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Model-based versus model-free control designs

for improving microalgae growth in a closed photobioreactor:

Some preliminary comparisons

Sihem Tebbani1, Mariana Titica2, Cédric Join3,5,6, Michel Fliess4,5, Didier Dumur1

Abstract— Controlling microalgae cultivation, i.e., a crucial
industrial topic today, is a challenging task since the cor-
responding modeling is complex, highly uncertain and time-
varying. A model-free control setting is therefore introduced in
order to ensure a high growth of microalgae in a continuous
closed photobioreactor. Computer simulations are displayed in
order to compare this design to an input-output feedback lin-
earizing control strategy, which is widely used in the academic
literature on photobioreactors. They assess the superiority of
the model-free standpoint both in terms of performances and
implementation simplicity.

Key Words—Microalgae, photobioreactor, model-free control,
intelligent proportional controller, input-output feedback lin-
earizing controller.

I. INTRODUCTION

The production and the culture of microalgae play a grow-

ing industrial and commercial role (see, e.g., [1], [2], and the

references therein). Their relationship with renewable energy

and sustainable development should also be emphasized

(see, e.g., [3]–[11]). The corresponding cultivation systems,

which are called photobioreactors, or PBR, give rise to

challenging control questions which have already attracted a

lot of attention. Most of the existing academic publications

are model-based (see, e.g., [12]–[20]). Among the various

control techniques, which are often nonlinear, optimal control

[13], predictive control ([11], [12], [19]), adaptive control

([16], [17]), feedback linearization ([15], [18], [20]), and the

use of partial differential equations [14] are perhaps the most

popular ones. Although those papers are quite promising,

they suffer from the great difficulty of deriving a “good”

mathematical modeling of the bioprocess (see, e.g., [21]). It

is due to

1) its inherent complexity,
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2) its uncertain and time-varying characteristics since a

life process has to be taken into account.

This communication is introducing therefore a new model-

free control setting [22], which is moreover rather easy

to implement both from software [22] and hardware [23]

standpoints. There are many concrete applications, including

some patents. We select here for obvious reasons publications

that are related to biotechnology: [24]–[25].

The performances of this approach are compared to those

achieved by an input-output (I/O) feedback linearization,

which is among the most widely used control design in the

academic literature on bioreactors [20]. The cultivation of the

microalgae Chlamydomonas reinhardtii is considered here.

The biomass concentration will be regulated to a target value,

determined so that a high level of biomass productivity is

achieved. The influence of light fluctuation on the reference

tracking is also taken into account.

Our paper is organized as follows. The system and its

modeling are presented in Section II. Section III displays

two control strategies: an I/O feedback linearizing control

and a model-free one. These strategies include two steps:

(i) the choice of the setpoint that leads to a high biomass

productivity, (ii) the regulation of the system around this

setpoint. Numerical results are provided and discussed in

Section IV. Conclusions and perspectives are developed in

Section V.

II. SYSTEM DESCRIPTION AND MODELING

In the continuous operation of PBR, the reactor is con-

tinuously fed with the liquid medium culture with nutrients;

the rate of outflow is equal to the rate of inflow (F) and

the culture volume (V ) remains constant. The manipulated

variable in this case is the dilution rate (D = F/V ). The

microorganism population grows in the medium consum-

ing nutrients (dissolved CO2, nitrogen, phosphorus). In au-

totrophic conditions, the solely carbon source is CO2, which

is provided continuously by air enriched CO2 bubbled in the

liquid medium; its injection depends on the pH, which is

maintained at the growth optimum value [15]. By this way,

all liquid nutrients are provided in sufficient quantities for

avoiding mineral limitations. The main factor governing the

growth is the light which is the energy source for the growth.

PBR surface is lighted artificially or naturally. For a given

PBR geometry, light intensity distribution in the cultivation

medium depends on biomass concentration as well as on

optical properties of the microalgae, which are determined



by their shape and pigment content. In continuous, mineral

nonlimiting cultivation conditions, the only limiting factor is

the photon flux density received by the culture. Improving

the light availability is thus a crucial aspect of biomass

growth and process productivity. A low amount of light

would decrease the growth. This is due to lack of energy

necessary to fixate carbone. Excessive irradiance on the other

hand would induce inhibition phenomena.

Dynamic models describing the behavior of microalgae

cultures are usually a set of nonlinear ordinary differential

equations. They are mainly deduced from mass balance

considerations on both liquid and gaseous phases [28]. In

an “optimal” system ensuring nonlimiting conditions with

respect to the liquid nutrients and environmental conditions,

i.e., temperature and pH, the rate of photosynthesis and

productivity are determined by the light availability [29].

In this case, the model is represented by one differential

equation expressing biomass concentration dynamics (1),

coupled with algebraic equations giving light profile into

the culture bulk (radiative model) and kinetic law yielding

local photosynthetic responses by expressing growth rate as

a function of local irradiance in the bulk depth. Different

kinetic models are presented in the literature [21]. In this

paper, a predictive model from [29] has been used as

benchmark for our controllers.

The mass balance model of a continuous well-stirred PBR

for biomass concentration X , in kg/m3, is as follows:

dX

dt
= rX −DX (1)

where rX is the growth rate (kg/m3/h) and D the dilution rate

(h−1).

The kinetic model proposed by [29] predicts photosynthe-

sis and respiration of microalgae from an energetic analysis.

The biomass growth rate rX is stoichiometrically linked to

the net oxygen evolution rate 〈JO2
〉:

rX =
〈JO2

〉MxX

νO2−X

(2)

where Mx is the C-molar mass for the biomass (g mol−1)

and νO2−X the stoichiometric coefficient. 〈JO2
〉 is calculated

with:

〈JO2
〉=

1

L

∫ L

0
JO2

(z)dz (3)

where L is the total reactor depth, z is the depth of the

reactor in rectangular coordinates (since the PBR here is

rectangular. The PBR considered here was presented in detail

in [15]), and JO2
(z) represents the local specific rate of

O2 production and consumption in the reactor depth (in

molO2
/kgX /h). It is the result of photosynthetic production

and respiration consumption, on which evolution depends

on the local irradiance:

JO2
(z) = ρm

K

K +G(z)
Φ′EaG(z)−

JNADH2

νNADH2−O2

KR

KR +G(z)
(4)

where

• G(z) is the local irradiance,

• ρm is the maximum value of the energetic yield,

• Ea is the mass absorption coefficient, linked to the

pigment content,

• Φ′, JNADH2
and νNADH2−O2

are stoichiometric yield

expressed from the stochiometric equation of biomass

synthesis,

• K is the half saturation constant of photosynthesis, de-

scribing photosynthesis saturation with increasing light,

• KR is the respiration inhibition constant, describing the

decrease of respiration in light.

Most of the model parameters are constant, except K and KR

for which independent oxygen or fluorescence measurements

are used for proposing values, which are strain dependent.

The two-flux model can then be used to model the

irradiance G(z) and the following formulation of irradiance

distribution can be employed [30]:

G(z) = 2q0
(1+α)eδ (L−z)− (1−α)e−δ (L−z)

(1+α)2
eδL − (1−α)2

e−δL
(5)

where δ = X
√

Ea (Ea + 2bEs) is the two-flux extinction

coefficient, and α =
√

(Ea)/(Ea + 2bEs) the linear scatter-

ing modulus. b is the backward scattering fraction (dimen-

sionless). Es, the mass scattering coefficients (m2 kg−1),

and Ea are chosen as a function of q0, the incident light

intensity. These optical properties are strain dependent and

vary with growth conditions. Empirical formulae deduced

from experiments in a wide range of incident light conditions

[29] have been used here (see Table I).

TABLE I

MODEL PARAMETERS

Parameter Value Unit

L 0.05 m

b 0.08 -

Ea −28∗ log(q0)+337 m2/kg

Es 28.9∗ log(q0)+708 m2/kg

K 120 µmol/m2/s

Φ′ 1.12 10−7 mol/µmol

JNADH2
/νNADH2−O2

3.19 10−4 -

νO2−X 1.183 -

Mx 24 10−3 kg/C-mol

KR 6 µmol/m2/s

ρm 0.8 -

III. CONTROL STRATEGIES

A. Problem formulation

The aim is to get high cultivation in PBR, by improving

the production and maintaining the quality of the product.

One way to achieve this goal consists in regulating the

biomass concentration at a given setpoint that leads to a high

production of the PBR. In the case of continuous operation

mode, at constant incident light, the biomass concentration

can be controlled hydraulically through the dilution rate

D in open or closed-loop aiming maximum productivity,

while avoiding washout, i.e., an unstable equilibrium point



corresponding to the disappearance of the microorganisms

from the cultivation system, where X=0. The photobioreactor

can be operated at various concentrations of biomass in

accordance with the selected working protocol. In this study,

the regulation of the biomass concentration in a continuous

PBR is considered, based on the so-called turbidostat proto-

col. The biomass concentration is assumed to be measured

online via a turbidity sensor. It can also be determined from

oxygen release measurements.

B. Setpoint determination

For constant incident light, the operating point (in terms of

biomass concentration and dilution rate) can be determined

so that the biomass productivity is maximized. The latter

is defined as the product of steady state values of biomass

concentration times dilution rate. It is equal to X × D at

the equilibrium. Experimental protocol can be defined to

determine the optimal setpoint as a function of the applied

incident light intensity. Consequently, the result can be illus-

trated as shown by Fig. 1 for 100 ≤ q0 ≤ 1000 µmol/m2/s.

It provides static values of X , D and productivity D×X as

functions of the incident light intensity q0. Thus, for a given

value of the incident light intensity, the reference value of

the biomass concentration can be deduced from this figure.

Hereafter, two control laws will be designed so that the

system is operated at a given biomass concentration setpoint,

that depends on the incident light intensity (deduced from

Fig. 1). The control input is the dilution rate (or equivalently,

the flow rate) and the output is the biomass concentration.

The block diagram is depicted in Fig. 2.

C. Model-based control

System (1) is a single-input single-output (SISO) nonlinear

control-affine model

Ẋ = fx(X)+ fu(X)u
y = h(X) = X

(6)

where X is the biomass concentration, u is the control input

(u = D), y is the output, fx, fu and h are nonlinear functions

given by (1). An input-output feedback linearization is em-

ployed [31]. With Equations (6), where the state space is of

dimension 1, this linearization is of course equivalent to a

static state feedback linearization. Classical linear controllers

are thus employed. First, one must determine the relative

degree r. It is defined as the lowest order of the time

derivative of y that directly depends on the input u. Here

r = 1. Let yr be the reference trajectory. Suppose that the

tracking error e= y−yr is specified by a first order dynamics

as follows:

ė+λ e = 0 (7)

where the gain λ > 0 is a tuning parameter. The linearizing

feedback law is given by

u =
(

−L fxh(X)−λ (y− yr)
)

/
(

L fuh(X)
)

(8)

where L f•h(X) is the Lie derivative of h with respect to the

vector field f•.

Usually, this control law presents two main drawbacks:

• its efficiency depends on the knowledge of the system

dynamics,

• it assumes that all the state variables are available.

In our case, formulae (8) becomes

D = (rX +λ (y− yr))/X (9)

In order to be representative of the uncertainty of biopro-

cesses models, a simplified model of (2) for the growth rate

rX (X) is considered [32] in the control law (9):

rX (X) =

[

µ0
G

KI +G+G
2
/KII

− µr

]

X (10)

where µ0 is related to the maximal specific growth rate,

µr represents the respiration rate, and KI (resp. KII) is

the limitation (resp. inhibition) constant [20]. The mean

incident light intensity G is given, with the same notations

as previously, by:

G =
1

L

∫ L

0
q0exp

[

−
(1+ α̂)

2α̂
ÊaXz

]

dz (11)

The parameters of the simplified model were determined

from the same data as those in (2)-(5). They are given by

Table II [33].

TABLE II

SIMPLIFIED MODEL PARAMETERS

Parameter µ0 µr α̂ Êa KI KII

Value 0.14 0.013 0.71 151 120 500

Unit h−1 h−1 - m2/kg µmol/m2/s µmol/m2/s

D. Model-free control and intelligent controllers1

1) The ultra-local model: For simplicity’s sake, let us

restrict ourselves to SISO systems. The unknown global

description of the plant is replaced by the ultra-local model:

ẏ = F+ au (12)

where:

• the control and output variables are u and y,

• the derivation order of y is 1 like in most concrete

situations,

• a ∈ R is chosen by the practitioner such that au and ẏ

are of the same magnitude.

The following comments might be useful:

• Equation (12) is only valid during a short time lapse. It

must be continuously updated,

• F is estimated via the knowledge of the control and

output variables u and y,

• F subsumes not only the unknown structure of the

system, which most of the time will be nonlinear, but

also of any disturbance.

1See [22] for more details, and [23] for a hardware implementation.



100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

q0 (µ mol m−2 s−1)
X

(g
/
L
),

1
0
*
D

(h
−
1 )

100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

P
ro
d
u
ct
iv
it
y
D
*
X

10*D

Productivity

X

Fig. 1. Setpoint of biomass concentration and corresponding productivity and dilution rate versus constant applied incident light intensity.

PhotobioreactorControl law
(Figure 1)

q0

-

yr y=Xu=D
0( )ry f q
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2) Intelligent controllers: Close the loop with the follow-

ing intelligent proportional controller, or iP,

u =−
F− ẏr +KPe

a
(13)

where:

• e = y− yr is the tracking error,

• KP is a usual tuning gain.

Combining (12) and (13) yields:

ė+KPe = 0 (14)

where F does not appear anymore. The tuning of KP is

therefore quite straightforward. This is a major benefit when

compared to the tuning of “classic” PIDs (see, e.g., [34], and

the references therein). Some more comments may be useful:

• See [35] for a connection with stability margins.

• Equations (13) and (14) render pointless any formal

checking of the closed-loop system behavior (compare,

e.g., with [36]).

3) Estimation of F: Assume that F in (12) is “well”

approximated by a piecewise constant function Fest.

1) Rewrite (12) by using the well-known notations from

operational calculus:

sY =
Φ

s
+ aU + y(0)

where Φ is a constant. We get rid of the initial

condition y(0) by multiplying both sides on the left

by d
ds

:

Y + s
dY

ds
=−

Φ

s2
+ a

dU

ds

Noise attenuation is achieved by multiplying both sides

on the left by s−2. It yields in the time domain the

realtime estimate, thanks to the equivalence between
d
ds

and the multiplication by −t,

Fest(t) =−
6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ)+ aσ(τ−σ)u(σ)]dσ

where τ > 0 might be quite small. This integral, which

is a low pass filter, may of course be replaced in

practice by a classic digital filter.

2) Close the loop with the iP (13). It yields:

Fest(t) =
1

τ

[

∫ t

t−τ
(ẏr − au−KPe)dσ

]

IV. SIMULATION TESTS

A. Setpoint change with light

First, the two control laws are compared in the case of a

piecewise-constant light intensity with the following profile:
{

q0(t) = 600 µ mol m−2 s−1 for 0 < t ≤ 30h

q0(t) = 100 µ mol m−2 s−1 otherwise.
(15)

¿From (15) and Fig. 1, the biomass concentration reference

value is deduced. It is piecewise constant: it varies from

0.17 to 0.38 kg/m3 at time t = 30 hours. The biomass

concentration at initial time is X(0)=0.17 kg/m3, and the

simulation duration is set to 50 hours. The output is assumed

to be measured with a sampling time Ts = 6 min and to be

corrupted by an additive zero-mean white Gaussian noise

with a standard deviation of about 1%. The model (2)-(5)

is used for the plant, whereas the simplified model (10)-

(11) is considered for the model-based controller (9). The

tuning parameters of the control law are as follows: λ = 1

for the model-based law and (a,Kp,τ) = (0.2,5,15Ts) for the

model-free one. The control laws are implemented using a

zero-order hold. The control input D satisfies the constraints

0 ≤ D ≤ 0.5 h−1. For the robustness study, only the

uncertainty on the variable µ0 is considered, since the latter

is the most influential parameter. Three cases are considered:

µ0=0.14 (nominal value), µ0=0.21 and µ0=0.07 h−1. These

values are chosen from the confidence interval on this

variable [33]. The results are depicted in Fig. 3.

The two control laws achieve the tracking of the reference

biomass concentration, with similar time responses. First, the
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Fig. 3. Comparison of closed-loop responses to a setpoint change (light decreasing step change).

control is canceled, i.e., the system operates in the batch

mode, so that the biomass concentration reaches almost the

reference value. Then, after about 10 hours, the control input

switches to a continuous mode and a dilution is applied

so that the output is maintained at the desired value. At

time t = 30 hours onwards, the reference value decreases

to 0.17 kg/m3. Consequently, the controllers apply a higher

dilution rate to dilute the culture and attain the new reference

value (after about 5 h). Then, the dilution rate reaches a

constant value that maintains the output at this new reference.

It can be noticed that the model-based controller is sensitive

to the value of the parameter µ0. Indeed, the reference

tracking presents an offset in this case. The response with

the model-free controller on the other hand is offset-free. Its

robustness is highlighted.

B. Light change with constant setpoint

The controllers are now compared in the case of a constant

biomass concentration setpoint yr = 0.175 kg/m3, with a

time-varying incident light intensity. The latter is assumed to

follow a profile depicted in Fig. 4, i.e., it is chosen in order

to be similar to a day/night cycle of a solar light except

the minimum level of incident light, which has been set

to 100 µmol/m2/s, here. The controllers tuning parameters

and the simulation conditions are similar to those considered

in Section IV-A. Simulation results, illustrated by Fig. 5,

show that despite the light variation, considered here as a

disturbance, the two control laws maintain the output at

its reference value. Indeed, the dilution rate is modified,

according to the incident light profile. Nevertheless, the

model-free controller performs better than the model-based

one. The model-based controller is again sensitive to the

uncertainty of µ0. Its drawback is here also underlined.

V. CONCLUSION

The model-free control strategy yields better performances

than the model-based one,2 in terms of

2Those comparisons will be more closely investigated elsewhere.
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• setpoint tracking and robustness with respect to model

uncertainties,

• no modeling perequisite, i.e.,

– only the output variable needs to be known,

– the estimation of the state variables becomes use-

less,

• easy and costless implementation.

An experimental set-up and the control of the specific growth

rate for insuring a high level of biomass growth are now

being developed. They will hopefully be presented soon. The

above preliminary results should not only be confirmed but

also amplified.
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