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Abstract: Recent investigations on the longitudinal and lateral control of wheeled autonomous
vehicles are reported. Flatness-based techniques are first introduced via a simplified model. It
depends on some physical parameters, like cornering stiffness coefficients of the tires, friction
coefficient of the road, . . . , which are notoriously difficult to identify. Then a model-free control
strategy, which exploits the flat outputs, is proposed. Those outputs also depend on physical
parameters which are poorly known, i.e., the vehicle mass and inertia and the position of the
center of gravity. A totally model-free control law is therefore adopted. It employs natural output
variables, namely the longitudinal velocity and the lateral deviation of the vehicle. This last
method, which is easily understandable and implementable, ensures a robust trajectory tracking
problem in both longitudinal and lateral dynamics. Several convincing computer simulations are
displayed.

Keywords: Autonomous vehicles, wheeled vehicles, longitudinal control, lateral control,
flatness-based control, model-free control, intelligent controllers, algebraic estimation.

1. INTRODUCTION

The lateral and longitudinal control of wheeled au-
tonomous vehicles is an important topic which has already
attracted many promising studies (see, e.g., Ackermann
et al. [1995], d’Andréa-Novel et al. [2001], Antonov et al.
[2008], Attia et al. [2014], Choi et al. [2009], Cerone et al.
[2009], Chou et al. [2005], Fuchshumer et al. [2005], Marino
et al. [2005], Martinez et al. [2007], Menhour et al. [2011],
Nouvelière [2002], Poussot-Vassal et al. [2011], Rajamani
et al. [2000], Villagra et al. [2009, 2011, 2012], Zheng
et al. [2006], . . . ), where various advanced theoretical tools
are utilized. This short communication does not permit
unfortunately to summarize them. Let us nevertheless
notice that most of them are model-based. The aim of
this presentation is to explain and justify the evolution of
our viewpoint which started with a flatness-based setting
(Menhour et al. [2011]), i.e., a model-based approach. It is
now adopting a fully model-free standpoint (see Menhour
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et al. [2013] and Menhour et al. [2015]). As a matter of
fact severe difficulties are encountered to

• write a mathematical model which takes into account
all the numerous complex phenomena,

• calibrate the existing model in various changing situ-
ations like cornering stiffness coefficients of the tires,
and friction coefficient of the road.

Our paper is organized as follows. Section 2 presents a
nonlinear longitudinal and lateral flatness-based control.
In Section 3 the two different model-free control strategies
are developed. Simulation results with noisy data and
suitable reference trajectories acquired on a track race, are
displayed in Section 4. Let us emphasize that the second
model-free control is quite robust. Concluding remarks
may be found in Section 5.



2. LONGITUDINAL AND LATERAL
FLATNESS-BASED CONTROL

2.1 3DoF NonLinear Two Wheels Vehicle Model

The 3DoF-NLTWVM in Figure 1, which is used to design
the combined control law, provides an interesting approx-
imation of the longitudinal and lateral dynamics of the
vehicle in normal driving situations. See Table 1 for the
notations.

Table 1.

Symbol Variable name

Vx longitudinal speed [km.h]
Vy lateral speed [km.h]
ax longitudinal acceleration [m/s2]
ay lateral acceleration [m/s2]

ψ̇ yaw rate [rad/s]
ψ yaw angle [rad]
β sideslip angle [rad]
αf, r front and rear tire slip angles [rad]
ωi wheel angular speed of the wheel i [rad/s]
Tω wheel torque [Nm]
δ wheel steer angle [deg]
Cf , Cr front and rear cornering stiffnesses [N.rad−1]
Fxi longitudinal forces in vehicle coordinate [N ]
Fyi lateral forces in vehicle coordinate [N ]
Fxf front longitudinal forces in tire coordinate [N ]
Fyf front lateral forces in tire coordinate [N ]
R tire radius [m]
g acceleration due to gravity [m/s2]
Lf distances from the CoG to the front axles [m]
Lr distances from the CoG to the rear axles [m]
Iz yaw moment of inertia [kgm2]
Ir wheel moment of inertia [kgm2]
m vehicle mass [kgm2]
Mz yaw moment [Nm]


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Fig. 1. Nonlinear two wheels vehicle control model

The corresponding dynamical equations read:{
max = m(V̇x − ψ̇Vy) = (Fx1 + Fx2)

may = m(V̇y + ψ̇Vx) = (Fy1 + Fy2)

Izψ̈ = Mz1 +Mz2

If a linear tire model with small slip angles is assumed
(see Menhour et al. [2011] for more details), Cr (resp. Cf )
denoting the cornering stiffness coefficient of the rear (resp.
front) wheel, and ωr (resp. ωf ) being the angular velocity
of the rear (resp. front) wheel, the previous system can be
rewritten:

ẋ = f(x, t) + g(x, t)u (1)

with

f(x, t) =


ψ̇Vy −

Ir

mR
(ω̇r + ω̇f )

−ψ̇Vx +
1

m

(
−Cf

(
Vy + Lf ψ̇

Vx

)
− Cr

(
Vy − Lrψ̇

Vx

))
1

Iz

(
−LfCf

(
Vy + Lf ψ̇

Vx

)
+ LrCr

(
Vy − Lrψ̇

Vx

))


g(x, t) =


1

mR

Cf
m

(
Vy + Lf ψ̇

Vx

)
0 (CfR− Irω̇f )/mR

0 (LfCfR− LfIrω̇f )/IzR

 , x =

 VxVy
ψ̇


u = [ u1 = Tω, u2 = δ ]

T
.

2.2 Flatness property

The system ẋ = f(x, u), where x = (x, · · · , xn) ∈ Rn and
u = (u, · · · , um) ∈ Rm, is said to be differentially flat (see
Fliess et al. [1995, 1999], and Åström et al. [2008], Lévine
[2009], Sira-Ramı́rez et al. [2004]) if, and only if,

• there exists a vector-valued function h such that

y = h(x, u, u̇, · · · , u(r)) (2)

where y = (y, · · · , ym) ∈ Rm, r ∈ N;
• the components of x = (x, · · · , xn) and u =

(u, · · · , um) may be expressed as

x = A(y, ẏ, · · · , y(rx)), rx ∈ N (3)

u = B(y, ẏ, · · · , y(ru)), ru ∈ N (4)

Remember that y in Equation (2) is called a flat output.

2.3 Flatness-based longitudinal and lateral control

Problem 1. Introduce the outputs:{
y1 = Vx

y2 = LfmVy − Izψ̇
(5)

We want to show that the longitudinal speed y1 and the
angular momentum y2 of a point on the axis between the
centers of the front and rear axles are flat outputs.

Proof 1. Some algebraic manipulations (see Menhour et al.
[2011] for more details) yield:

x =
[
Vx Vy ψ̇

]T
= A(y1, y2, ẏ2) =
y1

y2

Lfm
−

Iz

Lfm

(
Lfmy1ẏ2 + Cr(Lf + Lr)y2

Cr(Lf + Lr)(Iz − LrLfm) + (Lfmy1)2

)
−
(

Lfmy1ẏ2 + Cr(Lf + Lr)y2

Cr(Lf + Lr)(Iz − LrLfm) + (Lfmy1)2

)

(6)

and [
ẏ1

ÿ2

]
= ∆(y1, y2, ẏ2)

(
u1

u2

)
+ Φ(y1, y2, ẏ2) (7)

The flatness property holds if the matrix ∆(y1, y2, ẏ2) is
invertible:

det(∆(y1, y2, ẏ2)) = ∆11∆22 −∆21∆12 =

(Iωω̇f − CfR)
(
L2

fy
2
1m

2 − Cr(Lf + Lr)LrLfm+ CrIzL
)

IzR2y1m2
6= 0

(8)

This determinant, which only depends on the longitudinal
speed y1 = Vx, is indeed nonzero:



• Acceleration of the wheel rotation is less than
RCf/Iω ≈ 104. Thus

Iωω̇f − CfR 6= 0 (9)

• From Iz > Lfm, we deduce that

Cr(Lr + Lf )(Iz − Lfm) + L2
fm

2y2
1 6= 0 (10)

Thus

u =

[
Tω
δ

]
= B(y1, ẏ1, y2, ẏ2, ÿ2) =

∆−1(y1, y2, ẏ2)

([
ẏ1

ÿ2

]
− Φ(y1, y2, ẏ2)

) (11)

with rx = 1 and ru = 2.

A tracking feedback control In order to track the desired

output trajectories yref1 and yref2 , set

[
ẏ1

ÿ2

]
=

 ẏref1 +K1
1ey1 +K2

1

∫
ey1dt

ÿref2 +K1
2 ėy2 +K2

2ey2 +K3
2

∫
ey2dt

 (12)

where, ey1 = yref1 − y1 = V refx − Vx and ey2 = yref2 −
y2. Choosing the gains K1

1 , K2
1 , K1

2 , K2
2 and K3

2 is
straightforward.

2.4 Algebraic nonlinear estimation

The control law contains derivatives of measured signals,
which are of course noisy. This estimation is performed
using the recent advances in Fliess et al. [2008], Mboup
et al. [2005], Sira-Ramı́rez et al. [2014]. It yields the
following formulae (Garćıa Collado et al. [2009]), and,
therefore, simple linear digital filters:

• Denoising:

ŷ(t) =
2!

T 2

∫ t

t−T
(3(t− τ)− T )y(τ)dτ (13)

• Numerical differentiation of a noisy signal:

ˆ̇y(t) = − 3!

T 3

∫ t

t−T
(2T (t− τ)− T )y(τ)dτ (14)

The sliding time window [t− T, t] may be quite short.

3. MODEL-FREE DESIGN FOR VEHICLE CONTROL

3.1 Model-free design: motivation

Realistic vehicle models are usually unsuitable for an im-
plementable control design. The above nonlinear flat con-
troller provides good results with known nominal values of
the cornering stiffnesses Cf and Cr. Uncertainties on Cf
and Cr yield unsatisfactory closed-loop performances: see
Figure 2. It is well known that Cf and Cr are very sensitive
to high dynamic loads. Figure 3 displays different dynam-
ics of the front and rear cornering stiffness coefficients Cf
and Cr during an experimental braking maneuver.

0 200 400 600 800 1000 1200 1400 1600 1800
−20

−10

0

10
Longitudinal displacement error

[m
]

0 200 400 600 800 1000 1200 1400 1600 1800
−10

0

10

20
Lateral deviation error

[m
]

0 200 400 600 800 1000 1200 1400 1600 1800
−5

0

5

10

Distance [m]

Yaw rate error

[d
eg

]

 

 

Flat control

Fig. 2. Simulation test with 0.3Cf and 0.3Cr: trajectory
tracking with nonlinear flatness-based vehicle control
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Fig. 3. Experimental lateral force characteristic and vari-
ations of cornering stiffness coefficients (Cf and Cr)

3.2 A short review on model-free control 1

Model-free control (Fliess et al. [2013]) was already suc-
cessfully used in many concrete case-studies (see, e.g.,
Fliess et al. [2013], and Bara et al. [2016], Lafont et al.
[2015]; the references therein provide numerous other ex-
amples). Let us insist here on the already existing applica-
tions to vehicles: Choi et al. [2009], Formentin et al. [2013],
Menhour et al. [2015], Villagra et al. [2009, 2012].

The ultra-local model Replace the unknown SISO system
by the ultra-local model :

y(ν) = F + αu (15)

where

• ν ≥ 1 is the derivation order,
• α ∈ R is chosen such that αu and y(ν) are of the same

order of magnitude,
• ν and α are chosen by the practitioner.

Remark 1. In all the existing concrete examples ν =
1 or 2. Magnetic bearings (de Miras et al. [2013]) with
their low friction provide the only instance where ν = 2
(see Fliess et al. [2013] for an explanation).

Some comments on F are in order:
1 See Fliess et al. [2013] for more details and further explanations.
See Join et al. [2013] for a cheap hardware implementation. Both
references show the online character of this setting, This fact has
been confirmed by many concrete case-studies.



• F is estimated via the measurements of the input u
and the output y,
• F does not distinguish between model mismatches

and perturbations.

Intelligent controllers Set ν = 2 in Equation (15):

ÿ = F + αu (16)

The corresponding iPID, i.e, intelligent Proportional-
Integral -Derivative controller, reads

u = −
(
F − ÿd +KP e+KI

∫
edt+KD ė

)
α

(17)

where

• yd is the reference trajectory,
• e = y − yd is the tracking error and yd is a desired

signal,
• KP , KI , KD ∈ R are the usual gains.

Combining Equations (16) and (17) yields

ë+KP e+KI

∫
edt+KD ė = 0

where F does not appear anymore. Gain tuning becomes
therefore quite straightforward. This is a major bene-
fit when compared to “classic” PIDs (see, e.g., Åström
et al. [2006, 2008]). If KI = 0 we obtain the intelligent
Proportional-Derivative controller, or iPD,

u = −
(
F − ÿd +KP edt+KD ė

)
α

(18)

Set ν = 1 in Equation (15):

ẏ = F + αu (19)

The corresponding intelligent Proportional-Integral con-
troller, or iPI, reads:

u = −
(
F − ẏd +KP e+KI

∫
edt
)

α
(20)

If KI = 0 in Equation (20), we obtain the intelligent
proportional controller, or iP, which, until now, turns out
to be the most useful intelligent controller:

u = −F − ẏ
∗ +KP e

α
(21)

Algebraic estimation of F F in Equation (15) is as-
sumed to be “well” approximated by a piecewise constant
function Fest. According to the algebraic parameter iden-
tification due to Fliess et al. [2003, 2008] (see also Sira-
Ramı́rez et al. [2014]), rewrite, if ν = 1, Equation (19) in
the operational domain (see, e.g., Yosida [1984])

sY =
Φ

s
+ αU + y(0)

where Φ is a constant such that Φ
s is the operational

transform of F which is supposed to be constant on the
sliding window. We get rid of the initial condition y(0) by
multiplying both sides on the left by d

ds :

Y + s
dY

ds
= − Φ

s2
+ α

dU

ds
Noise attenuation is achieved by multiplying both sides on
the left by s−2. It yields in the time domain the real time
estimation

Fest(t) = − 6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ

(22)

where τ > 0 may be quite small. This integral may of
course be replaced in practice by a classic digital filter.
The extension to ν = 2 is given by the following estimator:

Fest(t) =

−
60

τ5

∫ t

t−τ
(τ2 + 6σ2 − 6τσ)y2(σ)dσ

−30α

τ5

∫ t

t−τ
(τ − σ)2σ2u2(σ)dσ

 (23)

3.3 Model-free vehicle control and flat outputs

The only parameters supposed to be known are those used
to compute y2 in Equation (5): the vehicle mass, the yaw
moment of inertia and the position of the center of gravity.
The control variables are:

• the braking and traction wheel torques to control
longitudinal motion,

• the steering angle to control lateral and yaw motions.

The control variables u1 = Tω and u2 = δ are respectively
the braking and traction wheel torques, and the steering
angle. From (11), the following two ultra-local models of
longitudinal and lateral motions are derived:

longitudinal ultra-local model: ẏ1 = F1 + α1u1

lateral ultra-local model: ẏ2 = F2 + α2u2

u1 and u2 represent respectively the wheel torque control
of longitudinal motion y1 and the steering angle control
of lateral and yaw motions y2. The tracking is achieved
by two decoupled multivariable iPIs. Set, according to
Equation (20), for the longitudinal iPI controller u1 =
1
α1

(
F1 + ẏd1 −K

y1
P ey1 −K

y1
I

∫
ey1dt

)
, and for the lateral

iPI controller u2 = 1
α2

(
F2 + ẏd2 −K

y2
P ey2 −K

y2
I

∫
ey2dt

)
,

where ey1 = yd1 − y1 = V dx − Vx and ey2 = yd2 − y2. The
choice of the parameters α1, α2, Ky1

P , Ky1
I , Ky2

P and Ky2
I is

straightforward. Equations (22) and (23) yield respectively
the estimation of F1 and F2.

3.4 Model-free vehicle control and natural outputs

In order to be totally parameter-independent, consider the
following natural outputs, which can be obtained through
direct measurements:{

y1 = longitudinal speed
y2 = lateral deviation

The first output remains the measured (or well estimated)
longitudinal velocity, and the second one is now given by
the lateral deviation which is also supposed to be accessible
from on line measurements. The two control variables are
the same as in Section 3.3. Newton’s second law then yields
the two ultra-local models:

longitudinal motion: ẏ1 = F1 + α1u1 (24)

lateral motion: ÿ2 = F2 + α2u2 (25)

Note the following properties:

• Equations (24)-(25) are “decoupled,”
• Equation (25) is of order 2 with respect to the

derivative of y2. This is the second example of such a
property (see Section 3.2.1).

Considering the motion in Equation (24) (resp. (25)), the
loop is closed by an iP (21) (resp. iPD (18)).



4. SIMULATION RESULTS

The simulations are carried out under MATLAB using a
nonlinear 10Dof model of an instrumented Peugeot 406 car
as in Menhour et al. [2013]. The reference signals shown by
grey curves in Figures 4, 5 and 6 are experimental recorded
data. Figures 4, 5 and 6 demonstrate that our new model-
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Fig. 5. Tacking trajectory errors on lateral deviation and
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free setting with natural outputs gives quite satisfactory
results. They are much better than those resulting from
model-free control associated to the flat outputs. It should
be pointed out that the test track which has been con-
sidered implies strong lateral and longitudinal dynamical
loads. This track involves different types of curvatures
linked to straight parts, and all these configurations repre-
sent a large set of driving situations. Figure 4 shows that
model-free control with natural outputs yields accurate
enough behavior for autonomous driving applications. Ac-
cording to the results displayed on Figure 5, the lateral
error is less than 2 cm. Concerning the yaw angle output,
the resulting error is limited to 0.51 deg. Note that the
lateral errors associated to the flatness-based control and
the model-free control with the flat outputs are higher
than 10 cm. The resulting yaw angle errors are higher than
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Fig. 6. Wheel torques and steering angles control signals:
actual and those obtained with new model-free control
and the one proposed in Menhour et al. [2013]

10 deg for flatness-based control, and 1 deg for model-free
control with flat outputs. Figure 6 shows that the control
signals computed from the model-free control with natural
outputs are closed to the actual ones provided by the driver
along the track.

5. CONCLUSION

The path followed by the authors for the control of au-
tonomous wheeled cars leads to a design which is both
easy to implement and to grasp. The viewpoint, which we
now advocate, has been successfully tested under “nor-
mal” driving conditions through an advanced simulation
platform environment (see Menhour et al. [2015] for more
details). However, in order to be fully convincing, other
tests have to be handled on a real embedded vehicle
under severe driving conditions. This will be reported in
forthcoming publications.
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B. d’Andréa-Novel, M. Ellouze, Tracking with stability for
a vehicle braking in a corner, 40th IEEE Conf. Decision
Contr., Orlando, 2001.

S. Antonov, A. Fehn, A. Kugi, A new flatness-based
control of lateral vehicle dynamics, Vehic. Syst. Dynam.,
vol. 46, 2008, pp. 789-801.
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