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Control of an inflammatory immune response is still an ongoing research. Here, a strategy consisting of manipulating a pro and anti-inflammatory mediator is considered. Already existing and promising model-based techniques suffer unfortunately from a most difficult calibration. This is due to the different types of inflammations and to the strong parameter variation between patients. This communication explores another route via the new model-free control and its corresponding "intelligent" controllers. A "virtual" patient, i.e., a mathematical model, is only employed for digital simulations. A most interesting feature of our control strategy is the fact that the two outputs which must be driven are sensorless. This difficulty is overcome by assigning suitable reference trajectories to two other outputs with sensors. Several most encouraging computer simulations, corresponding to different drug treatment strategies, are displayed and discussed.

I. INTRODUCTION

The importance, complexity and ubiquity of the notions of infection and inflammation are well explained by the following quotation [START_REF] Nathan | Points of control in inflammation[END_REF]: The 'inflammatory process' includes a tissue-based startle reaction to trauma; go/nogo decisions based on integration of molecular clues for tissue penetration by microbes; the beckoning, instruction and dispatch of cells; the killing of microbes and host cells they infect; liquefaction of surrounding tissue to prevent microbial metastasis; and the healing of tissues damaged by trauma or by the host's response. If at any step an order to proceed is issued but progress to the next step is blocked, the inflammatory process may detour into a holding pattern, such as infiltration of a tissue with aggregates of lymphocytes and leukocytes (granulomas) that are sometimes embedded in proliferating synovial fibroblasts (pannus), or distortion of a tissue with collagen bundles (fibrosis). Persistent inflammation can oxidize DNA badly enough to promote neoplastic transformation. According to [START_REF] Cohen | The immunopathogenesis of sepsis[END_REF], the overall mortality is approximately 30%, rising to 40% in the elderly and is 50% or greater in patients with the more severe syndrome. The corresponding literature is of course huge. See, e.g,

• [START_REF] Schwartz | Is inflammation a consequence of extracellular hyperosmolarity?[END_REF] on the cause, • [START_REF] Balkwill | Inflammation and cancer: back to Virchow[END_REF], [START_REF] David | Rudolf Virchow and modern aspects of tumor pathology[END_REF], [START_REF] Israël | Cancer: A Dysmethylation Syndrome?[END_REF], [START_REF] Schulz | Induction of oxidative metabolism by mitochondrial frataxin inhibts cancer growth: Otto Warburg revisited[END_REF], [START_REF] Virchow | Die krankhaften Geschwülste[END_REF], [START_REF] Warburg | Über den Stoffwechsel von Tumoren im Körper[END_REF] for the connections with cancer, • [START_REF] Bricaire | Inflammation et VIH[END_REF], [START_REF] Deeks | HIV infection, inflammation, immunosenescence, and aging[END_REF], [START_REF] Hunt | HIV and inflammation: Mechanisms and consequences[END_REF], [START_REF] Nowak | Antigenic oscillations and shifting immunodominance in HIV-1 infections[END_REF] for the interactions with the human immunodeficiency virus (HIV). • [START_REF] Dantzer | Depression and inflammation: An intricate relationship[END_REF], [START_REF] Miller | The role of inflammation in depression: from evolutionary imperative to modern treatment target[END_REF] for the possible relationship with depression. Although applying automatic control to immune therapy has attracted some interest, as depicted in [START_REF] Parker | Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges[END_REF], it is much less developed than in other domains, like, e.g., for insulindependent diabetes (see, e.g., [START_REF] Bequette | Challenges and recent progress in the development of a closed-loop artificial pancreas[END_REF], [START_REF] Doyle | Closedloop artificial pancreas systems: Engineering the algorithms[END_REF], and the references therein). Let us nevertheless mention promising papers using respectively optimal control ([6], [START_REF] Bara | Immune Therapy using optimal control with L 1 type objective[END_REF], [START_REF] Kirschner | Optimal control of the chemotherapy of HIV[END_REF], [START_REF] Stengel | Stochastic optimal therapy for enhanced immune response[END_REF], [START_REF] Stengel | Optimal enhancement of immune response[END_REF], [START_REF] Stengel | Optimal control of innate immune response[END_REF]) and predictive control ( [START_REF] Day | Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation[END_REF], [START_REF] Hogg | Acute inflammation treatment via particle filter state estimation and MPC[END_REF], [START_REF] Zitelli | Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen[END_REF]). Those approaches are model-based. Among those papers, the most recent ones ( [START_REF] Bara | Optimal control of an inflammatory immune response model[END_REF], [START_REF] Bara | Immune Therapy using optimal control with L 1 type objective[END_REF], [START_REF] Day | Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation[END_REF], [START_REF] Zitelli | Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen[END_REF]) use the same set of phenomenological ordinary differential equations from [START_REF] Reynolds | A reduced mathematical model of the acute inflammatory response I. Derivation of model and analysis of anti-inflammation[END_REF] (see also [START_REF] Reynolds | Mathematical Models of Acute Inflammation and Full Lung Model of Gas exchange under inflammatory stress[END_REF] and [START_REF] Day | A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration[END_REF]):

• The corresponding model is based on the non-specific protective mechanism, namely, the innate immune response, in contrast to the adaptive immune system. The latter provides a more advanced and strategic response producing B and T cells together with specific antibodies.1 • Anti-inflammatory mediators are included. They play an important rôle to mitigate a severe inflammation and, therefore, avoid tissue damage and high pathogen proliferation. • Its biological relevance has been confirmed via a good qualitative reproduction of severe systemic inflammation in a biological organism. Other mathematical modelings have been proposed (see, e.g., [START_REF] Asachenkov | Disease Dynamics[END_REF], [START_REF] Russo | A mathematical model of inflammation during ischemic stroke[END_REF], [START_REF] Ho | A model of neutrophil dynamics in response to inflammatory and cancer chemotherapy challenges[END_REF], [START_REF] Kumar | The dynamics of acute inflammation[END_REF], [START_REF] Perelson | Immunology for physicists[END_REF], [START_REF] Rundell | Enhanced modeling of the immune system to incorporate natural killer cells and memory[END_REF], [START_REF] Song | Ensemble models of neutrophil trafficking in severe sepsis[END_REF], [START_REF] Yiu | Dynamics of a cytokine storm[END_REF]). In spite of interesting preliminary results in [START_REF] Bara | Nonlinear state estimation for complex immune responses[END_REF], [START_REF] Bara | Parameter estimation for nonlinear immune response model using EM[END_REF], [START_REF] Zitelli | Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen[END_REF], state observation and parameter identification are not yet fully mastered. Its calibration, which depends heavily on the type of inflammatory response and on patient differences (genetics, age, gender, . . . ), is therefore most intricate.

This paper suggests another route, namely the recent model-free setting and the corresponding "intelligent" controllers [START_REF] Fliess | Model-free control[END_REF]. 2 It is worthwhile to recall that model-free control has already been successfully applied in quite diverse case-studies (see, e.g., [START_REF] Lafont | A model-free control strategy for an experimental greenhouse with an application to fault accommodation[END_REF], [START_REF] Mohammadridha | Model free control for type-1 diabetes: A fasting-phase study[END_REF], [START_REF] Mohammadridha | A variable reference trajectory for model-free glycemia regulation[END_REF], [START_REF] Tebbani | Model-based versus model-free control designs for improving microalgae growth in a closed photobioreactor: Some preliminary comparisons[END_REF] in the field of "life engineering"). The modeling remains nevertheless irreplaceable at this stage for in silico testing, i.e., for computer simulations. We will also be employing [START_REF] Reynolds | A reduced mathematical model of the acute inflammatory response I. Derivation of model and analysis of anti-inflammation[END_REF]. Let us emphasize the following key point: there is no need for the proposed control technique to use any state observer and any parameter identification technique.

From a purely control-theoretic standpoint, a major novelty of this study lies in the necessity to drive sensorless states. The poor knowledge of the system makes the derivation of an observer quite intractable. The solution lies in a "good understanding" of the system, i.e., in the design of an "efficient" reference trajectories tracking with respect to the states with sensors. Such a feedforward "philosophy" is of course inspired by flatness-based control (see [START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF], and [START_REF] Åström | Feedback Systems: An Introduction for Scientists and Engineers[END_REF], [START_REF] Lévine | Analysis and Control of Nonlinear Systems -A Flatness-Based Approach[END_REF], [START_REF] Sira-Ramírez | Differentially Flat Systems[END_REF]).

Our paper is organized as follows. Sections II and III review respectively the mathematical modeling and modelfree control. Several computer simulations are displayed and discussed in Section IV. Suggestions for future research may be found in Section V.

II. A VIRTUAL PATIENT

A mathematical model, i.e., a virtual patient, via four ordinary differential equations, for an acute inflammatory response to pathogenic infection has been proposed [START_REF] Reynolds | A reduced mathematical model of the acute inflammatory response I. Derivation of model and analysis of anti-inflammation[END_REF]:

dP dt = kpgP (1 - P P∞ ) - kpmsmP µm + kmpP -kpnf (N )P (1) 
dN dt = snrR µnr + R -µnN + up(t) (2) 
dD dt = k dn f (N ) 6 x 6 dn + f (N ) 6 -µ d D (3) 
dCa dt = sc + kcn (N + k cnd D) 1 + f (N + k cnd D) -µcCa + ua(t) (4) 
Set 1 gives the reference parameter values. Note that the state variables P (t), N (t), D(t), C a (t) and the control variables u p (t), u a (t) take nonnegative values ∀t.

R = f (k np P + k nn N + k nd D), f (x) = x 1 + ( Ca c∞ ) 2 Table
• Equation (1) represents the evolution of the bacterial pathogen population P that causes the inflammation. • Equation ( 2) governs the dynamics of the concentration of a collection of early pro-inflammatory mediators such as activated phagocytes and the pro-inflammatory cytokines. They produce N . • Equation (3) corresponds to tissue damage (D), which helps to verify the response outcomes. • Equation (4) describes the evolution of the concentration of a collection of anti-inflammatory mediators C a . • See Tables I andII for the numerical values of the parameters and of the initial conditions. The above model possesses three steady states:

• one which corresponds to the healthy equilibrium,

• two which are associated respectively with a septic state and an aseptic one. Those properties agree with clinical observations: We label our finite time simulation outcomes based on these three states, with simulations that end with negligible P classified as healthy or aseptic depending on which state (N * , D, C A ) are approaching, as discussed further in subsection 3.5. Figures 2 (a) and (b) show typical aseptic and septic scenarios, respectively. It is assumed that basic therapy, including the administration of antibiotics, resuscitation with fluids, and so forth, are implicitly modeled in system (1) -( 4). This means that the various outcomes mentioned above can occur despite administration of basic treatment.

Input to the NMPC algorithm consists of an anti-inflammatory therapy, present as a source term (+AIDOSE) in equation ( 4), and a pro-inflammatory therapy, incorporated as a source term (+PIDOSE) in equation [START_REF] Åström | Advanced PID Control[END_REF]. Constraints are defined that prevent dosing from going negative, meaning that therapy can be infused into the system but not extracted.

In all of the simulations that we discuss, the total simulation time is 168 hours (1 week). In addition, k is an hourly step, so doses are adjusted on an hourly basis. The goal of the NMPC control algorithm is to identify (virtual) patient-specific therapy dosing profiles that can correct inflammatory responses that, without intervention, would result in either aseptic or septic scenarios.

3.2.

The objective function, constraints, and error prediction under mismatch. The objective function J that we use contains terms to minimize damage levels (D), pathogen levels (P ), and total therapy AIDOSE and PIDOSE given over the prediction horizon h and takes the form

J = min PIDOSE(t) AIDOSE(t) ||Γ D D|| 2 2 + ||Γ P P || 2 2 + ||Γ AI AIDOSE (t)|| 2 2 + ||Γ P I PIDOSE (t)|| 2 2 (5) 
Minimization is done over piecewise constant time courses of AIDOSE and PI-DOSE, achieved by a sequence of control moves, as discussed in Section 2. The

TABLE I REFERENCE PARAMETERS FOR THE SYSTEM (1)-(4)

• The healthy equilibrium corresponds to P = N = D = 0 and C a at a background level. • A septic equilibrium is related to the situation where all mediators, N , C a , and D together with the pathogen P are rather high. • The patient is in an aseptic equilibrium when the values of N , C a , D are important, while the pathogen has been eliminated, i.e., P = 0.

See in Figure 1 the results of two virtual patients with different initial conditions. The presence of pathogen in the body stimulates inherently the activation of phagocytes (proinflammatory mediator). The resulting damage is affected by the degree of inflammation which tries to eliminate the actual pathogen as quickly as possible. Note that the actual anti-inflammatory mediator (cortisol and interleukin-10) can mitigate the inflammation and its harmful effect. The resting value C a is 0.125 for the reference virtual patient. The patient is healthy when D = 0 and P = 0. He/she is considered to be dead when D ≥ 17. When starting, e.g., from [0.3 0.0 0.0 0.0125], and allowing the pathogen to rise from a level of P = 0.3 to P = 0.6, at some point the immune system is not strong enough to cope with the pathogen attack which will inevitably attract the virtual patient to a septic or aseptic state (see Figure 1). Some intervention to stabilize the patient to its healthy equilibrium, i.e., to homeostasis, becomes mandatory. 

A. The ultra-local model

Replace the unknown global description by the ultra-local model:

ẏ = F + αu (5) 
where

• the control and output variables are u and y,

• the derivation order of y is 1 like in most concrete situations, • α ∈ R is chosen by the practitioner such that αu and ẏ are of the same magnitude. The following explanations on F might be • F is estimated via the measure of u and y, • F subsumes not only the unknown system structure but also any perturbation. Remark 3.1: In Equation ( 5) ẏ is seldom replaced by ÿ (see, e.g., [START_REF] Fliess | Model-free control[END_REF], [START_REF] Menhour | A new model-free design for vehicle control and its validation through an advanced simulation platform[END_REF], and the references therein). Higher order derivatives were never utilized until today.

B. Intelligent controllers

The loop is closed by an intelligent proportional controller, or iP,

u = - F -ẏ * + K P e α ( 6 
)
where

• y is the reference trajectory,

• e = yy is the tracking error,

• K P is the usual tuning gain. Combining Equations ( 5) and ( 6) yields:

ė + K P e = 0
3 See [START_REF] Fliess | Model-free control[END_REF] for more details.

where F does not appear anymore. The tuning of K P , in order to insure local stability, becomes therefore quite straightforward. This is a major benefit when compared to the tuning of "classic" PIDs (see, e.g., [START_REF] Åström | Advanced PID Control[END_REF], [START_REF] Åström | Feedback Systems: An Introduction for Scientists and Engineers[END_REF], and the references therein), which

• necessitate a "fine" tuning in order to deal with the poorly known parts of the plant, • exhibit a poor robustness with respect to "strong" perturbations and/or system alterations.

C. Estimation of F

The calculations below stem from new estimation techniques (see [START_REF] Fliess | An algebraic framework for linear identification[END_REF], [START_REF] Fliess | Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques[END_REF], and [START_REF] Sira-Ramírez | Algebraic Identification and Estimation Methods in Feedback Control Systems[END_REF]).

1) First approach: The term F in Equation ( 5) may be assumed to be "well" approximated by a piecewise constant function F est . Rewrite then Equation ( 5) in the operational domain (see, e.g., [START_REF] Yosida | Operational Calculus[END_REF]):

sY = Φ s + αU + y(0)
where Φ is a constant. We get rid of the initial condition y(0) by multiplying both sides on the left by d ds :

Y + s dY ds = - Φ s 2 + α
dU ds Noise attenuation is achieved by multiplying both sides on the left by s -2 . It yields in the time domain the realtime estimate, thanks to the equivalence between d ds and the multiplication by -t,

Fest(t) = - 6 τ 3 t t-τ [(τ -2σ)y(σ) + ασ(τ -σ)u(σ)] dσ (7)
2) Second approach: Close the loop with the iP (6):

F est (t) = 1 τ t t-τ ( ẏ -αu -K P e) dσ (8) 
Remark 3.2: Note the following facts:

• integrals ( 7) and ( 8) are low pass filters,

• τ > 0 might be quite small,

• the integrals may of course be replaced in practice by classic digital filters. Remark 3.3: A hardware implementation of the above computations is easy [START_REF] Join | Intelligent" controllers on cheap and small programmable devices[END_REF].

IV. COMPUTER SIMULATIONS

A. Control design

The state component N (resp. C a ) in Equation (2) (resp. (4)) is

• easily measured, whereas it is difficult today to do it with P and D in Equations ( 1) and ( 4). • mostly influenced by the control variable u p (resp. u a ). Introduce therefore the two Equations of type (5): Let us emphasize that, like in [START_REF] Lafont | A model-free control strategy for an experimental greenhouse with an application to fault accommodation[END_REF], those two ultra-local systems may be "decoupled": they are considered as monovariable systems. 4 The two corresponding iPs [START_REF] Bara | Optimal control of an inflammatory immune response model[END_REF] read

Ṅ = F 1 + α p u p (t) (9) Ċa = F 2 + α a u a (t) (10) 
u p = - F 1 -Ṅ * + K P 1 e p α p (11) 
u a = - F 2 -Ċ * a + K P 2 e a a (12) 
where the tracking errors are defined by 

B. Reference trajectories and results

Two virtual patients are considered, the first (resp. second) one with a septic (resp. aseptic) outcome. The fact that a virtual patient may, or may not, return to an healthy state depends on the parameters and initial conditions. Their numerical characteristics are given below:

1) Patient 1 (septic).- 4 It should be nevertheless clear from a purely mathematical standpoint that F 1 (resp. F 2 ) is not necessarily independent of ua (resp. up).

The reference trajectories of N and C a are adjusted from Table I:

N = N free .C 1 , C a = (C afree -0.125).C 2 + 0.125

where

• N free and C afree correspond to the free trajectories of N and C a for a healthy virtual patient, • C 1 and C 2 are suitable constants. We decided in our scenario to amplify the trajectory corresponding to the concentration of the pro-inflammatory mediator. Therefore

C 1 = 4, C 2 = 1
There are of course other possibilities for the reference trajectories. We could select higher amplitudes in order to heal most patients. The price to pay would be more drug injection and, therefore, more tissue damage. The simulation were performed

• with a sampling time of 1 minute, • with α p = α a = 2 in Equations ( 9)-( 10),

• with K P 1 = K P 2 = 0.47 in Equations ( 11)-( 12),

• during 500 hours. 5Figure 4(a) shows clearly that we have been able to eliminate the pathogen and reduce the damage to zero using the generated doses displayed on the right hand side. Many simulations show a quick rise in the pro-inflammatory mediator N . According to Figure 2(b), its maximum is reached after about 10 to 15 hours and is followed by an exponential decrease to zero. As shown by Figure 2(a), the analogous behavior of the anti-inflammatory mediator C a is much slower. Similar facts are observed with all patients who do not necessitate any treatment. The motivation for the choice of the reference trajectories should now become clear. The similarities of the generated doses can be partly explained by the same choice of the reference trajectory. In this case, it was enough to stabilize both patients. Observe that for each dose associated with an increase of the proinflammatory mediator a lower dose of anti-inflammation follows (see also [START_REF] Bara | Optimal control of an inflammatory immune response model[END_REF], [START_REF] Day | Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation[END_REF]). It may be explained by the fact the immune system needs an initial boost of activated phagocytes in order to eliminate the pathogen threat. The resulting inflammation causes an increase of tissue damage, observed in Figure 4(a), which decreases after to zero thanks in part to the anti-inflammatory dose that is applied with a longer duration. Notice that injecting a larger dose of U a at the wrong time and with an inappropriate amplitude may foster the development of pathogen P at rates that can drive the patient to a no-return point.

V. CONCLUSION

Our results should of course be further tested and developed. Future publications will emphasize

• the robustness of our setting with respect to parameter variation and different initial conditions, • a deeper understanding of the choice of "good" reference trajectories, • the applicability of our approach to most types of inflammations and virtual patients. The past success of model-free control in so many concrete situations should certainly be viewed as encouraging.
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Fig. 2 .

 2 Fig. 2. Reference trajectories N and Ca for both patients together with their closed loop response

eF 1 ,

 1 p = N -N * and e a = C a -C * a F 2 are estimated according to Section III-C. See Figure 3 for the corresponding block diagram.

• 2 )•

 2 Initial conditions P (0) = 0.47360, N (0) = 0.0660, D(0) = 0.0477, C a (0) = 0.1635. • Model coefficients k pg = 0.47846, k cn = 0.0409, k nd = 0.0242, k np = 0.1211, k cnd = 49.1243, k nn = 0.012. Patient 2 (aseptic).-Initial conditions P (0) = 1.0017, N (0) = 0.0711, D(0) = 0.0732, C a (0) = 0.1314. • Model coefficients k pg = 0.4746, k cn = 0.0386, k nd = 0.0223, k np = 0.1116, k cnd = 46.3367, k nn = 0.0112.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Block diagram of our model-free control design.

Table 1 .

 1 Model parameter reference values for the system (1) -(4).

	Parameter	Reference Value Parameter	Reference Value
	kpm	0.6/M units hr	μn	0.05/hr
	kmp	0.01/P units hr	knd	0.02/D units hr
	sm	0.005 M units/hr	kdn	0.35 units of D/hr
	μm	0.002/hr	xdn	0.06 N* units
	kpg	Various in range: (0.021-2.44)/hr	μd	0.02/hr
	p∞	20x10	6 /cc	c∞	0.28 CA units
	kpn	1.8/N* units hr	sc	0.0125 CA units/hr
	knp	0.1/P units hr	kcn	0.04 CA units/hr
	knn	0.01/N* units hr	kcnd	48 N* units/D units
	snr	0.08 NR units/hr	μc	0.1/hr
	μnr	0.12/hr		

See, e.g., the classic textbook[START_REF] Murphy | Janeway's Immunobiology[END_REF] for an explanation of the technical medical words here, and elsewhere in this communication.

See also[START_REF] Åström | Control: A perspective[END_REF],[START_REF] Gao | On the centrality of disturbance rejection in automatic control[END_REF],[START_REF] De Larminat | Automatique appliquée[END_REF].

Let us stress that our control objective was reached in less than 250 hours.
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