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Abstract

We analyze the design of optimal medical insurance under ex post moral haz-

ard, i.e., when illness severity cannot be observed by insurers and policyholders

decide for themselves on their health expenditures. The trade-off between ex

ante risk sharing and ex post incentive compatibility is analyzed in an optimal

revelation mechanism under hidden information and risk aversion. The optimal

contract provides partial insurance at the margin, with a deductible when in-

surers’rates are affected by a positive loading, and it may also include an upper

limit on coverage. The potential to audit the health state leads to an upper limit

on out-of-pocket expenses.
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1 Introduction

Ex post moral hazard in medical insurance occurs when insurers do not observe the

health states of individuals, and policyholders may exaggerate the severity of their

illness - Arrow (1963, 1968), Pauly (1968) and Zeckhauser (1970). Proportional coin-

surance under ex post moral hazard (i.e., when insurers pay the same fraction of the

health care cost whatever the individuals’ expenses) has been considered by many

authors, including Zeckhauser (1970), Feldstein (1973), Arrow (1976), Feldstein and

Friedman (1977), and Feldman and Dowd (1991). However, while proportional coinsur-

ance has the advantage of mathematical tractability, it is neither an optimal solution

to the ex post moral hazard problem, nor an adequate representation of the health

insurance policies that we may observe.

To approach this issue in more general terms, we may consider a setting where

the policyholder has private information about her illness severity and she chooses her

health care expenditures - or equivalently where a provider, acting as a "perfect agent"

of the policyholder, prescribes the care that is in the patient’s best interest. The con-

tract between insurer and insured specifies the insurance premium and the indemnity

schedule, i.e., the indemnity as a (possibly non-linear) function of medical expenses.

This is equivalent to a direct revelation mechanism that specifies care expenses and in-

surance transfers as functions of a message sent by the policyholder about the severity

of her illness, and where she truthfully reveals her health state to the insurer. Look-

ing for an optimal non-linear insurance contract under ex post moral hazard is thus

equivalent to characterizing the optimal solution to an information revelation problem.

The ex post moral hazard information problem was identified by Zeckhauser (1970),

and the corresponding literature is surveyed by Winter (2013). Blomqvist (1997)

was the first to address this issue with the modern tools of incentive theory, but he

unfortunately overlooked important technical aspects (including bunching and limit
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conditions), which considerably reduces the relevance of his conclusions.1 Ma and

Riordan (2002) considered a more specific setting, in which the existence and severity

of a disease are private information of the patient, and they showed how the optimal

copayment should balance the risk-sharing benefits of greater insurance, against the

distortions due to ineffi cient treatment choices. Drèze and Schokkaert (2013) extended

Arrow’s theorem of the deductible to the case of ex post moral hazard. However, they

directly postulated that the insurance premium is computed with a positive loading

factor, presumably because of transaction costs. They did not address the question of

whether ex post and ex ante moral hazard differ in this respect, independently of the

existence of transaction costs. Our objective is to progress further along these lines,

with the double concern of robustness of theoretical conclusions and, as far as possible,

conformity with economic reality.

Not surprisingly, as already established by Blomqvist (1997), the trade-off between

ex post moral hazard incentives and risk sharing leads to a partial coverage at the

margin. However, we will show that, under some assumptions about the probability

distribution of health states, it also involves a cap on health expenses and insurance

indemnities reached by a non-negligible fraction of policyholders. In other words, the

optimal contract specifies a partial reimbursement at the margin, with bunching "at

the top".2 In the terminology of health insurance, such an upper limit on coverage

corresponds to a fixed-dollar indemnity plan on a per-period basis, i.e., medical in-

surance pays at most a predetermined amount over the whole policy year, regardless

of the total charges incurred. We will also determine that a deductible is optimal

1Blomqvist (1997) argues that the indemnity schedule is S -shaped, with marginal coverage in-

creasing for small expenses and decreasing for large expenses. As we will see, this conclusion is not

valid when bunching and limit conditions are adequately taken into account.
2Bunching may also occur in adverse selection principal-agent models with risk averse agents -

Salanié (1990) and Laffont and Rochet (1998) - and in the Mirrlees’ optimal income tax model -

Lollivier and Rochet (1983), Weymark (1986) and Ebert (1992).
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only if insurers charge a positive loading because of transaction costs.3 Hence, ex post

and ex ante moral hazard lead to quite different conclusions about the optimality of

deductibles: in the absence of transaction costs, a deductible is optimal under ex ante

moral hazard when effort affects the probability of an accident (Holmström, 1979),4

but not under ex post moral hazard. This characterization is robust to changes in the

modelling, including the case where income is affected by a background risk and the

case where preferences are not separable between wealth and health.

Partial insurance at the margin and caps on insurance indemnities are frequent, but

they are far from being a universal characterization of health insurance, be it offered by

social security or by private insurers. In the real world, we also observe limits to out-

of-pocket expenses that are usually reached for large inpatient care expenses.5 This

discrepancy between theory and practice may be the consequence of an unrealistic

feature of the standard ex post moral hazard model: in practice, patients are not

always allowed to choose their health expenses freely. It is a fact that basic health

expenses are more or less decided unilaterally by patients, for instance whether they

should visit their general practitioners or their dentists to cure benign illnesses, while

insurers have control over more serious expenses, in particular surgeries or other types

of hospital care.

3It is well known that optimal insurance contracts may include a deductible because of transaction

costs (Arrow, 1963), ex ante moral hazard (Holmström, 1979) or costly state verification (Townsend,

1979). Drèze and Schokkaert (2013) extend Arrow’s theorem of the deductible to the case of ex post

moral hazard. Although ceilings on coverage are widespread, they have been justified by arguments

that are much more specific: either the insurer’s risk aversion for large risks and regulatory constraints

(Raviv, 1979), or bankruptcy rules (Huberman et al., 1983) or the auditor’s risk aversion in costly

state verification models (Picard, 2000).
4A straight deductible contract, i.e., full coverage of losses above a deductible, is optimal when

effort affects the probability of an accident, but not the probability distribution of losses, conditionally

on the occurrence of an accident.
5See, for instance, the description of the health insurance plans in the Affordable Care Act at

https://www.healthcare.gov/health-plan-information/.

4



Extending our analysis in that direction, we will immerse the ex post moral hazard

problem in a costly state verification setting (Townsend, 1979). There should be no au-

dit for low health expenses, because monitoring the expenses would be cost prohibitive.

When health expenses cross a certain threshold, an audit should be triggered, and it

is then optimal to provide full coverage at the margin, i.e., to include an out-of-pocket

maximum in the indemnity schedule.

In brief, our objective is twofold: firstly, to characterize the optimal health insur-

ance indemnity schedule under ex post moral hazard in a way which is as robust as

possible, and, secondly, to extend this analysis to a costly state verification setting. To

do so, we will mainly limit ourselves to a simple model, similar to Blomqvist’s (1997),

with one period, one source of risk and one aggregate medical service, and where the

health care providers agency problems are ignored. Needless to say, this is a very

restrictive setting, and the literature on health insurance has gone well beyond.6 Our

focus will be limited to the "fundamental trade-off of risk spreading and appropriate

incentives" (Cutler and Zeckhauser, 2000, p.576), inherent in the optimal insurance

problem under ex post moral hazard, without exploring here these multiple exten-

sions. Obviously, crossing these two perspectives is crucial for reaching a thorough

understanding of health insurance markets.

Section 2 introduces our main notations and assumptions. Section 3 character-

izes the optimal non-linear insurance contract, when the policyholder’s preferences are

separable between wealth and health. Theoretical results are derived through opti-

mal control techniques, and they are also solved through a computational approach.

Section 4 immerses the ex post moral hazard problem in a costly state verification

setting, where health expenses may be audited. Section 5 appraises the robustness of

our results by considering alternative models, with correlated background risk, non-

6See, in particular, the references provided by Ellis, Jiang and Manning (2015) on multiple health

treatment goods, correlated sources of health uncertainty and trade-off between treatment and pre-

vention, and by Pflum (2015) on physician incentives.
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separable utility, and insurance loading, respectively. Section 6 briefly investigates

the connections between our analysis and public policy issues that are ignored in our

analysis, although they are of utmost importance. This includes the redistributive

objective of state-driven health insurance regimes, and the ineffi ciency loss due to the

agency relationship between physician and patient. Section 7 concludes. The main

proofs are in Appendix 1. Appendix 2 includes details on our computational approach

and a complementary set of proofs.

2 The model

We consider an individual whose welfare depends both on monetary wealth R and

health level H, with a bi-variate von Neumann-Morgenstern utility function U(R,H)

that is concave and twice continuously differentiable. In the following sections, as in

Blomqvist (1997), we restrict attention to the case where U is additively separable

between R and H, and we will write U(R,H) = u(R) + H, with u′ > 0 and u′′ < 0.

Thus, the individual is income risk averse and illness affects her utility, but it does not

affect the marginal utility of income.7 The non-separability case will be considered

in sub-section 5.2. The monetary wealth R = w − T is the difference between initial

wealth w and net payments T made or received by the individual for her health care,

including insurance transfers.

The health level may be negatively affected by illness, but it increases with health

expenditures. This is written as:

H = h0 − γx[1− v(m)], γ > 0,

where h0 is the initial health endowment, x ≥ 0 is the severity of illness (or health

state), m ≥ 0 denotes medical expenses and γ is a scaling parameter for the welfare

7Regarding the empirical analysis of utility functions that depend on health status, see particularly

Viscusi and Evans (1990), Evans and Viscusi (1991), and Finkelstein et al. (2013).
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gain from these expenses. We assume that v(m) is concave and twice continuously

differentiable, with v(0) = 0, v′(0) = +∞, v(m) ∈ (0, 1), v′(m) > 0, v′′(m) < 0 if

m ∈ (0,M), v′(M) = 0, v(m) = v(M) ≤ 1 if m ≥ M > 0. Illness severity x is

randomly distributed over the interval [0, a], a > 0, with c.d.f. F (x) and continuous

density f(x) = F ′(x) > 0 for all x ∈ [0, a).8

3 Optimal non-linear insurance

3.1 Incentive compatibility

We assume that coverage is offered by risk neutral insurers operating in a competitive

market without transaction costs, and that each individual can be insured through only

one contract. An insurance contract is characterized by a schedule I(m) that defines

the indemnity as a function of health expenditures and by premium P . Function

I(.) : R+ → R+ is supposed to be continuous, non-decreasing, piecewise continuously

differentiable and such that I(0) = 0.9 We have T = m+P − I(m) and R = w− T =

w − P −m + I(m).10 A type x individual chooses her health care expenses m(x) in

8For notational simplicity, we assume that there is no probability weight at the no-sickness state

x = 0, but the model could easily be extended in that direction.
9In addition to being realistic, assuming that I(m) is non-decreasing is not a loss of generality if

policyholders can claim insurance payment for only a part of their medical expenses: in that case,

only the increasing part of their indemnity schedule would be relevant. Piecewise differentiability

means that I(m) has only a finite number of non-differentiability points, which includes the indemnity

schedule features that we may have in mind, in particular those with a deductible, a rate of coinsurance

or an upper limit on coverage. I(0) = 0 corresponds to the way insurance works in practice, but it

also acts as a normalization device. Indeed, replacing contract {I(m), P} by {I(m) + k, P + k} with

k > 0, would not change the net transfer I(m)− P from insurer to insured, hence an indeterminacy

of the optimal solution. This indeterminacy vanishes if we impose I(0) = 0.
10Our notations are presented by presuming that policyholders pay m (i.e., the total cost of medical

services) and they receive the insurance indemnity I(m). However, we may also assume that the
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order to maximize her utility, that is

m(x) ∈ arg max
m̃≥0

{u(w − P − m̃+ I(m̃)) + h0 − γx[1− v(m̃)]} ,

and we denote Î(x) ≡ I(m(x)) the insurance indemnity received by this individual.

I(0) = 0 implies m(0) = 0, and thus we have Î(0) = I(m(0)) = 0.

The allocation {m(x), Î(x)}|x∈[0,a] is sustained by a direct revelation mechanism

in which health expenditures and the indemnity are respectively m(x̃) and Î(x̃) when

the individual announces that her health state is x̃ ∈ [0, a], and where truthfully

announcing the health state is an optimal strategy. The characterization of the optimal

indemnity schedule I(.) will go through the analysis of the corresponding optimal

revelation mechanism {m(.), Î(.)}. Let

V (x, x̃) = u(w − P + Î(x̃)−m(x̃)) + h0 − γx[1− v(m(x̃))]

be the utility of a type x individual who announces x̃. Thus, incentive compatibility

requires

x ∈ arg max
x̃∈[0,a]

V (x, x̃) for all x ∈ [0, a]. (1)

The insurer’s break-even condition is written as

P ≥
∫ a

0

Î(x)f(x)dx. (2)

An optimal revelation mechanism {m(.), Î(.)} : [0, a]→ R2+ maximizes the policy-

holder’s expected utility∫ a

0

{u(R(x)) + h0 − γx[1− v(m(x))]} f(x)dx, (3)

where R(x) ≡ w−P+ Î(x)−m(x), subject to (1) and (2). Lemma 1 is an intermediary

step that will allow us to write this optimization problem in a more tractable way.

insurer and policyholders respectively pay I(m) and m − I(m) to medical service providers. Both

interpretations correspond to different institutional arrangements, and both are valid in our analysis.
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Lemma 1 (i) For any incentive compatible mechanism, m(x) and Î(x) are non-

decreasing. (ii) There exists a continuous optimal direct revelation mechanism {m(.), Î(.)}.

(iii) Any continuous direct revelation mechanism is incentive compatible if and only if

Î ′(x) =

[
1− γxv′(m(x))

u′(R(x))

]
m′(x), (4)

m′(x) ≥ 0, (5)

at any differentiability point.

The monotonicity of incentive compatible mechanisms is intuitive: more severe

illnesses induce higher medical expenses and higher insurance compensation. If a rev-

elation mechanism includes discontinuities in Î(x) and m(x), then it is possible to

reach the same expected utility with lower indemnities and expenses, and such a

mechanism would not be optimal. The interpretation of (4) and (5) is as follows. Sup-

pose a type x individual slightly exaggerates the severity of her illness by announcing

x̃ = x + dx instead of x̃ = x. Then, at the first-order, the induced utility variation

is {u′(R(x))[Î ′(x)−m′(x)] + γxv′(m(x))m′(x)}dx, which cancels out when (4) holds.

Monotonicity condition (5) is the local second-order incentive compatibility condition.

Symmetrically, it is easy to show that (4)-(5) implies incentive compatibility.

3.2 The optimal insurance contract

Let us denote h(x) ≡ m′(x). The optimal revelation mechanism maximizes the poli-

cyholder’s expected utility given by (3) with respect to Î(x),m(x), h(x), x ∈ [0, a] and

P , subject to Î(0) = m(0) = 0, condition (2) and

Î ′(x) =

[
1− γxv′(m(x))

u′(R(x))

]
h(x), (6)

m′(x) = h(x), (7)

h(x) ≥ 0 for all x, (8)

Î(x) ≥ 0 for all x, (9)
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This is an optimal control problem where Î(x) and m(x) are state variables and h(x)

is a control variable.11 Propositions 1, 2 and 3 and Corollaries 1 and 2 characterize

the optimal solution to this problem as well as the corresponding indemnity schedule

I(m).

Proposition 1 The optimal mechanism is such that 0 < Î(x) < m(x) for all x > 0.

Proposition 2 Assume f(x) is non-increasing and ln f(x) is weakly convex. Then

there exists x in (0, a] such that

0 < Î ′(x) < m′(x) if 0 < x < x,

Î(x) = Î(x),m(x) = m(x) if x < x ≤ a.

Corollary 1 x = a if x is uniformly distributed over [0, a].

Corollary 2 Assume f(a) = f ′(a) = 0, f ′′(a) > 0, and d ln f(x)/dx and d2 ln f(x)/dx2

remain finite when x→ a. Then, we have x < a.

Proposition 1 states that the policyholder receives partial but positive compen-

sation in all of the cases where she incurs care expenses. This is an intuitive result,

since there is no reason to penalize a policyholder who would announce that her health

health expenses are low (i.e., that x is close to 0). However, it sharply contrasts the ex

ante moral hazard setting, since we know from Holmström (1979) that, in that case, a

11We use Lemma 1-(ii) to restrict attention to functions Î(x) and m(x) that are continuous. Fur-

thermore, Î(x) and m(x) are piecewise differentiable because I(m) is piecewise differentiable. This

allows us to use Pontryagin’s principle in the proof of Proposition 1. In this proof, it is shown that the

optimal revelation mechanism is such that Î ′(x) ≥ 0. Since m′(x) ≥ 0, the optimal mechanism will be

generated by a non-decreasing indemnity schedule I(m), as we have assumed. Note that Blomqvist

(1997) studies a similar optimization problem, but he wrongly ignores the second-order conditions (8)

and the sign conditions (9). Nor does he fully consider the technical implications of the assumption

v′(0) = +∞, in the absence of which we would have a corner solution with m(x) = 0 for x small.
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straight deductible may be optimal, and more generally not indemnifying small claims

may be part and parcel of an optimal insurance coverage.12

The optimal contract trades off risk-sharing and incentives to not overspend for

medical services. According to Proposition 2, if f(x) is non-increasing and ln f(x) is

weakly convex,13 then this trade-off may tip in favor of the incentive effect when x is

large enough. If x is lower than x, then m(x) and Î(x) monotonically increase, with

an increase in the out-of-pocket expenses m(x)− Î(x), when x goes from 0 to x. When

x ≥ x, there are ceilings m(x) and Î(x), respectively, for expenses and indemnity.

Corollaries 1 and 2 illustrate the two possible cases x = a (no bunching) and x < a

(bunching), respectively. There is no bunching when the illness severity is uniformly

distributed in the [0, a] interval. If the density function of x decreases to zero when x

goes to a and is differentiable at x = a, then Corollary 2 provides a suffi cient condition

for bunching to be optimal. In the first case, the probability of the highest severity

levels remains large enough for the capping of expenditures and indemnities to be

sub-optimal, while in the second case it is optimal. If we consider the differentiability

of density f(x) at the top as a natural assumption, then Corollary 2 provides support

for upper limits in optimal insurance indemnity schedules.

In what follows, we provide detailed intuition for the possibility of bunching, and

particularly for the reason why it occurs under the assumptions of Corollary 2. We

may first observe that increasing Î(x) is a way to incentivize type x policyholders to

report her health state truthfully (i.e., not to report x̃ > x) and also to improve her

coverage. However, as highlighted in Lemma 1-iii, this can be done only by increasing

m(x) in order to preserve the incentives of type x′ policyholders for x′ < x. This

increase in m(x) will exacerbate the overexpense problem. Bunching occurs when the

12Note the relationship of Proposition 1 with optimal insurance under (ex ante) moral hazard when

effort affects the distribution of losses should an accident occur, but not the probability of the accident

itself. In that case, it may be optimal to fully cover small losses without a deductible. See Rees and

Wambach (2008).
13This is the case, for instance, if the distribution of x is uniform or exponential.
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negative effect of an increase in health care expenses outweighs the positive effect of a

more complete insurance coverage.

In order to understand this trade-off more completely, let us consider the co-state

variables µ1(x) and µ2(x), associated with Î(x) and m(x), respectively. The evolu-

tion laws of µ1(x) and µ2(x) are derived from optimal control theory, and they are

used extensively in the proofs. They correspond to the first-order variations in the

objective of the partial optimization problem limited to [x, a], following discontin-

uous small variations ∆Î(x) > 0,∆m(x) > 0.14 A discontinuous increase in Î(x)

would be advantageous because it improves risk coverage and it corresponds to a re-

laxation of the upward incentive compatibility constraint (type x individuals have less

incentive to report x̃ larger than x). Conversely, an upward discontinuous shift in

m(x) would exacerbate the distortion between the marginal utility of wealth u′(R(x))

and the marginal utility of health expenses γxv′(m(x)). It is therefore intuitive that

µ1(x) > 0, µ2(x) < 0, which is established and used in the proofs, as well as the

transversality conditions µ1(a) = µ2(a) = 0.

Lemma 1 shows that we should have

∆Î(x)

∆m(x)
= 1− γxv′(m(x))

u′(R(x))

for such discontinuous upward variations to be approximated, as closely as we would

like, by incentive compatible continuous trajectories Î(x) and m(x). Keeping in mind

this link between feasible variations in Î(x) and m(x), let us denote

ϕ(x) ≡ µ1(x)

[
1− γxv′(m(x))

u′(R(x))

]
+ µ2(x).

Function ϕ(x) sums up the negative effect of an increase in m(x) and the positive

effect of the induced increase in Î(x), weighted by µ2(x) and µ1(x), respectively, with
14In more technical terms, we may define the value function v(I0,m0, x) to be the greatest expected

utility over [x, a], with unchanged insurance expected cost, if we start at Î(x) = I0,m(x) = m0. The

vector of costates (µ1(x), µ2(x)) is the gradient at x of the value function, evaluated along the optimal

trajectory.
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ϕ(a) = 0. The previous intuitive reasoning suggests (and the proof confirms) that

an optimal solution should satisfy ϕ(x) = 0 if h(x) > 0 and ϕ(x) ≤ 0 if h(x) =

0.15 In particular, if m′(x) = h(x) > 0 we have γxv′(m(x)) < u′(R(x)) and thus

Î ′(x) > 0, which corresponds to the two possible regimes described in Proposition 2:

m(x) and Î(x) are simultaneously increasing or stationary. Bunching occurs when the

negative effect of an increase in health expenses outweighs the gains from an increase

in insurance coverage. More details are provided in the following remark.

Remark 1 To be more explicit about the conditions under which there is bunching,

let us assume x < a, with m(x) = m and R(x) = R when x ∈ [x, a]. Then, it can be

shown that

µ1(x)

1− F (x)
= u′(R)− λ,

µ2(x)

1− F (x)
= −u′(R) + γv′(m)

∫ a

x

t
f(t)

1− F (x)
dt,

if x ∈ [x, a], where λ is the (positive) Lagrange multiplier associated with the in-

surer’s break-even constraint (2).16 Intuitively, when there is bunching, the trajectory

m(x), Î(x) is stationary, and the first-order effect of an increase ∆Î(x) on the pol-

icyholder’s expected utility is just the difference between the policyholder’s marginal

utility gain u′(R)∆Î(x) and the marginal loss due to the induced increase in insurance

cost λ∆Î(x), multiplied by the probability 1 − F (x) of being in [x, a]. Similarly, the

first-order effect of an increase ∆m(x) can be approximated by the variation of the

policyholder’s surplus −[u′(R) − γtv′(m)]∆m(x) averaged over [x, a] according to the

conditional density f(t)/[1− F (x)] . Hence, for all x in [x, a], we have

ϕ(x) = G(x)[1− F (x)],

15ϕ(x) is called a "switching function" in the optimal control terminology, because its sign deter-

mines the sign of the control.
16These conditions can be deduced from the trajectories of µ1(x) and µ2(x).
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where

G(x) = −λ
[
1− γxv′(m)

u′(R)

]
+ γv′(m)

[∫ a

x

t
f(t)

1− F (x)
dt− x

]
.

When x is uniformly distributed, we have f(x) = 1/a, F (x) = x/a and ϕ(x) is a

second degree polynomial when x ∈ [x, a]. To simplify things, assume that the control

h(x) is continuous at x = x.17 Then, the switching function ϕ(x) is differentiable at

x = x, with ϕ(x) = ϕ′(x) = 0, which is incompatible with ϕ(a) = 0 when ϕ(x) is a

second degree polynomial. Hence, bunching cannot occur in that case, as established in

Corollary 1.18 Under the assumptions of Corollary 2, we have ϕ(a) = ϕ′(a) = ϕ′′(a) =

0 and ϕ′′′(a) = −f ′′(a)G(a). Hence G(a) < 0 is a suffi cient condition for ϕ′′(x) < 0

when x is close to a, x < a. In that case, the switching function ϕ(x) has a local

maximum at x = a, with ϕ(x) < 0 when x is close to a. The proof of Corollary 2

shows that this is actually what occurs.

Remark 2 Proposition 2 is based on assumptions that we may find overly restric-

tive. It can be reformulated in a weaker form, by only assuming that f(x) is non-

increasing and ln f(x) is weakly convex in a subinterval [x0, x1] ⊂ [0, a], and in that

case there exists x ∈ (x0, x1] such that Î(x) and m(x) are increasing over [x0, x) and

constant over [x, x1]. For instance, if x is log-normal, with a = +∞,E[ln(x)] = µ and

V ar[ln(x)] = σ2, then ln f(x) is decreasing and convex when x ≥ exp(1+µ−σ2) ≡ x0.

In that case, Î(x) and m(x) are increasing in [x0, x), and constant in [x,+∞), with

x > x0. Similarly, the proof of Corollary 2 shows that bunching at the top is optimal

without using the assumptions made in Proposition 2. In other words, these assump-

tions guarantee that there exists a threshold x such that bunching occurs if and only if

x ≥ x, but they are not required to show that there is bunching when x is large enough.

Proposition 3 Under the assumptions of Proposition 2, the optimal indemnity sched-
17The proofs do not require this assumption.
18A similar but more complex argument is used in the proof of Proposition 2 to show that bunching

cannot occur in intervals interior to [0, a].
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ule I(m) is such that

I ′(m) ∈ (0, 1) if m ∈ (0,m),

I ′(m)− = 0 if x = a, I ′(m)− > 0 if x < a,

I(m) = I(m) if m ≥ m,

where m = m(x). We have I ′(0) ≥ 0 and lim
m→0
− mv′′(m)/v′(m) < 1 is a suffi cient

condition for I ′(0) > 0.

The characterization of the indemnity schedule I(m) provided in Proposition 3 is

derived from I(m(x)) ≡ Î(x) , which gives

I ′(m) =
Î ′(x)

m′(x)
= 1− γxv′(m(x))

u′(R(x))
< 1,

if m = m(x) and 0 < x < x. If there is no bunching, then there is no distortion at the

top, i.e., the marginal benefit drawn from health care expenses is equal to the marginal

utility of wealth: this corresponds to u′(R) − γxv′(m) = 0, and thus I ′(m) = 0. We

have I ′(m)− > 0 in the case of bunching.

Hence, the indemnity schedule has a slope between 0 and 1 in its increasing part.

At the bottom, there is no deductible, contrary to case of ex ante moral hazard. At

the top, in the case of bunching, the indemnity schedule has an angular point at

m = m, and all the individuals with an illness severity larger than x are bunched

with the same amounts of health expenses m and insurance indemnity I(m).19 In the

absence of bunching, the population of policyholders is spread from m(0) = Î(0) = 0

to m(a) > Î(a) > 0 when x increases from 0 to a, with different choices for different

illness severity levels. The slope of the indemnity schedule I(m) goes to zero when m

increases to m = m(a) because γav′(m) = u′(R), with R = R(a). This corresponds

19In practice, the optimal policy could be approximated by a piecewise linear schedule with slope

between 0 and 1 until the upper limit m and with a capped indemnity when m > m. It would be

interesting to estimate the welfare loss associated with this piecewise linearization. The simulations

presented in Section 3.3 suggest that this loss may be low.
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to the absence of distortion at the top of the interval [0, a] when there is no bunching,

a property shared by other principal-agent models with hidden information and risk-

averse agent, such as Salanié (1990) and Laffont-Rochet (1998).

Propositions 2 and 3 justify the existence of a cap on indemnity I(m), but they also

show that medical expenses should not increase in illness severity after the reimburse-

ment ceiling is reached. Intuitively, if Î(x) is constant and m(x) increases when x is

large, then slightly perturbing the trajectory Î(x) so that it is monotonically increas-

ing, with a compensating increase in premium P , would improve risk sharing while

preserving incentive compatibility. In other words, the profiles of medical expenses

and insurance indemnities move simultaneously, and placing a ceiling on insurance

indemnities only makes sense because medical expenses are also capped.20

3.3 Simulations

Simulations are performed by transforming the infinite dimensional optimal control

problem into a finite dimensional optimization problem, through a discretization of

x, applied to the state and control variables, as well as the dynamic equations.21 We

assume that x is distributed over [0, 10] (that is, a = 10), either exponentially, i.e.,

f(x) = λe−λx+e−λa/a, with λ = 0.25,22 or uniformly, i.e., f(x) = 1/a. We also assume

v(m) =
√
m/[1+

√
m], with γ = 0.2 and utility is CARA: u(R) = −e−sR, with s = 10.

The numerical solver leads to optimal functions Î(x) and m(x) - and also to h(x) and

P - and thus to function I(m) through I(m(x)) = Î(x) for all x ∈ [0, a].

Figure 1 represents the optimal indemnity schedule I(m) and indifference curves in

20The same intuition is at work to show that Î ′(x) > 0 when x is close to zero, and thus that the

indemnity schedule should not include a deductible, with additional technical specificities induced by

the sign constraint Î(x) ≥ 0.
21We use the Bocop software (see Bonnans et al., 2016, and http://bocop.org). We refer the reader

to Appendix 2-A and, for instance, to Betts (2001) and Nocedal and Wright (1999) for more details

on direct transcription methods and non-linear programming algorithms.
22Note that f(a) and f ′(a) are close to 0 when a is large.
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the (m, I) space for x ∈ {0.3, 7, 9} when x is uniformly distributed. Parameters σ and

k will be introduced later: they correspond to a loading factor and to the intensity of a

background risk, respectively. Here, both are equal to 0, since there is no loading and

no background risk. The optimal type x indifference curve is tangent to the indemnity

schedule for expenses m(x). As stated in Corollary 1, there is no bunching: m(x) goes

from m(0) = 0 to m = m(10) ' 0.7002 and Î(x) = I(m(x)) goes from I(0) = 0 to

I(0.7002) ' 0.3863, when x goes from 0 to 10. There is no deductible (i.e. I ′(0) > 0)

and the marginal coverage cancels at the top, that is I ′(0.7002) = 0. The locus of

function I(m) is completed by a flat part for m > m, while preserving differentiability.

The slope of the type x policyholder indifference curve is written as

dI

dm |EU=const.
=
U ′(w − P −m+ I)− γxv′(m)

U ′(w − P −m+ I)
,

and it cancels at the top of the increasing part of the I(m) curve, when m = m, which

corresponds to the optimal policyholder’s choice when x = 10. The optimal choices of

the policyholder are spread from m = 0 to m = m when x goes from 0 to 10, and the

flat part of the I(m) curve is never reached.

Figure 2 corresponds to the case of an exponential distribution, with indifference

curves also drawn for x ∈ {0.3, 7, 9}. Now, there is bunching at the top, as expected

from Corollary 2. We have x ' 6.7 and m ' 0.7490. I(m) has an angular point at

m = m, with I(m) ' 0.4253. Figure 2 illustrates the case of types x = 7 and x = 9:

in both cases, the optimal expenses are equal to m. As in Figure 1, we have I ′(0) > 0.

Figures 1 and 2

4 Auditing

We still consider allocations {m(x), Î(x)}|x∈[0,a] that are induced by non-linear indem-

nity schemes I(m) with Î(x) ≡ I(m(x)). However, as in the costly state verification
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Figure 1 

Uniform distribution – No bunching 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

Exponential distribution - Bunching 

 



approach introduced by Townsend (1979), we now assume that the insurer can verify

the health state x by incurring an audit cost c > 0. We restrict attention to a de-

terministic auditing strategy, in which the insurer audits the insurance claims larger

than a threshold m∗, or equivalently, since m(x) will be non-decreasing, when x > x∗

= inf{x : m(x) > m∗}.23 In the case of an audit, the policyholder’s medical expenses

are capped by the expense profile m(x).24 In other words, audit allows the insurer

to monitor the policyholder’s medical expenses. Thus, a type x individual chooses

her health expenses m′ under the constraint m′ ≤ sup{m∗,m(x)}, and she receives

indemnity I(m′).

Definition 1 {I(m),m(x),m∗, P}|x∈[0,a] implements the allocation {m(x), Î(x), x∗, P}|x∈[0,a]
if (i) : m(x) is an optimal expense choice of type x individuals under indemnity schedule

I(m), constraint m ≤ sup{m∗,m(x)}, and insurance premium P ,(ii) : Î(x) = I(m(x))

for all x ∈ [0, a], and (iii) : there is audit when x > x∗ = inf{x : m(x) > m∗}.

For the sake of realism, we restrict attention to (piecewise differentiable) continuous

functions I(m) such that I ′(m) ≤ 1 if m ≥ m∗, although, as we will see, an upward

discontinuity of I(m) at m = m∗ would be optimal.25 We denote g(x) ≡ Î ′(x) when

23More generally, the insurer could randomly audit claims, the probability of triggering an audit

depending on the size of the claim. See the references in Picard (2013) on deterministic and random

auditing for insurance claims.
24The policyholder is subject to prior authorization for increasing her medical expenses above m∗.

After auditing the health state, this authorization will be granted but capped by m(x) if x > x∗, and

otherwise it will be denied.
25Since an upward discontinuity of I(m) at m = m∗ dominates the optimal solution when I(m) is

constrained to be continuous, increasing I(m) as much as possible in a small interval (m∗,m∗ + ε)

would bring the continuous function I(m) arbitrarily close to this discontinuous function. No optimal

solution would exist in the set of continuous functions I(m). Thus, in addition to being realistic from

an empirical point of view, the assumption I ′(m) ≤ 1 if m ≥ m∗ eliminates this reason for which

an optimal solution may not exist. As previously shown, we have I ′(m) < 1 in the no-audit regime

where m < m∗.
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x > x∗ , and, as previously, h(x) = m′(x) for all x. The optimization problem is

written as

max

∫ a

0

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx

with respect to Î(x),m(x), g(x), h(x), x∗ ∈ [0, a], and P , subject to Î(0) = 0,(7) and

(9) for all x, (6) and (8) if x ≤ x∗, and

Î ′(x) = g(x) if x > x∗, (10)

0 ≤ g(x) ≤ h(x) if x > x∗, (11)

P =

[∫ x∗

0

Î(x)f(x)dx+

∫ a

x∗
[Î(x) + c]f(x)dx

]
. (12)

Condition (11) follows directly from 0 ≤ I ′(m) ≤ 1 when m ≥ m∗ since I ′(m(x)) =

Î ′(x)/m′(x) = g(x)/h(x). Now, we have an optimal control problem with two regimes,

according to whether x is smaller or larger than x∗ and where g(x) is a new control

variable when x > x∗.26 In the first stage, we will characterize the optimal trajectory

Î(x),m(x) over the interval (x∗, a], for a given trajectory Î(x),m(x) over [0, x∗] and for

given values of P and x∗. In the second stage, we will solve for the optimal trajectory

Î(x),m(x), x ∈ [0, x∗] and for the optimal values of P and x∗, given the characterization

of the optimal continuation trajectory.

Let I∗ = Î(x∗) and m∗ = m(x∗), with I∗ ≤ m∗. For {Î(x),m(x), x ∈ [0, x∗]}, P

and x∗ given and such that

P ≥
∫ x∗

0

Î(x)f(x)dx+ (I∗ + c)[1− F (x∗)], (13)

u′(w − P −m∗ + I∗) ≥ γx∗v′(m∗). (14)

{Î(x),m(x), g(x), h(x), x ∈ (x∗, a]} maximizes∫ a

x∗

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx, (15)

26If c = 0, then the first-best allocation would be feasible with x∗ = 0, that is by auditing the

health state in all possible cases. Thus, choosing x∗ smaller than a is optimal when c is not too large,

and this is what we assume in what follows.
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subject to (7), (10)-(12). This is a subproblem restricted to x ∈ (x∗, a]. Note that

Î(x) = I∗,m(x) = m∗, g(x) = 0, h(x) = 0 for all x ∈ (x∗, a] is a feasible solution to

this subproblem because of (13). Conversely, (13) holds for any solution such that

g(x) = Î ′(x) ≥ 0 for all x ∈ (x∗, a]. Furthermore, we have

u′(w − P −m(x) + I(m(x))[1− I ′(m(x))]− γxv′(m(x)) = 0,

for all x ≤ x∗. Using I ′(m) ≤ 1 for all m gives:

u′(w − P −m(x) + I(m(x))− γxv′(m(x)) ≥ 0,

and using m∗ = m(x∗) implies (14). Thus, we may characterize the optimal solution

to this subproblem by assuming (13) and (14) without further loss of generality.

Lemma 2 When x∗,m∗, P and I∗ satisfy (13) and (14), the optimal continuation

allocation is such that

Î ′(x) = m′(x) = 0 if x ∈ [x∗, x̃],

Î ′(x) = 0,m′(x) = − γv′(m(x))

γxv′′(m(x)) + u′′(R(x))
if x ∈ [x̃, x̂],

Î ′(x) = m′(x) = − v′(m(x))

xv′′(m(x))
if x ∈ (x̂, a],

where R(x) = w − P −m(x) + I∗ and x∗ ≤ x̃ ≤ x̂ < a, with x∗ = x̂ for the optimal

allocation.

Lemma 2 characterizes an optimal continuation allocation, with x∗,m∗, P and I∗

considered as parameters. In particular, I∗ and m∗ may differ from the optimal so-

lutions Î(x∗) and m(x∗). If the hypothesized values of I∗ and/or m∗ are large (in

particular, if they are larger than their optimal value around x∗ in the global prob-

lem), then an optimal solution of the restricted problem may consist in keeping Î(x)

and/or m(x) constant when x larger than but close to x∗, and to increase Î(x) and

m(x) only when x is substantially larger than x∗. Lemma 2 says that the increase
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in Î(x) should be concentrated on the highest values of x, that is when x > x̂ with

x̂ ∈ [x∗, a]: these values correspond to the largest health expenses, and thus to the

cases where the marginal utility of wealth is the largest. In the lowest part of the

interval, i.e., when x < x̃, not increasing health expenses may be optimal. Lemma 2

also states that the optimal insurance contract provides full coverage at the margin,

that is Î ′(x) = m′(x), when x > x̂. There is nothing astonishing here: in the case of

an audit, there is no more asymmetry of information, and the policyholder should be

fully compensated for any increase in her insurable losses.27

Lemma 2 states that three regimes may potentially exist in the restricted problem:

Î ′(x) = m′(x) = 0 when x∗ < x ≤ x̃, Î ′(x) = 0,m′(x) > 0 when x̃ < x ≤ x̂, and

Î ′(x) > 0,m′(x) > 0 when x̂ < x < a. However, if the two first regimes were part

and parcel of the globally optimal solution, i.e., if x∗ < x̃ and/or x̃ < x̂, then a costly

audit woud be performed when x ∈ (x∗, x̂], although the same insurance indemnity I∗

is paid when the policyholder chooses m ∈ (m∗,m(x̂)) than when she choses m∗. This

would be obviously suboptimal. In other words, a globally optimal allocation should

be such that x∗ = x̂, because auditing is useless if the indemnity does not increase

above the maximum I∗ that can be reached in the no-audit regime.

Let V (m∗, I∗, x∗, P, A) be the value of the integral (15) at an optimal continuation

equilibrium, where

A =

∫ x∗

0

Î(x)f(x)dx. (16)

27See Gollier (1987) and Bond and Crocker (1997) for similar results; see also Picard (2013) for a

survey on deterministic auditing in insurance fraud models. Lemma 2 also characterizes the optimal

health expenses profile m(x) when there is auditing and full insurance at the margin (that is when

x > x̂): we have m′(x) = −v′(m(x))/xv′′(m(x)), which means that the increase in health expenses

which follows a unit increase in the illness severity x is equal to the inverse of the elasticity of the

marginal effi ciency of health expenses v′(m(x)). Equivalently, the marginal utility of health care

expenses γxv′(m(x)) should remain constant in the auditing regime.
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Our global optimization problem can be rewritten as

max

∫ x∗

0

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx+V (m∗, I∗, x∗, P, A)

with respect to {Î(x),m(x), g(x), h(x), x ∈ [0, x∗]}, x∗ ≥ 0, A and P , subject to Î(0) =

0, I∗ = Î(x∗),m∗ = m(x∗), (6)-(9) and (16). The optimal solution to this problem and

the corresponding indemnity schedules are characterized as follows.

Proposition 4 The optimal mechanism with audit is such that x∗ > 0, with

Î ′(x) = m′(x) > 0 if x ∈ (x∗, a],

and with an upward discontinuity of Î(x) and m(x) at x = x∗. Furthermore, under

the same assumptions as Proposition 2, there is x ∈ (0, x∗] such that

0 < Î ′(x) < m′(x) if 0 ≤ x < x,

Î(x) = Î(x),m(x) = m(x) if x < x ≤ x∗.

Proposition 5 Under the same assumptions as Proposition 2, the optimal indemnity

schedule with audit is such that m∗ = m ≡ m(x) > 0, and

I ′(m) ∈ (0, 1) if m ∈ (0,m),

I ′(m) = 1 if m > m.

Propositions 4 and 5 show that auditing allows the insurer to offer a protective

shield that limits the policyholder’s copayment m(x)− Î(x). This copayment increases

with the expenses when there is no audit, and it reaches an out-of-pocket maximum

m − I(m) when the expenses reaches the threshold m∗ = m ≡ m(x) above which an

audit is triggered. The threshold m is reached by a positive mass subset of individuals

(those with x ∈ [x, x∗]) in the case of bunching. The incentive compatibility constraint

vanishes when the health state is audited, which explains why crossing the border

between the two regimes should be accompanied by an upward jump in health expenses

fromm tom(x∗), and insurance payment from I(m) to I(m(x∗)) = I(m)+m(x∗)−m.28
28Of course, this discontinuity of function m(x) at x = x∗ is compatible with a continuous function

I(m).
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Proposition 5 is illustrated in Figure 3, in the exponential distribution case with

c = 0.25. We have x∗ ' 4.95. There is coinsurance at the margin, with bunching at

the top when m < m∗ = m, and an upward discontinuity of Î(x) and m(x) at x = x∗.

There is full insurance at the margin, that is I ′(m) = 1 when m ≥ m∗, with a limit

of out-of-pocket expenses equal to m∗ − I(m∗). In Figure 3-bottom, the two regimes

of the I(m) locus are patched together by a dotted line from m∗ = m ' 0.41 to

m(x∗) ' 0.95 with constant slope equal to one, in order to define I(m) for all m ≥ 0,

but m is never chosen in (m,m(x∗)).29

The dependency between the threshold x∗ and the audit cost c is simulated in

Figure 4. As expected, the larger the audit cost, the larger the threshold above which

it is optimal to audit health care expenses.

Figures 3 and 4

5 Alternative models and robustness

The previous sections have shown how optimal insurance under ex post moral hazard

involves partial coverage at the margin, no deductible and, possibly, an upper limit on

medical care expenses and coverage, as long as an audit of the patient’s health state is

not required. This section exlores the robustness of these conclusions by considering

alternative modeling options. For the sake of brevity, we will limit ourselves here to

the most simple model of sections 2 and 3, without auditing.

29The bunching of types is no longer sustained by a kink in the indemnity schedule I(m) at m = m,

but by the threat of an audit, since increasing expenses above m will not be possible if x ≤ x∗.
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 Figure 3 

Exponential distribution: Auditing without loading 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

Dependency between threshold x* and audit cost c 

 



5.1 Correlated background risk

Let us first consider the case where the health level affects monetary income through

an uninsurable background risk.30 We assume that illness severity x randomly reduces

the monetary wealth by an amount ε. G(ε | x) denotes the c.d.f. of ε, conditionally

on x and we assume G′x(ε | x) < 0, where subscript x refers to the partial derivative.31

Thus, an increase in the illness severity level x shifts the distribution function of ε in the

sense of first-order dominance. Now, the individual’s utility is written as u(R−ε)+H,

where R denotes the monetary wealth excluding the background risk, and we have

V (x, x̃) = u(R(x̃), x) + h0 − γx[1− v(m(x̃))],

still with R(x̃) ≡ w − P + Î(x̃)−m(x̃), where

u(R, x) ≡
∫ +∞

0

u(R− ε)dG(ε | x).

Thus, the utility of wealth is now written as a state dependent function u(R, x), with

u′R > 0, u′′R2 < 0, u′x < 0 and u′′Rx > 0. Lemma 2 straightforwardly extends Lemma 1

to this case.

Lemma 3 Under correlated background risk, the direct revelation mechanism {m(.), Î(.)}

is incentive compatible if and only if

Î ′(x) =

[
1− γxv′(m(x))

u′R(R(x), x)

]
m′(x),

m′(x) ≥ 0,

for all x ∈ [0, a], with R(x) ≡ w − P + Î(x)−m(x).

30An example is when the individual may lose a part of her business or wage income when her

health level deteriorates.
31If ε is continuously distributed, then G′ε(ε | x) > 0 is the density of ε conditionally on x.
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Thus, the necessary and suffi cient conditions for incentive compatibility are almost

unchanged: we just have to replace u(R) with the state-dependent utility u(R, x).

Proposition 1, 2 and 3 can be adapted to the case where the individual incurs a

correlated background risk, with unchanged conclusion, i.e., the fact that the optimal

indemnity schedule does not include a deductible and that bunching at the top may

be optimal. Corollary 2 is still valid, but not Corollary 1. In other words, bunching

may now be optimal when x is uniformly distributed. Indeed, simulations show that

correlated background risk reinforces the likelihood of bunching. We simulate the

optimal contract under the assumption ε ≡ kx/(a − x) = ε(x) and u(R(x), ε) =

u(R(x) − ε(x)),where parameter k measures the intensity of the background risk.

Figure 5 illustrates a case where k = 0.01 with bunching for the optimal contract.32

Figure 5

5.2 Non-separable utility

We now turn to the case where U(R,H) may be non-separable between R and H.33

It is assumed that U(R,H) is increasing with respect to R and H and concave. We

thus have U ′R > 0, U ′H > 0, U ′′R2 < 0, U ′′H2 < 0 and U ′′R2U
′′
H2 − U ′′2RH > 0. We also assume

U ′′HR > 0,34 and we denoteΦ(R,H) ≡ U ′H/U
′
R the marginal rate of substitution between

monetary wealth and health, with

Φ′R =
U ′′HRU

′
R − U ′HU ′′R2
U ′2R

> 0,

Φ′H =
U ′′H2U ′R − U ′HU ′′HR

U ′2R
< 0.

32In Figure 5-top, indifference curves for x = 7 and 9 almost coincide. Figure 5-bottom shows that

m decreases when k increases, with a decrease in the upper limit of the insurance indemnity I(m).

There is bunching only when k > 0 since Figure 5 corresponds to the case of uniform distribution.
33Henceforth, we assume there is no background risk.
34U ′′HR > 0 is assumed for the sake of simplicity. Lemma 3 is valid under more general conditions

that are compatible with U ′′HR ≤ 0.
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Figure 5 

Uniform distribution 

Case where the background risk creates bunching 

 

 



Thus, the individual is more willing to pay for a marginal improvement in her health

level when her income is higher and when her health level is lower. We now have

V (x, x̃) = U
(
w − P + Î(x̃)−m(x̃)), h0 − γx[1− v(m(x̃))]

)
.

Lemma 4 is a direct extension of Lemma 1 to the case of a non-separable utility

function, with a similar interpretation.

Lemma 4 Under non-separable utility, the direct revelation mechanism {m(.), Î(.)}

is incentive compatible if and only if

Î ′(x) = [1− γxv′(m(x))Φ (R(x), H(x))]m′(x), (17)

m′(x) ≥ 0, (18)

for all x ∈ [0, a], where R(x) ≡ w−P + Î(x)−m(x) and H(x) ≡ h0−γx[1− v(m(x)).

Now, the optimal incentive compatible mechanism maximizes∫ a

0

{
U
(
w − P + Î(x)−m(x)), h0 − γx(1− v(m(x)))

)}
f(x)dx

with respect to Î(.),m(.), h(.) and P , subject to Î(0) = 0, and (2),(7)-(9), and

Î ′(x) = [1− γxv′(m(x))Φ (R(x), H(x))]h(x). (19)

We have simulated the non-separable utility case with U(R,H) = (b0
R1−α

1−α +b1)H
β.35

The optimal indemnity schedule remains qualitatively similar to the characterization

provided in Section 2. Figure 6-top illustrates the case of an exponential distribution

with bunching.36

Figure 6
35Thus, utility is CRRA w.r.t. wealth. Parameters are α = 2, β = 0.5, b0 = 0.01 and b = 1.
36Figure 6-bottom adds a background risk and a loading factor, and it illustrates the optimality of

a deductible, as shown in Section 5.3.
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Figure 6 

Non-separable utility  –  Exponential distribution 



5.3 Insurance loading

In practice, insurance pricing includes a loading that reflects various underwriting

costs, including commissions to agents and brokers, operating expenses, loss adjust-

ment expenses and capital cost. Let us assume that the premium is loaded at rate σ,

which gives

P = (1 + σ)

∫ a

0

Î(x)f(x)dx, (20)

instead of (2). As initially established by Arrow (1971), the optimal contract contains

a straight deductible when there is a positive constant loading factor. Propositions 6

and 7 extend this characterization to the case of ex post moral hazard.

Proposition 6 Under constant positive loading σ and with the same assumptions as

Proposition 2, the optimal indemnity schedule without auditing includes a deductible

D > 0 and an upper limit I(m), that is

I(m) = 0 if m ≤ D,

I ′(D) ∈ [0, 1),

I ′(m) ∈ (0, 1) if m ∈ [D,m),

I(m) = I(m) if m ≥ m,

I ′(m) = 0 if x = a, I ′(m) > 0 if x < a.

Corollary 3 Under the same assumptions as Corollary 1, we have x = a, i.e., there

is no bunching.

Corollary 4 Under the same assumptions as Corollary 2, we have x < a, i.e., there

is bunching.

Figure 7 illustrates Corollary 4 in the case of an exponential distribution. Loading

shifts the indemnity schedule rightward and creates a deductible (D ' 0.3202 =

m(0.41) when σ = 0.1), in addition to bunching at the top.

Figure 7
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Figure 7 

Exponential distribution - A deductible is optimal under loading 



6 Public policy objectives

6.1 Income redistribution

So far, we have assumed that all patients have identical wealth w. From a normative

standpoint, this refers either to an unrealistic world where social inequality does not

exist, or to a case where policy instruments allow the government to design health in-

surance and income redistribution independently. More realistically, the literature on

optimal taxation highlights that income redistribution is limited by incentive compati-

bility and informational constraints. This leads to the persistence of wealth inequalities

that may affect how health insurance should be designed.

Analyzing a fully-fledged integrated public policy, with interaction between income

redistribution and health care insurance coverage, would go far beyond the objectives

of this paper. We may nevertheless draw upon our model to sketch out how income

inequalities may affect our conclusions. A possible approach consists in assuming that

there are several groups of policyholders indexed by i = 1, ..., n, with initial wealth wi

in group i and identical health risk exposures and risk preference. In other words, all

groups are identical, except as regards initial wealth. Let θi ≥ 0 be the fraction of type

i individuals in the population, with
∑n

i=1θi = 1. Initial wealth wi is assumed to be

perfectly observable and health insurance is provided through group-specific insurance

contracts, with indemnity schedule Ii(m), premium Pi and state dependent indemnity

Îi(x) and health expenses mi(x) for group i. The government can cross-subsidize

insurance contracts through net subsidies si per type i policyholder, −si being a tax

if si < 0, while meeting a budget constraint

∑n
i=1θisi = B,

where B denotes the amount of financial resources allocated by the government to

health insurance, possibly with B = 0. The insurer’s break-even condition for group i
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is written as

P̃i ≥
∫ a

0

Îi(x)f(x)dx.

where P̃i = Pi + si, and the net income of type i policyholders with health expenses

m is written as

Ri = wi − Pi −m+ Ii(m)

= w̃i − P̃i −m+ Ii(m),

where w̃i = wi + si. Hence, for given net subsidies si, everything happens as if type i

policyholders purchase optimal insurance at actuarial price P̃i with adjusted net wealth

w̃i = wi+si. The limits to income redistribution are not analyzed here and they lead to

heterogeneous adjusted net wealth levels w̃i among the groups i = 1, ..., n. Thus, when

income redistribution is endogenously defined by net subsidies si, analyzing the effects

of incomplete income redistribution on health insurance boils down to considering the

relationship between adjusted net wealth and optimal health coverage.

The effects of wealth on optimal health insurance under ex post moral hazard go

through several mechanisms that are diffi cult to disentangle. Firstly, the degree of risk

aversion may be affected by wealth, and in particular under the DARA assumption,

higher wealth involves a lower absolute risk aversion and thus, a larger propensity to

purchase insurance. Secondly, larger wealth induces larger marginal willingness to pay

for health care, which is reflected in higher health expenses for any health state, and

thus in higher risk exposure. This also justifies paying a higher insurance premium,

without an obvious predictable conclusion on the shape of the indemnity schedule.

Thirdly, in an ex post moral setting, decreasing the insurance coverage acts as a self-

discipline device to moderate health expenses, which may be ultimately beneficial to

wealthy policyholders since they have a high propensity to spend money for health

care. These effects interact in a complex way, and we have to rely on simulations

to draw some conclusions. Figures 8 and 9 illustrate the optimal health expenses

functions m(x) and the optimal indemnity schedule I(m) for various levels of initial
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wealth.37 Figure 8 shows that increasing the initial wealth shifts the graph of m(x)

upwards: for a given health state x, the larger the initial net wealth w, the larger the

expenditure for health care m(x). This is not astonishing since an increase in wealth

goes along with an increase in the marginal willingness to pay for health care. As

shown in Figure 9,38 the increase in wealth has very little impact on the indemnity

schedule: increasing initial wealth slightly shifts the graph of function I(m) upwards,

but this impact is barely noticeable, particularly for low expense levels.39

Figures 8 and 9

Although these simulations should not be overinterpreted, they suggest that the

redistributive objective of public policy should be focused on direct transfers to in-

dividuals (through the net subsidy si to each group i) rather than by differentiating

the reimbursement of medical expenses. In other words, this leads to the speculation

that combining a unique reimbursement schedule with differentiated direct transfers

to individuals may adequately approximate the optimal strategy of a government with

redistributive objective. Assessing the validity of this conjecture would require a de-

tailed analysis, where the optimal design of health insurance and income redistribution

would be simultaneously considered.

6.2 Agency relationship between physician and patient

We have reduced attention to a simple setting where the patient is perfectly well

informed about her health state and where health care providers act as "perfect agents"

with the only objective of maximizing the patient’s utility. In practice, the asymmetry

of information between patient and insurer may be combined with a physician-patient

37Figures 8 and 9 correspond to the assumptions made in Section 3.3 without loading or background

risk, when the distribution of x is exponential.
38The indifference curves are drawn for x = 2 in Figure 9.
39See Picard (2016) for a case with linear coinsurance where this effect of wealth on the coinsurance

rate vanishes completely.
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agency relationship, where the patient has incomplete information about her health

state and the physician may over-prescribe and over-treat either to increase income, or

to avoid the risk of being accused of negligence. This issue raises questions about the

relationship between the design of insurance schemes and the functioning of health care

market. It is of utmost importance for social security and private insurers, and it may

lead insurers to monitor the behavior of health care providers through various forms

of health care management plan, providers affi liated networks or vertical integration.

Let us sketch an extension of our analysis that illustrates the effects of the physician-

patient agency relationship. Assume that only a part q(m) of total medical expenses

m is really useful, with 0 < q(m) < m and q′(m) > 0. The complement m− q(m) cor-

responds to effi ciency losses induced by imperfect monitoring of health care providers.

Assume q′′(m) > 0. Hence q(m)/m is increasing, which expresses the idea that, in pro-

portion to total medical costs, excessive expenses mainly correspond to an excessive

number of minor medical acts.40 The policyholder’s utility is written by substituting

v(q(m)) to v(m) in the policyholder’s expected utility. All the other assumptions of

section 3.3 are unchanged, and in particular we assume v(m) =
√
m/[1+

√
m]. Figures

10, 11 and 12 illustrate the consequences of this assumption, by assuming q(m) = mα,

with α = 1, 2, 3 and 4.41

Figures 10, 11, 12 and 13

The locus of function v(mα) is drawn in Figure 10. It highlights the increase in the

effi ciency loss when α > 1, by comparison with the benchmark case α = 1. Figure 10

also illustrates the fact that v(mα) is no longer concave when α is large enough (equal

to 3 or 4). Figures 11 and 12 show that the ineffi ciency of small medical expenses

leads to reduce these expenses and the corresponding insurance coverage (and even to

fully cancel them when x is small and α is equal to 3 or 4)42 and to increase expenses

40This is just an assumption made for illustrative purposes.
41The relevant values are such m < 1, and thus q(m) = mα < m.
42This corner solution is induced by the non concavity of v(mα) when α = 3 and 4.
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Figure 10 

Inefficiency from the physician-patient agency relationship 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 

Health expense profile with agency costs 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 

Insurance indemnity profile with agency costs 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 

Indemnity schedule with agency costs 



and coverage when x is large. Figure 13 shows that changes in parameter α induce

relatively small shifts in the indemnity schedule I(m).

7 Conclusion

Using demand management to mitigate the consequences of ex post moral hazard

in medical insurance goes through an adequate definition of the indemnity schedule.

Under reasonable assumptions, it has been shown that the optimal solution mixes

partial coverage at the margin and an upper limit to coverage under the form of

bunching: the most acute types of illness severity lead to the same expenses and to

the same insurance indemnity. Our second main result is about the optimality of a

deductible. A deductible may be optimal only if the insurer charges loaded premiums.

In other words, deductibles should not be part of the solution to the incentive-risk

sharing trade-off in itself. They are the consequence of transaction costs reflected in an

insurance loading factor, and they reflect the level of these costs. This is an important

difference between ex post and ex ante moral hazard. Finally, we have immersed our ex

post moral hazard problem in a costly state verification setting where the insurer can

monitor the health expenses through auditing. We have shown that there should be

coinsurance at the margin, and possibly an upper limit to coverage, when the sickness

severity is lower than a threshold under which there is no audit. When the sickness

severity crosses this limit, then it is optimal to audit the health state, with an upward

jump in care expenses. In this regime, there is full insurance at the margin, which

corresponds to an out-of-pocket maximum.

Overall, this analysis reveals a contrasting picture of the way health expenses should

be reimbursed by insurers. On the one hand, there are limits to coverage for low

expenses under the combination of coinsurance, upper limit and deductible. On the

other hand, the largest expenses should be more generously covered, with upper limits

to out-of-pocket expenses. This complexity reflects what we frequently observe in the
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real world when all these ingredients are mixed, with more complete coverage and out-

of-pocket maximum, for large easily monitorable categories such as surgery or other

forms of inpatient care, and coinsurance or upper limits that aim to contain health

spending for minor illnesses.43

Appendix 1

Proof of Lemma 1

Step 1: There exists an optimal revelation mechanism.

Let us change variables by denoting A(x) = u(w − P + Î(x)−m(x)) and B(x) =

v(m(x)). The incentive compatibility constraints and the insurer’s break-even con-

straint are respectively rewritten as

A(x) + γxB(x) ≥ A(x̃) + γxB(x̃) for all x, x̃, (21)

w ≥
∫ a

0

[u−1(A(x)) + v−1(B(x)]f(x)dx, (22)

Furthermore, Î(0) = m(0) = 0 gives A(0) = u(w − P ) and B(0) = 0. Let S be

the subset of functions A(.), B(.) that belong to the Banach space L∞([0, 1],R× [0, 1])

with the sup norm topology ‖ . ‖∞ and that satisfy (21),(22) and B(0) = 0. Hence, S

is closed and convex, and furthermore ‖ (A(.), B(.)) ‖∞≤ u(w) for all (A(.), B(.)) ∈ S.

Let

J =

∫ a

0

{A(x) + h0 − γx[1−B(x)]}f(x)dx.

J is a linear (and thus weakly concave) function of A(.), B(.). Hence, it reaches a max-

imum in S, which proves the existence of an optimal incentive compatible mechanism,

with P = w − u−1(A(0)).

Step 2: For any incentive compatible mechanism,m(x) and Î(x) are non-decreasing.

Incentive compatibility implies

u(w − P −m(x) + Î(x))− u(w − P −m(x̃) + Î(x̃)) ≥ γx[v(m(x̃))− v(m(x))],

43For the sake of illustration, see for instance Kaiser Family Foundation (2009) for France, Germany

and Switzerland, and www.healthcare.gov for the ObamaCare Marketplace in the US.
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and, reversing the roles of x and x̃,

u(w − P −m(x) + Î(x))− u(w − P −m(x̃) + Î(x̃)) ≤ γx̃[v(m(x̃))− v(m(x))].

We deduce (x̃ − x)[v(m(x̃)) − v(m(x))] ≥ 0 for all x, x̃, which implies that m(.) is

non-decreasing. Since I(.) is non-decreasing, Î(.) ≡ I(m(.)) is also non-decreasing.

Step 3: For any optimal revelation mechanism, m(.) and Î(.) are continuous.

Let {m0(.), Î0(.)} be an optimal incentive compatible revelation mechanism and

suppose that m0(.) is rightward discontinuous44 at x∗ ∈ (0, a), with m0(x)→ m0(x∗)+

∆m and Î0(x)→ Î0(x∗)+∆I , when x→ x∗, x > x∗, with∆m > 0 and∆I ≥ 0. Incentive

compatibility implies that a type x∗ individual is indifferent betweenm0(x∗), Î0(x∗) and

m0(x∗)+∆m, Î0(x∗)+∆I . If ∆I = 0, since I(m) is non-decreasing, it remains constant

whenm ∈ [m0(x∗),m0(x∗)+∆m]. Using the concavity ofm→ u(w−P−m+ Î0(x∗))+

γx∗v(m) then shows that the type x∗ individual reaches a higher expected utility by

choosing m ∈ (m0(x∗),m0(x∗) + ∆m) than by choosing m0(x∗), hence a contradiction.

Thus, we have ∆I > 0.

Since Î0(x) is piecewise continuous, there exists θ > 0 such that Î0(x) − Î0(x∗) ≥

∆I/2 for all x ∈ (x∗, x∗ + θ). Consider another revelation mechanism {m1(.), Î1(.)}

defined by:

(i) If x ∈ (x∗, x∗ + θ), let m1(x) = m∗1 and Î1(x) = I∗1 close to m0(x∗) and Î0(x∗),

respectively, with Î0(x)− I∗1 ≥ ∆I/4, and such that

u(w − P −m∗1 + I∗1 ) + γxv(m∗1) ≥ u(w − P −m0(x) + Î0(x)) + γxv(m0(x)),

for all x ∈ (x∗, x∗ + θ), and

u(w − P −m∗1 + I∗1 ) + γxv(m∗1) < u(w − P −m0(x) + Î0(x)) + γxv(m0(x)),

if x ≤ x∗,

(ii) If x /∈ (x∗, x∗ + θ), then m1(x) ≡ m0(x) and Î1(x) ≡ Î0(x).

44A similar proof applies to the case of leftward discontinuity.
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Let x̃1(x) be an optimal report of a type x policyholder in {m1(.), Î1(.)}, with

x̃1(x) = x for all x ∈ [0, x∗+θ), and let {m2(.), Î2(.)} be the incentive compatible reve-

lation mechanism defined by m2(x) ≡ m1(x̃1(x)), Î2(x) ≡ Î1(x̃1(x)). For P unchanged,

the policyholder’s expected utility is higher for {m2(.), Î2(.)} than for {m0(.), Î0(.)}.

Furthermore, Î2(x) = Î0(x) if x < x∗, Î2(x) = I∗1 < Î0(x) − ∆I/4 if x∗ ≤ x < x∗ + θ

and Î2(x) ≤ Î0(x) if x ≥ x∗ + θ. Hence, {m2(.), Î2(.)} is feasible with P unchanged,

which contradicts the optimality of {m0(.), Î0(.)}.

Step 4: (4) and (5) are necessary and suffi cient conditions for a continuous reve-

lation mechanism to be incentive compatible.

Local first-order and second-order incentive compatibility conditions for type x are

written respectively as

∂V (x, x̃)

∂x̃
|x̃=x = 0, (23)

∂2V (x, x̃)

∂x̃2
|x̃=x ≤ 0, (24)

at any point of differentiability. (23) and (24) are necessary conditions for incentive

compatibility. We have

∂V (x, x̃)

∂x̃
= u′(R(x̃))[Î ′(x̃)−m′(x̃)] + γxv′(m(x̃))m′(x̃),

and thus (23) yields (4).

Since (4) should hold for all x ∈ [0, a], a simple calculation yields

∂2V (x, x̃)

∂x̃2
|x̃=x = −γv′(m(x))m′(x),

and thus (24) gives (5).

Conversely, assume (4) and (5) hold. (4) gives

∂V (x, x̃)

∂x̃
= γ(x− x̃)v′(m(x̃))m′(x̃).

Using (5) then shows that ∂V (x, x̃)/∂x̃ ≤ 0 if x̃ > x and ∂V (x, x̃)/∂x̃ ≥ 0 if x̃ < x,

which implies incentive compatibility.
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Proof of Proposition 1

Let µ1(x) and µ2(x) be costate variables for Î(x) and m(x) respectively, and let

λ and δ(x) be Lagrange multipliers respectively for (2) and (9). The Hamiltonian is

written as

H = [u(R(x)) + γxv(m(x))]f(x) + µ1(x)h(x)

[
1− γxv′(m(x))

u′(R(x))

]
+ µ2(x)h(x)− λÎ(x)f(x) + δ(x)Î(x).

The optimality conditions are

ϕ(x) ≡ µ1(x)

[
1− γxv′(m(x))

u′(R(x))

]
+ µ2(x) ≤ 0,= 0 if h(x) > 0, (25)

µ′1(x) = [λ− u′(R(x))]f(x)− µ1(x)h(x)γx
v′(m(x))u′′(R(x))

u′(R(x))2
− δ(x), (26)

µ′2(x) = [u′(R(x))− γxv′(m(x))]f(x)

+µ1(x)h(x)γx

[
v′′(m(x))u′(R(x)) + v′(m(x))u′′(R(x))

u′(R(x))2

]
, (27)

µ1(a) = µ2(a) = 0, (28)

λ−
∫ a

0

[
u′(R(x))f(x) + µ1(x)h(x)γx

v′(m(x))u′′(R(x))

u′(R(x))2

]
dx = 0, (29)

with δ(x) ≥ 0 and δ(x) = 0 if Î(x) > 0. A tedious but straightforward calculation

using (26) and (27) leads to

ϕ′(x) = [λf(x)− δ(x)]

[
1− γxv′(m(x))

u′(R(x))

]
− γµ1(x)

v′(m(x))

u′(R(x))
. (30)

We also have R′(x) = Î ′(x)−m′(x) = −γxh(x)v′(m(x))/u′(R(x)) ≤ 0. Thus, R(x) is

non-increasing, and it is decreasing when h(x) > 0. The remaining part of the proof

is in five steps.

Step 1: m(x) > 0 for all x > 0.

Since m(0) = 0 and m(x) is non-decreasing, there exists x ∈ [0, a] such that

m(x) > 0 if and only if x > x. Suppose x > 0, which implies h(x) = 0 over [0, x].
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Using Î(0) = 0 and (6) gives Î(x) = 0 for all x ∈ [0, x]. Let

m̂(x) ≡ arg max
m̃≥0

{u(w − P − m̃) + γxv(m̃)}, (31)

with m̂(x) > 0 for all x > 0. Define m0(x) = m̂(x), I0(x) = 0 if x ≤ x and

m0(x) = m(x), I0(x) = Î(x) if x > x, and

x0(x) ∈ arg max
x̃∈[0,a]

{u(w − P −m0(x̃) + I0(x̃)) + xv(m0(x̃))}.

The revelation mechanism m1(.), Î1(.) defined by m1(x) ≡ m0(x0(x)) and Î1(x) ≡

I0(x0(x)) is incentive compatible and it dominates the supposed optimal mechanism

m(.), Î(.) - i.e., it provides a higher expected utility to the policyholder and its expected

profit is non-negative for P unchanged -, hence a contradiction. Thus, x = 0.

Step 2: µ1(x) is continuous in [0, a] with µ1(x) = 0 if Î(x) = 0.

Let x0 ∈ (0, a) be a junction point such that Î(x) = 0 if x ∈ (x0 − ε, x0] and

Î(x) > 0 if x ∈ (x0, x0 + ε), with 0 < ε < x0.45

Using the same argument as in Step 1 shows that h(x) > 0 in (x0 − ε, x0). Let

x ∈ (x0−ε, x0). Using h(x) > 0, Î ′(x) = 0 and (6) gives u′(R(x)) = γxv′(m(x)). Then,

ϕ(x) = 0 gives µ2(x) = 0 and thus µ′2(x) = 0 for all x ∈ (x0 − ε, x0]. (30) implies

µ1(x) = 0 for all x ∈ (x0− ε, x0), and this is true, more generally, for all x ∈ [0, a] such

that Î(x) = 0.

Let x ∈ (x0, x0 + ε). Î(x) is locally increasing over (x0, x0 + ε) and thus Î ′(x) > 0

and h(x) > 0 (at least for ε small enough). Thus, we have δ(x) = ϕ(x) = ϕ′(x) = 0

for all x ∈ (x0, x0+ε). Since R(x) and m(x) are continuous functions and u′(R(x0)) =

γx0v
′(m(x0)), we have u′(R(x)) − γxv′(m(x)) → 0 when x ↘ x0. Using (30) then

gives µ1(x0)+ = 0. Thus, µ1(x) is continuous at x0.

45In optimal control problems with state variable constraints, the costate variable may be discon-

tinuous at junctions between regimes where the constraint is binding or not binding; see for instance

Section 7.6 in Beavis and Dobbs (1991). Here, µ1(x) may be discontinuous at junction points between

intervals where Î(x) = 0 and intervals where Î(x) > 0. The proof is almost the same if the junction

point is such that Î(x) > 0 if x ∈ (x0 − ε, x0] and Î(x) = 0 if x ∈ (x0, x0 + ε).
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Step 3: µ1(x) ≥ 0 for all x ∈ [0, a].

Integrating µ′1(x) given by (26) and using (28) and (29) give

µ1(0) =

∫ a

0

δ(x)dx ≥ 0.

Suppose there exist x0, x1 ∈ [0, a] such that x0 < x1, µ1(x0) = µ1(x1) = 0 and

µ1(x) < 0 if x ∈ (x0, x1). Thus, from Step 2, we have I(x) > 0 and δ(x) = 0 if

x ∈ (x0, x1). For η0 > 0 small enough, we have µ′1(x0 + η0) < 0 and δ(x0 + η0) = 0.

Hence (26) gives

[λ− u′(R(x))]f(x) < µ1(x)h(x)γx
v′(m(x))u′′(R(x))

u′(R(x))2

for x = x0+ η0. The previous inequality holds when η0 ↘ 0. Since µ1(x) is continuous

and µ1(x0) = 0, we deduce u′(R(x0)) ≥ λ.

By a similar argument, for η1 > 0 small enough, we have µ′1(x1 − η1) > 0 and

δ(x1 − η1) = 0. Thus (26) gives

[λ− u′(R(x))]f(x) > µ1(x)h(x)γx
v′(m(x))u′′(R(x))

u′(R(x))2
> 0,

for x = x1 − η1. The previous inequality holds when η1 ↘ 0, which implies λ >

u′(R(x1)). Thus, we have u′(R(x0)) ≥ λ > u′(R(x1)). Since u′′ < 0, we deduce

R(x0) < R(x1), which contradicts R′(x) ≤ 0 and x0 < x1.

Step 4: Î ′(x) ≥ 0 for all x ∈ [0, a].

Suppose Î(x) > 0 and Î ′(x) < 0 if x ∈ [x0, x1] ⊂ (0, a] with x0 < x1. (6) and (8)

yield h(x) > 0 - and thus ϕ(x) = 0 - and γxv′(m(x)) > u′(R(x)) if x ∈ [x0, x1]. We

also have δ(x) = 0, µ1(x) ≥ 0 if x ∈ [x0, x1]. Hence (30) gives ϕ′(x) < 0 if x ∈ [x0, x1],

which contradicts ϕ(x) ≡ 0 in [x0, x1]. Thus, Î(x) is non-decreasing over [0, a].

Step 5: Î(x) > 0 for all x ∈ (0, a].

Step 4 implies that there exists x0 in [0, a] such that Î(x) = 0 if x ∈ [0, x0] and

Î(x) > 0 if x ∈ (x0, a]. Suppose x0 > 0. From Step 2, we have µ1(x) = 0 for all

x ∈ [0, x0], and

µ1(0) =

∫ x0

0

δ(x)dx = 0
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implies δ(x) = 0 over [0, x0].46 (26) then gives R′(x) = 0 and thus h(x) = 0 for all

x ∈ [0, x0]. From the same argument as in Step 1, we have m(x) = m̂(x), and thus

h(x) > 0, for all x ∈ [0, x0], hence a contradiction.

We know from (6) and (7) that Î ′(x) < m′(x) when m′(x) > 0, and thus Steps 1

and 5 prove Proposition 1.

Figure 8 illustrates the simulated trajectories of µ1(x) and µ2(x) under the calibra-

tion hypothesis introduced in Section 3.3, in the case of an exponential distribution

function.

Figure 14

Proof of Proposition 2

Suppose there are x1, x2, x3 in [0, a] such that x1 < x2 < x3, h(x) = 0 if x ∈ [x1, x2]

and h(x) > 0 if x ∈ (x2, x3]. Thus, m(x) and I(x) remain constant over [x1, x2], and

we may write m(x) = m0 > 0, I(x) = I0 > 0 and R(x) = w − P + I0 −m0 = R0 in

this interval. Let ϕ(x) be defined as in the proof of Proposition 1. Using (26), (30)

and δ(x) = h(x) = 0 if x ∈ [x1, x2] yields

ϕ′(x) = λ[1− γxv′(m0)

u′(R0)
]f(x)− γµ1(x)

v′(m0)

u′(R0)
, (32)

and

ϕ′′(x) = λ[1− γxv′(m0)

u′(R0)
]f ′(x)− γ v

′(m0)

u′(R0)
[λf(x) + µ′1(x)]

= λ[1− γxv′(m0)

u′(R0)
]f ′(x)− γ v

′(m0)

u′(R0)
[2λ− u′(R0)]f(x),

if x ∈ [x1, x2]. Let

Λ(x) ≡ ϕ′′(x)

f(x)
= λ[1− γxv′(m0)

u′(R0)
]
d ln f(x)

dx
− γ v

′(m0)

u′(R0)
[2λ− u′(R0)],

46Note that (26) and µ1(x) = µ′1(x) = 0 for all x ∈ [0, x0] imply that δ(x) is continuous in this

interval.
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We have

Λ′(x) = −λγ v
′(m0)

u′(R0)

d ln f(x)

dx
+ λ[1− γxv

′(m0)

u′(R0)
]
d2 ln f(x)

dx2
.

We also have ϕ(x) ≤ 0 if x ∈ [x1, x2] and ϕ(x2) = 0, which implies ϕ′(x2)− ≥ 0.

(30), δ(x2) = 0 and µ1(x2) > 047 give γx2v′(m0) ≤ u′(R0). If df(x)/dx ≤ 0 and

d2 ln f(x)/dx2 ≥ 0, then we have Λ′(x) ≥ 0 if x ≤ x2. Suppose there is x4 ∈ [0, x2]

such that ϕ(x4) = 0 and h(x) = 0 for all x ∈ [x4, x2]. Since ϕ(x) = 0 for all x ∈ [x2, x3],

we have ϕ′′(x2)+ = 0. Since I0 > 0, µ1(x) is differentiable at x = x2. Thus, using (30)

and δ(x) = 0 if x ∈ [x1, x2] allows us to write

ϕ′′(x2)− = ϕ′′(x2)+ + γ[λf(x2)x2 + µ1(x2)]
d

dx

(
v′(m(x))

u′(R(x))

)
|x=x2+

< 0.

Λ(x2)− < 0 and Λ′(x) ≥ 0 then yield ϕ′′(x) < 0 for all x ∈ [x4, x2]. Since ϕ(x2) = 0

and ϕ′(x2)− ≥ 0, we have ϕ(x) < 0 for x < x2, x close to x2. Since ϕ(x2) = ϕ(x4) = 0,

there is x5 ∈ (x4, x2) where ϕ(x) has a local minimum, and thus such that ϕ′′(x5) ≥ 0,

which contradicts ϕ′′(x) < 0 for all x ∈ [x4, x2]. Thus, ϕ(x) < 0 for all x in [0, x2),

which contradicts ϕ(0) = 0. Hence, if h(x) > 0 in an interval (x2, x3], then h(x) > 0

in [0, x3], which shows that there exists x ∈ [0, a] such that h(x) > 0 if x < x and

h(x) = 0 if h(x) > x. We observe that x > 0, for otherwise we would have I(x) = 0

for all x in [0, a].

Finally, if x ∈ (0, x) we have µ1(x) > 0, δ(x) = 0, ϕ′(x) = 0, and thus (30) gives

γxv′(m(x)) < u′(R(x)). Using (6) then yields Î ′(x) > 0.

Proof of Corollary 1

For notational simplicity, assume a = 1 and f(x) = 1 for all x ∈ [0, 1]. Suppose

x < 1. Using (30) and h(x) = δ(x) = 0 if x ∈ [x, 1] gives

ϕ′′(x) = −γ v
′(m)

u′(R)
[2λ− u′(R)] ≡ ϕ′′

47Step 3 in the proof of Proposition 1 shows that µ1(x) > 0 for all x ∈ (0, a).
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if x ∈ (x, 1]. The same argument as in the proof of Proposition 2 gives ϕ′′ = ϕ′′(x)+ <

ϕ′′(x)− = 0. Since ϕ′(x)+ ≤ 0, we have ϕ′(x) < 0 for all x ∈ [x, 1], which contradicts

ϕ(x) = ϕ(1) = 0.

Proof of Corollary 2

Assume f(a) = f ′(a) = 0 and f ′′(a) > 0. Suppose x = a and thus h(x) > 0 for all

x ∈ [0, a].48 We also have ϕ′(x) = δ(x) = 0 for all x. Differentiating (30) gives

h(x) = − v′(m(x))J(x)

λxK(x)f(x) + v′′(m(x))µ1(x)
,

where

J(x) = −d ln f(x)

dx
µ1(x) + f(x)[2λ− u′(R(x))],

K(x) = v′′(m(x)) +
γxu′′(R(x))v′(m(x))2

u′(R(x))2
< 0.

The rest of the proof is in three steps.

Step 1: J(x) > 0 if x ∈ (0, a) and J(a) = J ′(a) = J ′′(a) = h(a) = 0.

Using K(x) < 0, v′′(m(x)) ≤ 0, µ1(x) > 0 and h(x) > 0 gives J(x) > 0 if x ∈ (0, a).

Using µ1(a) = f(a) = 0 gives J(a) = 0. Furthermore, we have

J ′(x) = −d ln f(x)

dx
µ′1(x)− d2 ln f(x)

dx2
µ1(x)

+ f ′(x)[2λ− u′(R(x))]− f(x)u′′(R(x))R′(x). (33)

Using µ1(a) = f(a) = 0, δ(x) = 0 for all x and (26) gives µ′1(a) = 0. (33) and

d ln f(x)/dx 9 −∞, d2 ln f(x)/dx2 9 ±∞ when x → a gives J ′(a) = 0. Since

J(x) > 0 if x ∈ (0, a) and J(a) = J ′(a) = 0, we deduce that J(x) reaches a local

minimum over [0, a] at x = a, which implies J ′′(a) ≥ 0.

Using L’Hôpital’s rule twice yields h(a) = −v′(m(a))J ′′(a)/λaK(a)f ′′(a) = 0.

Since h(x) ≥ 0 for all x, we deduce J ′′(a) ≤ 0, and thus J ′′(a) = h(a) = 0.

48We assume w.l.o.g. that h(x) is continuous at x = a.
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Step 2: u′(R(a)) = γav′(m(a)) = 2λ.

Since f(a) = f ′(a) = µ1(a) = µ′1(a) = 0, we deduce u′(R(a)) = γav′(m(a)) from

(26) and ϕ′(x) ≡ 0 by using the L’Hôpital’s rule twice. Furthermore, (26) gives µ′′1(a) =

0 and (33) then yields J ′′(a) = f ′′(a)[2λ− u′(R(a))], which implies u′(R(a)) = 2λ.

Step 3: Let ξ(x) ≡ u′(R(x))ϕ′(x), where ϕ(x) is defined by (25). We have ξ′′′(a) <

0, which contradicts ϕ(x) = 0 for all x ∈ [0, a] when x = a.

x = a implies ξ(x) = 0 for all x ∈ [0, a]. We may write ξ(x) = λf(x)∆1(x)−γ∆2(x),

with ∆1(x) = u′(R(x)) − γxv′(m(x)),∆2(x) = µ1(x)v′(m(x)). We have ∆1(a) =

0,∆′1(a) = −γv′(m(a)) from h(a) = 0 and u′(R(a)) = γav′(m(a)). Using (26) and

Step 2 gives

∆′′′2 (a) = µ′′′1 (a)v′(m(a))

= f ′′(a)[λ− u′(R(a))]v′(m(a))

= −λf ′′(a)v′(m(a)).

We have

ξ′′(x) = λf ′′(x)∆1(x) + 2λf ′(x)∆′1(x)

+ λf(x)∆′′1(x)− γ∆′′2(x),

and thus, using ∆1(a) = 0 and f(a) = f ′(a) = 0, we may write

ξ′′′(a) = 3λf ′′(a)∆′1(a)− γ∆′′′2 (a) = −4λ2f ′′(a)

a
< 0.

Proof of Proposition 3

The optimal non-linear indemnity schedule I(m) is such that

I ′(m) =
Î ′(x)

m′(x)
when m = m(x).

for all m ∈ (0,m). Thus, (6), (7), (30) and ϕ′(x) = δ(x) = 0 if x ∈ (0, x) give

I ′(m(x)) = 1− γxv′(m(x))

u′(R(x))
= µ1(x)

γv′(m(x))

λf(x)u′(R(x))
,
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which implies I ′(m) ∈ (0, 1) for all m ∈ (0,m), I ′(m) = 0 if x = a, I ′(m) > 0 if x < a,

where m = m(x).

All types x ≥ x choose m = m(x), and thus the optimal allocation is sustained by

an indemnity schedule such that I(m) = I(m) for m ≥ m.

Let I ′(0) = lim
x→0

I ′(m) ≥ 0. The rest of the proof shows that mv′′(m)/v′(m) →

η ∈ (0, 1) when m→ 0 (an assumption made in what follows) is a suffi cient condition

for I ′(0) > 0. The following lemma will be an intermediary step in an a contrario

reasoning.

Lemma 5 Suppose I ′(0) = 0, then: (i) h(x)→ +∞ when x→ 0. (ii) There exists a

sequence {xn, n ∈ N} ⊂ (0, a] such that 0 < xn+1 < xn for all n, xn → 0 when n→∞

and m(xn)/xn > h(xn) for all n ∈ N.

Proof of Lemma 5

(i): Note that I ′(0) = 0 implies C(x) ≡ xv′(m(x)) → u′(w − P )/γ when x → 0.

If (i) does not hold, then there exists a sequence {xn, n ∈ N} ⊂ (0, a] such that

0 < xn+1 < xn for all n, xn → 0 when n→∞ and h(xn)→ h < +∞ when n→ +∞.

Using v(0) = 0 and L’Hôpital’s rule yields

lim
x→0

C(x) =
1

lim
x→0

[
− v′′(m(x))
v′(m(x))2h(x)

] =
1

ηh
lim
x→0

[m(x)v′(m(x))] .

Furthermore, mv′′(m)/v′(m) → η > 0 implies mv′(m) → 0 when m → 0. Hence,

C(x)→ 0 when x→ 0, which contradicts C(x)→ u′(w − P )/γ > 0 when x→ 0.

(ii): Let x0 such that h(x) is continuous over (0, x0] and consider the decreasing

sequence {xn, n ∈ N} defined by xn = sup{x ∈ (0, x0] |h(x′) ≥ n if x′ ≤ x}. xn is

well-defined and such that xn → 0 when n→∞ from (i) and, using the continuity of

h(x), we have h(xn) = n and h(x) > n if x < xn. Thus,

m(xn)

xn
=

∫ xn
0
h(x)dx

xn
> n = h(xn),
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which completes the proof of (ii).

We are now in the position to end up the proof of the Proposition. Let us suppose

I ′(0) = 0, and letD(x) ≡ γxv′(m(x))−u′(R(x)) withD(x) < 0 if x > 0 from Î ′(x) > 0,

and D(0) = 0 from I ′(0) = 0. We thus have D′(x) < 0 for x close to 0. We have

D′(x) = γ[v′(m(x) + xv′′(m(x))h(x)]− u′′(R(x))R′(x)

=
γxv′(m(x))

m(x)

[
m(x)

x
+ h(x)

(
v′′(m(x))m(x)

v′(m(x))
+
u′′(R(x))

u′(R(x))
m(x)

)]
.

Consider the sequence {xn, n ∈ N} defined in Lemma 5-(ii). Using m(xn)/xn >

h(xn) gives

D′(xn) =
γxnh(xn)v′(m(xn))

m(xn)

[
1 +

v′′(m(xn))m(xn)

v′(m(xn))
+
u′′(R(xn))

u′(R(xn))
m(xn)

]
Since xn → 0 when n→ +∞, u′′(R(x))/u′(R(x))→ u′′(w−P )/u′(w−P ) and m(x)→

0 when x → 0, and −v′′(m)m/v′(m) → η when m → 0, we deduce that η < 1 is a

suffi cient condition for D′(xn) > 0 when n is large enough, which is a contradiction.

We deduce I ′(0) > 0 when η < 1.

Appendix 2

2-A: Computational approach

Our simulations are performed through a discretization method. Under the nota-

tions that are standard in this field, an optimal control problem is usually written as

follows, by denoting x the vector of state variables and u the vector of controls that

are function of time t ∈ R:

min J(x(·), u(·)) = g0(tf , x(tf ))

ẋ(t) = f(t, x(t), u(t)) ∀t ∈ [0, tf ]

u(t) ∈ U for a.e. t ∈ [0, tf ]

g(x(t), u(t)) ≤ 0

Φ(x(0), x(tf )) = 0

Objective (Mayer form)

Dynamics

Admissible Controls

Path Constraints

Boundary Conditions
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The time discretization is as follows:

t ∈ [0, tf ] −→

x(.), u(.) −→

Objective −→

Dynamics −→

Admissible Controls −→

Path Constraints −→

Boundary Conditions −→

t0 = 0, . . . , tN = tf

X = {x0, . . . , xN , u0, . . . , uN}

min g0(tf , xN)

xi+i = xi + hf(xi, ui) i = 0, . . . , N

ui ∈ U i = 0, . . . , N

g(xi, ui) ≤ 0 i = 0, . . . , N

Φ(x0, xN) = 0

We therefore obtain a nonlinear programming problem on the discretized state and

control variables. In BOCOP, the discretized nonlinear optimization problem is solved

by the Ipopt solver that implements a primal-dual interior point algorithm; seeWachter

and Biegler (2006). The derivatives required for the optimization are computed by the

automatic differentiation tool Adol-C; see Walther and Griewank (2012).

2-B: Complementary proofs

Proof of Lemma 2

Let Î(x), x ∈ [0, x∗], P and c∗ be given, with I∗ = Î(x∗),m∗ = m(x∗) and I∗ ≤ m∗.

Consider the sub-problem in which {Î(x),m(x), g(x), h(x), x ∈ [x∗, a]} maximizes∫ a

x∗

{
u(w − P + Î(x)−m(x)) + h0 − γx[1− v(m(x))]

}
f(x)dx, (34)

subject to (7) and (10)-(12).

Let µ1(x) and µ2(x) be co-state variables respectively for Î(x) and m(x) and let

η(x), and λ be Lagrange multipliers respectively for (11) and (12) in this sub-problem.49

The Hamiltonian is written as

H = [u(R(x)) + γxv(m(x))]f(x) + [µ1(x)− η(x)]g(x)

+ [µ2(x) + η(x)]h(x)− λ[Î(x) + c]f(x),

49We can straightforwardly check that (8) is not binding in this sub-problem.
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and the optimality conditions are

µ1(x)− η(x) ≤ 0,= 0 if g(x) > 0, (35)

µ2(x) + η(x) = 0, (36)

µ′1(x) = [λ− u′(R(x))]f(x), (37)

µ′2(x) = [u′(R(x))− γxv′(m(x))]f(x) , (38)

for all x, with the transversality conditions µ1(a) = µ2(a) = 0, and η(x) ≥ 0 for all x

and η(x) = 0 if h(x) > g(x).

Let us consider x0 ∈ [x∗, a] such that g(x) > 0 if x is in a neighbourhood V of

x0. Suppose h(x) > g(x), and thus η(x) = 0 if x ∈ V. (35) gives µ1(x) = 0, and

thus µ′1(x) = 0 for all x ∈ V. Then (37) gives u′(R(x)) = λ, and thus R(x) =

w − P −m(x) + Î(x) is constant in V. This implies m′(x)− Î ′(x) = h(x)− g(x) = 0,

which contradicts h(x) > g(x). We deduce that h(x) = g(x) if x ∈ V. (35) and (36)

yield µ1(x) = −µ2(x) = η(x), and thus µ′1(x) = −µ′2(x), for all x ∈ V. (37) and (38)

then imply γxv′(m(x)) = λ for all x ∈ V, which gives m′(x) = −v′(m(x))/xv′′(m(x)).

Let x0, x1, x2 ∈ [x∗, a] such that x0 < x1 < x2 with g(x) = 0 if x ∈ [x0, x1] and

g(x) > 0 if x ∈ (x1, x2]. Let us show that we cannot have g(x) > 0 if x ∈ [x3, x0]

with x3 < x0. We have µ1(x) + µ2(x) ≤ 0 if x ∈ [x0, x1) and µ1(x) + µ2(x) = 0 if

x ∈ [x1, x2]. Let Ψ(x) ≡ [µ′1(x) + µ′2(x)]/f(x), with Ψ(x1) = 0 because µ1(x) + µ2(x)

reaches a local maximum at x = x1. Note that Ψ(x) is differentiable. Let x ∈

[x0, x1). If m′(x) = 0 (and thus R′(x) = 0), we have d[µ′1(x)/f(x)]/dx = 0 and

d[µ′2(x)/f(x)]/dx = −γv′(m(x1)) < 0, and thus Ψ′(x) < 0. If m′(x) > 0 (and thus

R′(x) < 0), we have η(x) = µ2(x) = µ′2(x) = 0 and d[µ′1(x)/f(x)] = −u′′(R(x))R′(x) <

0, and thus we still have Ψ′(x) < 0. Suppose g(x) > 0 if x ∈ [x3, x0] with x3 < x0. In

that case we would have µ1(x) + µ2(x) = 0 if x ∈ [x3, x0], and since µ1(x) + µ2(x) ≤ 0

if x ∈ [x0, x1), we would have Ψ(x0) = 0. This contradicts Ψ(x1) = 0,Ψ′(x) < 0 if

x ∈ [x0, x1).

Suppose there are x0, x1, x2 ∈ [x∗, a] such that x0 < x1 < x2 with g(x) > 0 if
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x ∈ [x0, x1] and g(x) = 0 if x ∈ (x1, x2]. In that case µ1(x) + µ2(x) = 0 if x ∈ [x0, x1]

and µ1(x) + µ2(x) ≤ 0 if x ∈ [x1, x2]. Since µ1(a) + µ2(a) = 0 and µ1(x) and µ2(x) are

continuous, we may choose x2 such that µ1(x2) + µ2(x2) = 0. The same calculation as

above implies Ψ(x1) = 0, Ψ′(x) < 0 if x ∈ [x1, x2] and thus Ψ(x) < 0 if x ∈ [x1, x2],

which contradicts µ1(x2) + µ2(x2) = 0.

Overall, we deduce that there exists x̂ ∈ [x∗, a] such that Î ′(x) = 0 if x ∈ [x∗, x̂]

and Î ′(x) = m′(x) > 0 if x ∈ [x̂, a]. The same reasoning - replacing Ψ(x) by Φ(x) ≡

µ′2(x)/f(x) - shows that there exists x̃ ∈ [x∗, x̂] such that m′(x) = 0, and thus m(x) =

m∗, if x ∈ [x∗, x̃] and m′(x) > 0 if x ∈ [x̃, x̂]. When m′(x) > 0, we have η(x) =

µ2(x) = 0, and thus µ′2(x) ≡ 0 if x ∈ [x̃, x̂], which gives u′(w − P − m(x) + I∗) =

γxv′(m(x)), and thus m′(x) ≡ −γv′(m(x))/[γxv′′(m(x)) + u′′(w − P − m(x) + I∗)].

When m′(x) = 0, we have Φ′(x) < 0 if [x∗, x̃) and Φ′(x̃) = 0, and thus x̃ is given by

u′(w − P −m∗ + I∗) = γx̃v′(m∗) if u′(w − P −m∗ + I∗) > γx∗v′(m∗), and x̃ = x∗ if

u′(w − P −m∗ + I∗) = γx∗v′(m∗).

If x∗ < x̂, then replacing m∗ by m̂ ≡ m(x̂) > m∗ implements the same allocation

with lower audit costs. Indeed, m(x) is an optimal choice of type x individuals if

x > x̂, because such individuals would prefer choosing m̂ rather than any m ∈ [0, m̂),

and furthermore, for such individuals, there is full coverage at the margin in (m̂,m(x)]

and they cannot choose expenses larger than m(x). In addition, the expected audit

cost decreases from c[1 − F (x∗)] to c[1 − F (x̂)] when m̂ is substituted for m∗. Thus,

an optimal allocation is necessarily such that x∗ = x̂.

Proof of Proposition 4

Let µ1(x) and µ2(x) be costate variables respectively for Î(x) andm(x) and let δ(x)

and λ be Lagrange multipliers respectively for (9) and (20). The Hamiltonian is written

as in the proof of Proposition 1, and the optimality conditions (25), (26) and (27) still

hold. We also have δ(x) ≥ 0 and δ(x) = 0 if Î(x) > 0, and µ1(x∗) + µ2(x
∗) = 0 from

the characterization of the optimal continuation allocation. The optimality conditions
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on m∗, I∗, x∗, P and A are written as

V ′1 − µ2(x∗) = 0, (39)

V ′2 − µ1(x∗) = 0, (40)

V ′3 + {u(R∗) + h0 − γx∗[1− v(m∗)]}f(x∗)

−µ1(x∗)
γx∗v′(m∗)

u′(R∗)
− [λ− δ(x∗)]I∗ ≤ 0,= 0 if x∗ > 0, (41)

V ′4 −
∫ x∗

0

[
u′(R(x))f(x) + µ1(x)h(x)γx

v′(m(x))u′′(R(x))

u′(R(x))2

]
dx = 0, (42)

V ′5 + λ = 0, (43)

respectively, where V ′1 , V
′
2 , ... denote the partial derivatives of V (m∗, I∗, x∗, P, A) and

R∗ ≡ R(x∗) = w − P −m∗ + I∗. Define ϕ(x) for all x ∈ [0, x∗] by (25) as in the proof

of Proposition 1.

Step 1: m(x) > 0 for all x > 0.

Identical to Step 1 in the proof of Proposition 1.

Step 2: µ1(x) is continuous in [0, x∗] with µ1(x) = 0 for all x ∈ [0, x∗] such that

Î(x) = 0.

Identical to Step 2 in the proof of Proposition 1.

Step 3: µ1(x) ≥ 0 for all x ∈ [0, x∗] with µ1(x∗) > 0.

We know from Lemma 4 that R(x) = w − P −m∗ + I∗ and

m(x) = m∗ +

∫ x

x∗

v′(m(t))

tv′′(m(t))
dt,

for all x ∈ [x∗, a]. Thus,

V ′2 = u′(w − P −m∗ + I∗)[1− F (x∗)],

and (40) gives µ1(x∗) > 0. The remaining part of Step 3 is the same as in the proof of

Proposition 1.

Step 4: Î(x) > 0 for all x ∈ (0, x∗].
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Identical to Steps 4 and 5 in the proof of Proposition 1.

Step 5: x∗ > 0.

We have

V ′3 = −{u(R∗) + h0 − γx∗[1− v(m∗)] + λ(I∗ + c)}f(x∗),

from the definition of V (.). Thus (41) and δ(x∗) = 0 give

λcf(x∗)− µ1(x∗)
γx∗v′(m∗)

u′(R∗)
≤ 0,= 0 if x∗ > 0,

which implies x∗ > 0.

Step 6: There is x ∈ (0, x∗] such that

Î ′(x) > 0, h(x) = m′(x) > 0 if 0 < x < x,

Î(x) = Î(x),m(x) = m(x), h(x) = 0 if x < x ≤ x∗,

Î ′(0) = 0, Î ′(x) = 0 if x = a and Î ′(x) > 0 if x < x∗.

Identical to the proof of Proposition 2.

Finally, µ1(x∗) > 0 shows that there is an upward discontinuity in m(x) and Î(x)

at x = x∗.

Proof of Proposition 5

Using x∗ > 0 and m′(x) > 0 if x ∈ (0, x) gives m∗ > 0. The remaining part of the

Proposition is a straightforward adaptation of Proposition 3.

Proof of Lemma 3

Similar to Lemma 1, with straightforward adaptation.

Proof of Lemma 4

We now have

V (x, x̃) = U
(
w − P + Î(x̃)−m(x̃)), h0 − γx(1− v(m(x̃))

)
.
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A straightforward adaptation of the proof of Lemma 1 shows that (17) is a necessary

condition for incentive compatibility. (17) gives

∂V (x, x̃)

∂x̃
= γv′(m(x̃))m′(x̃)U ′H(R(x̃), H(x, x̃)) [x− x̃A(x, x̃)] ,

where

H(x, x̃) ≡ h0 − γx(1− v(m(x̃)), H(x̃, x̃) ≡ H(x̃),

A(x, x̃) ≡ U ′R(R(x̃), H(x, x̃))U ′H(R(x̃), H(x̃))

U ′R(R(x̃), H(x̃))U ′H(R(x̃), H(x, x̃))
.

Using U ′′H2 < 0 and U ′′RH > 0 gives A(x, x̃) > 1 if x̃ > x and A(x, x̃) < 1 if x̃ < x,

with A′x̃(x, x̃)|x̃=x > 0, and thus50

∂2V (x, x̃)

∂x̃2
|x̃=x = −γv′(m(x))m′(x)U ′H(R(x), H(x))[1 + A′x̃(x, x̃)|x̃=x ].

Thus incentive compatibility gives (18). Conversely, assume that (17) and (18) hold.

We have

∂V (x, x̃)

∂x̃
≤ γv′(m(x̃))m′(x̃)U ′H(R(x̃), H(x, x̃))(x− x̃) < 0 if x̃ > x,

∂V (x, x̃)

∂x̃
≥ γv′(m(x̃))m′(x̃)U ′H(R(x̃), H(x, x̃))(x− x̃) > 0 if x̃ < x,

which implies incentive compatibility.

Proof of Proposition 6

The notations of costate variables and Lagrange multipliers are the same as in the

proof of Proposition 1. Observe first that Steps 1-4 of this proof remain valid, with an

unchanged definition of ϕ(x), just replacing (30) by

ϕ′(x) = [λ(1 + σ)f(x)− δ(x)]

[
1− γxv′(m(x))

u′(R(x))

]
− γµ1(x)

v′(m(x))

u′(R(x))
. (44)

and λ by λ(1 + σ) in (26).

50On can check that A′x̃|x̃=x > 0 if U
′
HU
′′
RH −U ′RU ′′H2 > 0, which holds when U ′′RH > 0, U ′′H2 < 0 as

postulated, but which is also compatible with U ′′RH < 0.
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Suppose that Î ′(x) > 0 if x < ε, with ε > 0. Hence Î(x) > 0 (and thus δ(x) = 0)

for all x > 0. Using (6) gives

h(x) > 0, (45)

1− γxv′(m(x))

u′(R(x))
> 0, (46)

if x < ε. (45) implies ϕ(x) = ϕ′(x) = 0 if x < ε. Furthermore, using (26) (in which λ

is replaced by λ(1 + σ)), (29) and µ1(a) = 0 yields

µ1(0) = −
∫ a

x

µ′1(x)dx =

∫ a

0

δ(x)dx− λσ = −λσ < 0,

and thus µ1(x) < 0 for x small enough. (44) and (46) then yield ϕ′(x) > 0, hence a

contradiction. Since we know from Step 4 that Î(x) is non-decreasing, we deduce that

there exists d > 0 such that Î(x) = 0 if x ≤ d and Î(x) > 0 if x > d.

The simulated trajectories of µ1(x) and µ2(x) are illustrated in Figure 9 in the case

of an exponential distribution function, with σ = 0.1 and with the same calibration

as in Section 3.4. We have µ1(x) = µ2(x) = 0 when x ≤ d and µ1(x) > 0, µ2(x) < 0

when x > d, with d ' 0.41.

The characterization of the indemnity schedule I(m) is derived in the same way as

in Proposition 3, with D = m(d).51

Figure 15

Proof of Corollary 3

Similar to Corollary 1.

Proof of Corollary 4

Similar to Corollary 2.

51Note however, that we may have I ′(D+) = 0 as illustrated in Figure 6 (bottom) and 7.
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