-04 7.03e-05
M = 640 0.1027 0.0292 0.0063 8.04e-04 8.16e-05 5.60e-05

Table 2
Average squared L2 errors with 50 macro runs, N = 20, one-step scheme.

519

Table 4 below describes numerical results in dimension 2. The final time T is
fixed to 1 and we use the time discretization ti = i

N T, 0 ≤ i ≤ N with N = 10. We
divide the real line R into K subintervals (Ii)1≤i≤K by fixing A = 25 and dividing
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K = 10 K = 20 K = 50 K = 100 K = 200 K = 400
M = 20 0.0484 0.0066 0.0017 0.0015 0.0011 0.0013
M = 40 0.0488 0.0058 8.45e-04 5.81e-04 6.35e-04 5.68e-04
M = 80 0.0478 0.0053 4.33e-04 2.96e-04 3.45e-04 4.06e-04
M = 160 0.0481 0.0051 2.98e-04 2.23e-04 1.71e-04 1.08e-04
M = 320 0.0479 0.0051 1.79e-04 6.48e-05 8.38e-05 1.04e-04
M = 640 0.0478 0.0050 1.50e-04 6.49e-05 6.66e-05 5.70e-05

Table 3
Average squared L2 errors with 50 macro runs, N = 10, multi-step scheme.

[−A,A] into K − 2 equal length intervals and then adding (−∞,−A) and (A,+∞) .

We take Σ = [1, β;β, 1] with β = 0.25 and θ = [1;1]√
2

. We implement our method by

using piecewise constant estimation on each finite (or infinite) rectangle Ii× Ij . Then

finally we get a piecewise constant estimation of W (0, y), noted as Ŵ (0, y). Then we
approximate the squared L2(ν ⊗ ν) error of our estimation by∑

1≤k1≤K,1≤k2≤K

|W (0, yk1 , yk2)− Ŵ (0, yk1 , yk2)|2ν ⊗ ν(Ik1 × Ik2)

where (yk1 , yk2) is chosen as the middle point of the rectangle if Ik1 × Ik2 is finite and520

the boundary point if one or both of Ik1 and Ik2 are infinite. We take ν(dx) = 1
2e
−|x|dx521

and we use the restriction of ν ⊗ ν on Ii × Ij to sample initial points. The squared522

L2(ν ⊗ ν) norm of W (0, ·, ·) is around 0.25.523

K = 10 K = 20 K = 50 K = 100 K = 200
M = 20 0.0592 0.0167 0.0027 0.0018 0.0010
M = 40 0.0588 0.0163 0.0022 5.34e-04 5.00e-04
M = 80 0.0588 0.0160 0.0019 3.74e-04 2.98e-04
M = 160 0.0586 0.0160 0.0018 3.08e-04 9.16e-05
M = 320 0.0586 0.0159 0.0017 1.1e-04 9.24e-05

Table 4
Average squared L2 errors with 50 macro runs, N = 10, one-step scheme.

As for the previous case in dimension 1, we observe that when K is small, it524

is useless to increase M . This is because in such case the approximation error is525

dominant. But when K is large enough, the performance of our method improves526

when M becomes larger, since this time it is the statistical error which becomes527

dominant and larger M means smaller statistical error.528

In the perspective of a given root sample (M fixed), it is recommended to take K529

large: indeed, in agreement with Theorems 3.4 and 4.1, we observe from the numerical530

results that the global error decreases up to the statistical error term (depending on531

M but not K). In this way, for M = 20 (resp. M = 40) the relative squared L2 error532

is about 0.4% (resp. 0.22%).533

5.2. Travel agency problem: when to offer travels, according to cur-534

rency and weather forecast.... In this section we illustrate the stratified resampler535

methodology in the solution of an optimal investment problem. The underlying model536

will have two sources of stochasticity, one related to the weather and the other one537

to the exchange rate. The corresponding stochastic processes shall be denoted by X1
t538

and X2
t .539
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Fig. 2. Pictorial description of the cost function c (left) and of the campaign effectiveness q
(right).

We envision the following situation: A travel agency wants to launch a campaign540

for the promotion of vacations in a warm region abroad during the Fall-Winter season.541

Such travel agency would receive a fixed value c in local currency from the customers542

and on the other hand would have to pay the costs c = c(exp(X2
τ+1/12)) in a future543

time τ + 1/12, where τ is the launching time of the campaign and X2
τ+1/12 is the544

prevailing logarithm of exchange rate one month after the launching, with the time545

unit set to be one year. The initial time t = 0 is by convention October 1st. In other546

words, the costs are fixed to the traveler and variable for the agency. A pictorial547

description of the cost function is presented in Figure 2.548

The effectiveness of the campaign will depend on the local temperature (t −549

0.25)2×240+X1
t (in Celsius) and will be denoted by q((t−0.25)2×240+X1

t ) exp(−|t−550

1/6|), where (t − 0.25)2 × 240 represents the seasonal component and X1
t represents551

the random part. Its purpose is to capture the idea that if the local temperature552

is very low, then people would be more interested in spending some days in a warm553

region, whereas if the weather is mild then people would just stay at home. A pictorial554

description of the function q is presented in Figure 2. The second part of this function555

exp(−|t−1/6|) is created to represent the fact that there are likely more registrations556

at beginning of December for the period of new year holidays.557

Thus, our problem consists of finding the function v defined by558

v(X1
0 , X

2
0 ) = ess sup

τ∈T
E
[
q((τ − 0.25)2 × 240 +X1

τ )e−|τ−1/6|
(
c− c(eX

2
τ+1/12)

)
| X1

0 , X
2
0

]
559

= ess sup
τ∈T

E
[
q((τ − 0.25)2 × 240 +X1

τ )e−|τ−1/6|
(
c− E

[
c(eX

2
τ+1/12) | X2

τ

])
| X1

0 , X
2
0

]
,560

561

where T denotes the set of stopping times valued in the weeks of the Fall-Winter562

seasons { k48 , k = 0, 1, · · · , 24}, which corresponds to possible weekly choices for the563

travel agency to launch the campaign. The above function v models the optimal564

expected benefit for the travel agency and the optimal τ gives the best launching565

time. We shall assume, for simplicity, that the processes X1 and X2 are uncorrelated566

since we do not expect much influence of the weather on the exchange rate or vice-567

versa.568

The problem is tackled by formulating it as a dynamic programming one related569

to optimal stopping problems (as exposed in Section 3) using a mean-reversion process570

for the underlying process X1 and a drifted Brownian motion for X2. Their dynamics571

are given as follows:572

dX1
t = −aX1

t dt+ σ1dWt, X
1
0 = 0, X2

t = −σ
2
2

2
t+ σ2Bt.573

574
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K = 10 K = 20 K = 50 K = 100
M = 20 0.1827 0.0512 0.0349 0.0269
M = 40 0.1982 0.0361 0.0249 0.0114
M = 80 0.2063 0.0325 0.0051 0.0047
M = 160 0.1928 0.0264 0.0058 0.0067

Table 5
Average squared L2 errors with 20 macro runs. Simple regression.

K = 10 K = 20 K = 50 K = 100
M = 20 0.1711 0.0458 0.0436 0.0252
M = 40 0.1648 0.0361 0.0130 0.0169
M = 80 0.1534 0.0273 0.0109 0.0085
M = 160 0.1510 0.0296 0.0048 0.0058

Table 6
Average squared L2 errors with 20 macro runs. Nested regression.

The cost function c is chosen piecewise linear so that we can get E(c(eX
2
τ+1/12)|X2

τ )575

explicitly as a function of X2
τ using the Black-Scholes formula in mathematical fi-576

nance. Thus we can run our method in two different ways: either using this explicit577

expression and apply directly the regression scheme of Section 3; or first estimating578

E(c(eX
2
τ+1/12)|X2

τ ) by stratified regression then plugging the estimate in our method579

again to get a final estimation. We refer to these two different ways as simple regres-580

sion and nested regression. The latter case corresponds to a coupled two-component581

regression problem (that could be mathematically analyzed very similarly to Sec-582

tion 3).583

The parameter’s values are given as: a = 2, σ1 = 10, σ2 = 0.2, c = 3, x2
min =584

e−0.5, x2
max = e0.5, cmin = 1, cmax = cmin + x2

max − x2
min, tmin = 0, tmax = 15, qmin =585

1, qmax = 4. We use the restriction of µ(dx) = k
2 (1+ |x|)−k−1dx with k = 6 to sample586

point for X1 and the restriction of ν(dx) = 1
2e
−|x|dx to sample points for X2. Note587

that k = 6 means that, in the error estimation, more weight is distributed to the588

region around X1
0 = 0, which is the real interesting information for the travel agency.589

We will firstly run our method with M = 320 and K = 300 to get a reference value590

for v then our estimators will be compared to this reference value in a similar way as591

in the previous example. The squared L2(µ⊗ ν) norm of our reference estimation is592

32.0844. The results are displayed in the Tables 5 and 6.593

As in Subsection 5.1 and in agreement with Theorem 3.4, we observe an improved594

accuracy as K and M increases, independently of each other. The relative error is595

rather small even for small M .596

Interestingly, the nested regression algorithm (which is the most realistic scheme597

to use in practice when the model is unknown) is as accurate as the scheme using the598

explicit form of the internal conditional expectation E
[
c(eX

2
τ+1/12) | X2

τ

]
. Surpris-599

ingly, the simple regression scheme takes much more time than the nested regression600

one because of the numerous evaluations of the Gaussian CDF in the Black-Scholes601

formula.602

Appendix A. Appendix.603

A.1. Proof of Proposition 3.3. Consider first the case of the partitioning
estimate (LP0) and let ε ∈ (0, 4

15B]. We use an ε-cover in the L∞-norm, which
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simply reduces to cover [−B,B] with intervals of size 2ε. A solution is to take the
interval center defined by hj = −B + ε + 2εj, 0 ≤ j ≤ n, where n is the smallest
integer such that hn ≥ B (i.e., n = dBε −

1
2e). Thus, we obtain

N1(ε, TBLk, x1:M ) ≤ n+ 1 ≤ B

ε
+

3

2
≤ 7

5

B

ε

where we use the constraint on ε.604

In the case of general vector space of dimension K, from [10, Lemma 9.2, Theorem
9.4 and Theorem 9.5], we obtain

N1(ε, TBK, x1:M ) ≤ 3
(4eB

ε
log
(6eB

ε

))K+1

whenever ε < B/2. For ε as in the statement of Assumption 3.3, we have 6eB
ε ≥

45e
2 .

Let η > 0, since log(x) ≤ cηxη for any x ≥ 45e
2 with cη = supx≥ 45e

2

log(x)
xη , we get

N1(ε, TBK, x1:M ) ≤ 3

(
[4cη6η]1/(1+η) eB

ε

)(K+1)(1+η)

.

For LP1 and LPn, we have respectively K = d + 1 and K = (d + 1)n, therefore the605

announced result. Whenever useful, the choice η = 1 gives β(3.3) ≤ 3.5.606

For the partitioning estimate (case LP0), we could also use this estimate with607

K = 1 but with the first arguments, we get better parameters (especially for γ).608

A.2. Probability of uniform deviation.609

Lemma A.1 ([9, Lemma B.2]). Let G be a countable set of functions g : Rd 7→610

[0, B] with B > 0. Let X ,X (1), . . . ,X (M) (M ≥ 1) be i.i.d. Rd valued random611

variables. For any α > 0 and ε ∈ (0, 1) one has612

P

(
sup
g∈G

1
M

∑M
m=1 g(X (m))− E [g(X )]

α+ 1
M

∑M
m=1 g(X (m)) + E [g(X )]

> ε

)
613

≤ 4E
[
N1

(αε
5
,G,X 1:M

)]
exp

(
− 3ε2αM

40B

)
,614

P

(
sup
g∈G

E [g(X )]− 1
M

∑M
m=1 g(X (m))

α+ 1
M

∑M
m=1 g(X (m)) + E [g(X )]

> ε

)
615

≤ 4E
[
N1

(αε
8
,G,X 1:M

)]
exp

(
− 6ε2αM

169B

)
.616

617

A.3. Expected uniform deviation.618

Proposition A.1. For finite B > 0, let G := {ψ
(
TBφ(·)−η(·)

)
: φ ∈ K}, where619

ψ : R → [0,∞) is Lipschitz continuous with ψ(0) = 0 and Lipschitz constant Lψ,620

η : Rd → [−B,B], and K is a finite K-dimensional vector space of functions with621

(A.1) N1(ε, TBK,X 1:M ) ≤ α
(βB
ε

)γ
for ε ∈ (0,

4

15
B]622

for some positive constants α, β, γ with α ≥ 1/4 and γ ≥ 1. Then, for X (1), . . . ,X (M)623

i.i.d. copies of X , we have624

E

[
sup
g∈G

( 1

M

M∑
m=1

g(X (m))− 2

∫
Rd
g(x)P ◦ X−1(dx)

)
+

]
≤ c(A.2)(M)

BLΨ

M
625
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with c(A.2)(M) := 120

(
1 + log(4α) + γ log

(
(1 +

β

16
)M

))
,

(A.2)

626

E

[
sup
g∈G

(∫
Rd
g(x)P ◦ X−1(dx)− 2

M

M∑
m=1

g(X (m))
)

+

]
≤ c(A.3)(M)

BLΨ

M
627

with c(A.3)(M) :=
507

2

(
1 + log(4α) + γ log

(
(1 +

8β

169
)M

))
.

(A.3)

628
629

Proof. The idea is to adapt the arguments of [9, Proposition 4.9].630

B We first show (A.2). Set Z := supg∈G

(
1
M

∑M
m=1 g(X (m)) − 2

∫
Rd g(x)P ◦631

X−1(dx)
)

+
. Let us find an upper bound for P (Z > ε) in order to bound E [Z] =632 ∫∞

0
P (Z > ε) dε. Using the equality633

P (Z > ε) = P

(
∃g ∈ G :

1
M

∑M
m=1 g(X (m))−

∫
Rd g(x)P ◦ X−1(dx)

2ε+
∫
Rd g(x)P ◦ X−1(dx) + 1

M

∑M
m=1 g(X (m))

>
1

3

)
,634

and that the elements of G take values in [0, 2BLψ], it follows from Lemma A.1 that635

P (Z > ε) ≤ 4E
[
N1(

2ε

15
,G,X 1:M )

]
exp

(
− εM

120BLψ

)
.636

Define TBK as in Proposition A.1. Since |ψ
(
φ1(x) − η(x)

)
− ψ

(
φ2(x) − η(x)

)
| ≤637

Lψ|φ1(x)− φ2(x)| for all x ∈ Rd and all (φ1, φ2), it follows that638

N1(
2ε

15
,G,X 1:M ) ≤ N1(

2ε

15Lψ
, TBK,X 1:M ).639

Due to Equation (A.1), we deduce that640

(A.4) P (Z > ε) ≤ 4α
(15βBLψ

2ε

)γ
exp

(
− εM

120BLψ

)
641

whenever 2ε
15Lψ

≤ 4
15B, i.e., ε ≤ 2BLΨ. On the other hand, P (Z > ε) = 0 for all642

ε > 2BLΨ. Setting a =
15βBLψ

2 , b = 1
120BLψ

, it follows from (A.4) that643

P (Z > ε) ≤ 4α
(a
ε

)γ
exp(−bMε), ∀ ε > 0.644

Fix ε0 to be some finite value (to be determined later) such that645

(A.5) ε0 ≥
a

M(1 + ab)
.646

It readily follows that647

E [Z] =

∫ ∞
0

P (Z > ε) dε ≤ ε0 +

∫ ∞
ε0

4α
(a
ε

)γ
exp(−bMε)dε648

≤ ε0 +
4α

bM

(
M(1 + ab)

)γ
exp(−bMε0).649

650
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We choose ε0 = 1
bM log

(
4α
(
(1 + ab)M

)γ)
: It satisfies (A.5) since651

1

bM
log
(

4α
(
(1 + ab)M

)γ) ≥ a

M

log(1 + ab)

ab
≥ a

M

1

1 + ab
652
653

(use α ≥ 1/4, γ ≥ 1, M ≥ 1 and log(1 + x) ≥ x/(1 + x) for all x ≥ 0). Moreover, this654

choice of ε0 implies that655

E[Z] ≤ 1

bM

(
1 + log(4α) + γ log

(
(1 + ab)M

))
(A.6)656

=
120BLψ
M

(
1 + log(4α) + γ log

(
(1 +

β

16
)M

))
.657

658

The inequality (A.2) is proved.659

B We now justify (A.3) by similar arguments. Set Z := supg∈G

( ∫
Rd g(x)P ◦660

X−1(dx)− 2
M

∑M
m=1 g(X (m))

)
+

. From Lemma A.1, we get661

P (Z > ε) ≤ 4E
[
N1(

ε

12
,G,X 1:M )

]
exp

(
− 2εM

507BLψ

)
.662

Since N1( ε12 ,G,X
1:M ) ≤ N1( ε

12Lψ
, TBK,X 1:M ) and thanks to (A.1), we derive663

(A.7) P (Z > ε) ≤ 4α
(12βBLψ

ε

)γ
exp

(
− 2εM

507BLψ

)
664

whenever ε
12Lψ

≤ 4
15B. For other values of ε the above probability is zero, therefore665

(A.7) holds for any ε > 0. The end of the computations is now very similar to the666

previous case: we finally get the inequality (A.6) for the new Z with adjusted values667

a = 12βBLψ, b = 2
507BLψ

. Thus inequality (A.3) is thus proved.668
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