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Abstract

We consider an investor who seeks to maximize her expected utility derived from her
terminal wealth relative to the maximum performance achieved over a fixed time horizon,
and under a portfolio drawdown constraint, in a market with local stochastic volatility
(LSV). In the absence of closed-form formulas for the value function and optimal portfolio
strategy, we obtain approximations for these quantities through the use of a coefficient
expansion technique and nonlinear transformations. We utilize regularity properties of the
risk tolerance function to numerically compute the estimates for our approximations. In
order to achieve similar value functions, we illustrate that, compared to a constant volatility
model, the investor must deploy a quite different portfolio strategy which depends on the
current level of volatility in the stochastic volatility model.
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1 Introduction

1.1 Background and motivation

In the vast and long-dated literature on dynamic portfolio optimization, different types of ter-
minal utility paradigms under various portfolio constraints have been considered to understand
investor behaviour (see, for instance, Rogers [19] for a detailed exposition). The solutions to
these problems provide optimal investment strategies which aid institutional investors, and at
times help to reveal deep insights about market observed phenomenons. The classical problem
of continuous-time portfolio optimization dates back to Samuelson [20] and Merton [16, 15]. In
his seminal paper, Merton [16] considered a market where the prices of risky assets are given by
geometric Brownian motions (with constant volatilities), and the objective is to maximize the
expected utility of terminal wealth by investing capital between the risky assets and a risk-free
bank account. For constant relative risk aversion utility (CRRA) functions, the author showed
that the optimal strategy is a “fixed mix” investment in the risky assets and the bank account.

Merton’s landmark result provided structural market insight but the restrictive problem set-
ting – investor objective and market dynamics – prevented application of the results to practical
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situations. As a result, subsequent research has focused upon relaxing the assumptions made in
[16], incorporating various market constraints and considering more realistic model settings.

Portfolio managers typically use a stop-loss level on the portfolio value to prevent a complete
wipe-out of wealth in the face of falling prices. This is also known more commonly as the
drawdown constraint. Under this constraint, the wealth in the portfolio must always remain
above a certain fraction of the current maximum wealth value achieved. Furthermore, in several
instances, portfolio managers commit a certain percentage of the starting wealth to the pooling
investors. This situation is also covered by imposing a drawdown constraint on the portfolio
wealth.

In this article, we propose a new framework to study the dynamic portfolio optimization
under a drawdown portfolio constraint in a stochastic volatility market model. In many em-
pirical studies it has been well established that stochastic volatility is a reasonable asset price
modelling tool to capture the market observed volatility smiles and volatility clustering. Our
principal innovation is to introduce a new terminal investor objective paradigm which allows
for a reduction in the dimensionality of the problem. As our central objective in this work is
to numerically study the impact of stochastic volatility on the value function and optimal port-
folio strategy, the dimensionality reduction serves as a crucial feature to allow for an efficient
implementation of the numerical procedures used to solve the problem and study the effects of
stochastic volatility.

1.2 Literature review

Several authors have considered the optimal portfolio problems under drawdown constraint.
Grossman and Zhou [9] were the first to comprehensively study this problem over infinite time
horizon in a lognormal market model. They investigated to maximize the long term growth
rate of the expected utility of the wealth and used dynamic programming principle to solve
the problem. Cvitanic and Karatzas [5] streamlined the analysis of Grossman and Zhou [9]
and extended the results to the case when there are multiple risky assets whose dynamics are
governed by a lognormal model with deterministic coefficients. By defining an auxiliary process,
they were able to show that the solution of optimization problem with drawdown constraint can
be linked to an unconstrained optimization problem whose solution follows from the work of
Karatzas et al. [11]. They further showed that in the case of logarithmic utility function, the
results hold even if the coefficients in the lognormal model are random and satisfy some ergodicity
condition. In [21], Sekine carried forward the arguments and results of Cvitanic and Karatzas
[5] to a multi-asset market model with single stochastic volatility factor. More recently, Cherny
and Obłój [4] have studied the optimal portfolio problem in an abstract semimartingale model
with a generalized drawdown constraint. They utilized the properties of Azéma-Yor processes
to show that the value function of the constrained problem, where the investor objective is to
maximize the long term growth rate of the expected utility, has the same value function as an
unconstrained problem with a suitably modified utility function. Moreover, they showed that
the optimal wealth process can also be obtained as an explicit pathwise transformation of the
optimal wealth process in the unconstrained problem.

The portfolio optimization problem with drawdown constraint has also been studied in a
continuous-time framework with consumption. Roche [18] studied the problem of maximizing
the expected utility of consumption over an infinite time horizon for a power utility function
under a linear drawdown constraint. This analysis was performed in the setting of a lognormal
model with single asset. Elie and Touzi [7] subsequently generalized the result to a general class
of utility functions in the setting of zero interest rates and obtained an explicit representation of
the solution. Elie [6] also studied a finite time version of the same problem and in the absence
of analytical representation, he provided a numerical solution to the problem.
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In the financial literature, different problem settings with a drawdown constraint have re-
ceived considerable attention due to their significance. Magdon-Ismail and Atiya [14] considered
the problem of optimal portfolio choice when the drawdown is minimized in the single asset log-
normal market model. Chekhlov et al. [2] analyzed the portfolio optimization problem in discrete
time where the investor objective is to maximize the expected return from the portfolio subject
to risk constraints given in terms of drawdowns. They considered a multi-asset market model
and reduced the problem to a linear programming problem which can be solved numerically.
In the insurance literature, drawdown constraint has been incorporated to study problems of
lifetime investments. In [3], Chen et al. considered the optimization problem of minimizing the
probability of a significant drawdown occurring over a lifetime investment, i.e. the probability
that portfolio wealth hits the drawdown barrier before a random time which represents the death
time of a client.

1.3 Our contributions

In this article, we consider an investor who at any time is worried about her wealth falling
below a fixed fraction of the running maximum wealth and, thus, is only interested to maximize
the ratio of these two quantities at the end of a fixed investment horizon. As the investor is
cautious about the drawdown, consequently it is not possible to achieve an unreasonable amount
of wealth by looking at an unbounded terminal utility. Therefore, it is sensible to consider a
bounded terminal utility. The proposed investor objective paradigm is also motivated from the
perspective of portfolio benchmarking and fixed target problems. In our setting, we start from
an initial value of the maximum wealth which satisfies the drawdown constraint. The portfolio
strategy in our problem allows the portfolio wealth to hit the level of initial maximum wealth
by investing in the risky asset thus hitting the target or benchmark. Heuristically, it can also be
deduced that the optimal portfolio strategy will liquidate the position in the risky asset once the
maximum wealth is reached. This mimics the logic of classical Merton strategy which suggests
to sell the risky asset close to the highest value of the portfolio.

We consider the basic setting of a frictionless financial market with a single underlying asset
and a risk-free money market account. We study this problem in a stochastic volatility environ-
ment to demonstrate how uncertainty in the volatility impacts the optimal portfolio strategy.
This problem has no explicit solution and thus, we look for accurate approximations to the
value function and optimal strategy. We use the technique of coefficient expansion to formulate
separate problems for different terms in the expansion of value function. The solutions to these
problems allow us to derive an expansion for the optimal portfolio strategy. Due to the pres-
ence of portfolio constraints, the expansion terms in the value function approximation are not
available in closed-form. We numerically solve for the leading term in the value function ap-
proximation and use the regularity properties of the so-called risk tolerance function to compute
the remaining higher order expansion terms. The numerical estimates for the optimal portfolio
strategy are derived similarly.

We show that the leading terms in the expansion of value function and optimal strategy are
related to the solution of our problem in a lognormal asset pricing model with constant volatility.
The optimal strategy in this case suggests to liquidate the risky position when portfolio wealth
approaches its maximum value. Also, close to the drawdown constraint, the optimal strategy
instructs to steadily build up a position in the risky asset to drive away the portfolio value from
the lower barrier. The stochastic volatility correction term for the value function suggests very
small loss or gain due to the uncertainty in volatility. However, we observe that depending on the
current level of stochastic volatility, the optimal strategy with volatility correction is remarkably
different than the case with constant volatility. Close to the maximum wealth value, the corrected
optimal strategy suggests to hold onto the risky assets longer than in the constant volatility case.
This clearly illustrates the impact of stochastic volatility on the optimal investment strategy.
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However, near the drawdown barrier, the behavior of corrected optimal strategy depends on the
level of current stochastic volatility in the model when compared to the optimal strategy in the
constant volatility case.

1.4 Organization

In Section 2 we introduce the continuous-time model setting and formulate the problem. We
derive the HJB equation for the optimal portfolio problem and give the analytical formula for
the optimal portfolio strategy in terms of the value function. We provide the approximation
formulas for the value function and optimal portfolio strategy in Section 3 and summarize our
main results. In Section 4, we discuss the numerical implementation of our results and provide
practical insights with the help of popular numerical examples considered in the literature.
Section 5 concludes the article and suggests directions for future research. The proofs are
included in Appendix A.

2 Problem Formulation

We consider a complete filtered probability space (Ω,F , {Ft}t≥0,P) endowed with a two dimen-
sional Brownian motionW =

(
(W

(1)
t ,W

(2)
t ), 0 ≤ t ≤ T

)
and suppose there is a risky asset whose

dynamics under P is given by the following local stochastic volatility (LSV) model:

dSt
St

= µ̃(St, Yt)dt+ σ̃(St, Yt)dB
(1)
t ,

dYt = c(Yt)dt+ β(Yt)dB
(2)
t ,

where B(1)
t := W

(1)
t and B(2)

t := ρW
(1)
t +

√
1− ρ2W

(2)
t are standard Brownian motions under

measure P with correlation ρ ∈ [−1, 1] : d〈B(1)
t B

(2)
t 〉 = ρdt. From Itô’s formula, the log price

process X = logS is described as following:

dXt = b(Xt, Yt)dt+ σ(Xt, Yt)dB
(1)
t ,

where µ(Xt, Yt) := µ̃(eXt , Yt), σ(Xt, Yt) := σ̃(eXt , Yt) and

b(Xt, Yt) := µ(Xt, Yt)−
1

2
σ2(Xt, Yt).

We assume that the model coefficient functions µ, σ, c and β are Borel-measurable and possess
sufficient regularity to ensure that a unique strong solution exists for (X,Y ) which is adapted
to the augmentation F = {Ft : 0 ≤ t ≤ T} of the filtration generated by W.

Further, we suppose the existence of a frictionless financial market with the price of a single
risky asset given by S and the risk-free rate of interest given by a scalar constant r > 0. In this
market, we denote the wealth process of an investor by L̄ who invests π̄t units of currency in
risky asset S at time t and the remaining (L̄t−π̄t) units of currency in the risk-free bank account.
Then, the self-financing portfolio, L̄ satisfies the following stochastic differential equation (SDE)

dL̄t = r(L̄t − π̄t)dt+ π̄t
dSt
St

=
(
rL̄t + π̄t(µ(Xt, Yt)− r)

)
dt+ π̄tσ(Xt, Yt) dB

(1)
t .

The running maximum wealth in time t dollars is given by M̄t := max{L̄ser(t−s); s ≤ t}. In
this work, we propose an investment framework that encourages exiting the market in the face of
a sizable drawdown, while also targeting a benchmark that is related to the running maximum,
or high watermark of the investment performance. The investor’s risk preferences are given by
a utility function U satisfying:
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Assumption 1. The terminal utility function U : (α, 1) → R, is smooth: U ∈ C∞(α, 1). It is
also strictly increasing and strictly concave.

We solve the utility maximization problem at finite T > 0 with the drawdown constraint :

L̄t ≥ αM̄t a.s., 0 ≤ t ≤ T, where α ∈ (0, 1) is a fixed drawdown parameter.

2.1 The discounted formulation

We look to formulate the problem in the setting where the wealth process is discounted with
respect to the risk-free rate of interest. This allows us to clearly study the impact of stochastic
volatility on the optimal strategy and value function. For this purpose, we define, Lt := L̄te

−rt

and Mt := M̄te
−rt = max{Ls; s ≤ t}. The discounted wealth process satisfies the following SDE

dLt = πt
(
(µ(Xt, Yt)− r)dt+ σ(Xt, Yt)dB

(1)
t

)
,

where πt := e−rtπ̄t is the risky-asset trading strategy.
Now, we are ready to express the investor’s utility maximization problem by defining the

value function

V (t, l,m, x, y) = sup
π∈Π

E
[
U

(
LT
MT

) ∣∣∣Lt = l,Mt = m,Xt = x, Yt = y

]
,

where the admissible strategies are given by

Πα,t,l,m :=
{
π : measurable ,F− adapted,Et,l,m,x,y

∫ T

t
π2
sσ

2(Xs, Ys)ds <∞,

s.t. Ls ≥ αMs > 0 a.s., t ≤ s ≤ T
}
.

We define the domain in R+ × R4 as [0, T )× Õα where

Õα := {(l,m, x, y) : 0 < αm < l < m}.

The above value function V is defined for any 5−tuple (t, l,m, x, y) ∈ [0, T ]× Õα.
We recall that dM = 0 on {t ≥ 0|Mt 6= Lt}. Then, for (t, l,m, x, y) ∈ [0, T ) × Õα and

V ∈ C1,2,1,2,2([0, T ]×Õα), following the usual dynamic programming principle (see, for example,
Pham [17, Chapter 3 ]), we obtain the Hamilton-Jacobi-Bellman (HJB) equation

(∂t +A)V + sup
π∈R
AπV = 0,

where (A+Aπ) is the generator of the process (X,Y, L) with

A = b(x, y)
∂

∂x
+ c(y)

∂

∂y
+

1

2
σ2(x, y)

∂2

∂x2
+

1

2
β2(y)

∂2

∂y2
+ σ(x, y)β(y)ρ

∂2

∂x∂y
,

Aπ = π
[
(µ(x, y)− r) ∂

∂l
+ σ2(x, y)

∂2

∂x∂l
+ ρσ(x, y)β(y)

∂2

∂y∂l

]
+

1

2
π2σ2(x, y)

∂2

∂l2
.

By inspecting the quadratic expression above in π, it is clear that the optimal strategy π∗ :=
arg max
π∈R

AπV is given as

π∗ = −
(µ(x, y)− r)Vl + ρβ(y)σ(x, y)Vyl + σ2(x, y)Vxl

σ2(x, y)Vll
, (1)
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where the subscripts indicate partial derivatives. The HJB equation becomes

(∂t +A)V + Ñ (V ) = 0, (2)

with the nonlinear term given as

Ñ (V ) = − 1

2Vll

(
λ(x, y)Vl + σ(x, y)Vxl + ρβ(y)Vyl

)2
,

where

λ(x, y) :=
µ(x, y)− r
σ(x, y)

is the Sharpe ratio function. The boundary conditions are

(Terminal condition): V (T, l,m, x, y) = U

(
l

m

)
, (3)

(Neumann condition): Vm(t,m,m, x, y) = 0, (4)
(Drawdown Dirichlet condition): V (t, αm,m, x, y) = U(α). (5)

The above Dirichlet condition signifies that when the drawdown constraint is hit, the investor
stops trading in the risky asset (πt = 0). In the discounted formulation when the investor stops
trading, it signifies that the wealth process stops varying and the investor accepts the utility
which is given at the drawdown barrier.

2.2 Dimensionality reduction

The nonlinear PDE in (2) with boundary conditions (3), (4) and (5) is difficult to solve nu-
merically because the domain Õα is a wedge in (L,M) space requiring a non-rectangular finite-
difference grid. However, we notice that given the structure of our problem, we could perform a
change of variable which reduces the dimensionality of the problem. We introduce

ξ =
l

m
, and define Q(t, ξ, x, y) := V (t, l,m, x, y),

which results in a new non-linear PDE for Q ∈ C1,2,2,2
(
[0, T ]× [α, 1]× R2

)
:

(∂t +A)Q+N (Q) = 0, on [0, T )× (α, 1)× R2, (6)

where

N (Q) = − 1

2Qξξ

(
λ(x, y)Qξ + σ(x, y)Qxξ + ρβ(y)Qyξ

)2
,

and the boundary conditions are

Q(T, ξ, x, y) = U (ξ) , Qξ(t, 1, x, y) = 0, Q(t, α, x, y) = U(α). (7)

Apart from providing a reduction in dimensionality, the above change of variable also transforms
the problem domain from a high-dimensional cone to a semi-rectangular domain which typically
helps to get more accurate numerical estimates for the solution.
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3 Value Function and Optimal Strategy Approximation

Even under the constant volatility lognormal asset model, no closed form solution is available
for the nonlinear PDE (6) and one needs to rely on accurate numerical approximations. In this
paper, we propose to find an approximation for the value function as

Q = Q(0) +Q(1) +Q(2) + . . . , (8)

as well as an approximation for the optimal investment strategy

π∗ = π0 + π1 + π2 + . . . , (9)

by using the coefficient expansion technique. This approach has been developed for the linear
European option pricing problem in a general LSV model setting by Lorig et al. [13], and for
the classical (unconstrained) Merton problem by Lorig and Sircar [12].

3.1 Coefficient polynomial expansions

The main idea of the coefficient expansion technique is to first fix a point (x̄, ȳ) ∈ R2 and then
for any function χ(x, y), which is locally analytic around (x̄, ȳ), define the following family of
functions indexed by a ∈ [0, 1] :

χa(x, y) :=
∞∑
n=0

anχn(x, y)

where

χn(x, y) :=

n∑
k=0

χn−k,k(x− x̄)n−k(y − ȳ)k, χn−k,k :=
1

(n− k)!k!

∂n−k

∂xn−k
∂k

∂yk
χ(x, y)

∣∣∣
x=x̄,y=ȳ

.

Note that for n = 0, χ0 := χ0,0 = χ(x̄, ȳ) is a constant. We can observe that χa
∣∣∣
a=1

is the
Taylor series expansion of χ about the point (x̄, ȳ). Here, a is seen as a perturbation parameter
which is used to identify the successive terms in the approximation.

To apply this technique in PDE (6), we first replace each of the coefficient functions

χ ∈ {b, c, σ2, β2, σβ, λ, σ, β}

with their respective series expansion for some a ∈ (0, 1) and (x̄, ȳ) ∈ R2. Next, to obtain
approximations as in (8) and (9), we define a series expansion of value function as Q = Qa =∑∞

n=0 a
nQ(n), linear operator A = Aa =

∑∞
n=0 a

nAn and replace the non-linear operator N (Q)
by N a(Qa) which involves series expansions for the coefficient functions and the value function.
Then from (6), we consider the PDE problem

(∂t +Aa)Qa +N a(Qa) = 0, on [0, T )× (α, 1)× R2, (10)

with the boundary conditions

Qa(T, ξ, x, y) = U (ξ) , Qaξ (t, 1, x, y) = 0, Qa(t, α, x, y) = U(α). (11)

Now, to obtain the successive terms of approximation in expansions (8) and (9), we compare
the corresponding degree terms in the polynomial of perturbation parameter a in (10) and the
boundary conditions (11). The approximations are then obtained by setting a = 1.

7



3.2 Zeroth and first order approximation

The first term in the approximation (8) is obtained by collecting the zeroth order terms w.r.t.
a in the expansion of (10). We get

(∂t +A0)Q(0) − 1

2Q
(0)
ξξ

(
λ0Q

(0)
ξ + ρβ0Q

(0)
yξ

)2
= 0,

with

A0 := b0
∂

∂x
+ c0

∂

∂y
+

1

2
σ2

0

∂2

∂x2
+

1

2
β2

0

∂2

∂y2
+ ρσ0β0

∂2

∂x∂y
, (12)

and the corresponding order boundary conditions are

Q(0)(T, ξ, x, y) = U(ξ), Q
(0)
ξ (t, 1, x, y) = 0, Q(0)(t, α, x, y) = U(α).

As the linear operator A0 has only constant coefficients and the boundary conditions do not
depend on (x, y), the solution Q(0)(t, ξ, x, y) is independent of (x, y). Therefore, in this case we
get:

Definition 1. The leading order term Q(0) = Q(0)(t, ξ) satisfies the following nonlinear PDE

Q
(0)
t −

1

2
λ2

0

(
Q

(0)
ξ

)2
Q

(0)
ξξ

= 0, on [0, T )× (α, 1), (13)

with the boundary conditions

Q(0)(T, ξ) = U(ξ), Q(0)(t, α) = U(α), Q
(0)
ξ (t, 1) = 0. (14)

It can be seen (and also shown later) that the zeroth order term Q(0) actually corresponds
to the value function of our investor problem which arises in the case of a constant volatility
and growth rate lognormal asset price market model, with constant Sharpe ratio λ0. Due to the
presence of boundary conditions, an explicit formula for Q(0) is inaccessible, even for a power
utility function, and we estimate the quantity through numerical techniques. This is explained
in detail in Section 4.

Assumption 2. We assume throughout that the PDE problem (13)-(14) has a unique classical
solution Q(0) ∈ C1,5

b ([0, T ) × [α, 1]), that is Q(0) has at least five derivatives in ξ which are
continuous and bounded up to the boundaries at ξ = α, 1.

In the unconstrained case, with no drawdown restrictions, the PDE (13) is simply the con-
stant Sharpe ratio Merton value function PDE on the half-space ξ > 0, where ξ would denote the
wealth level. As is well-known, given a smooth and strictly concave utility function satisfying the
usual conditions (U ′(0+) = ∞ and U ′(∞) = 0), smoothness of the value function follows from
Legendre transform to a linear parabolic PDE. In our restricted drawdown problem we assume
regularity of the solution when restricted to a finite domain. Our value function approximation,
summarized in Section 3.2.2, and our optimal portfolio approximation in Section 3.3, are given
in terms of (up to 5th order) partial derivatives of Q(0).

In order to find the first order correction term, we introduce the following risk tolerance
function

R(t, ξ) :=

−Q(0)
ξ

Q
(0)
ξξ

 (t, ξ). (15)

This function has been well studied in the unconstrained case by Källblad and Zariphopoulou
[10] and has been recently used to study the classical Merton problem in a stochastic volatility
environment by Fouque et al. [8]. It satisfies an autonomous PDE of fast-diffusion type:
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Proposition 1. The risk tolerance function R(t, ξ) satisfies the nonlinear PDE

Rt +
1

2
λ2

0R2Rξξ = 0, on [0, T )× (α, 1), (16)

with the boundary conditions

R(T, ξ) = − U
′(ξ)

U ′′(ξ)
, R(t, α) = 0, R(t, 1) = 0. (17)

The proof is given in Appendix A.2.
As we show later in Section 3.3, Proposition 1 is also crucial to compute the leading order

terms in the approximation of optimal strategy π∗. Next, we define the differential operators

Dk := Rk ∂
k

∂ξk
, k = 1, 2, . . . , (18)

which allows us to write equation (13) as(
∂t +

λ2
0

2
D2 + λ2

0D1

)
Q(0) = 0. (19)

Next, we collect the first order terms w.r.t. a in the expansion (10). As Q(0) does not depend
on y, the linear term contributes (

∂

∂t
+A0

)
Q(1),

and the nonlinear term contributes

λ2
0D1Q

(1) +
1

2
λ2

0D2Q
(1) + λ0λ1D1Q

(0) + β0λ0ρD1
∂

∂y
Q(1) + σ0λ0D1

∂

∂x
Q(1).

Definition 2. The first order correction term Q(1) satisfies the following PDE(
∂

∂t
+A0 + B0

)
Q(1) + S1 = 0, on [0, T )× (α, 1)× R2, (20)

with linear operator B0 given as

B0 := λ2
0D1 +

1

2
λ2

0D2 + β0λ0ρD1
∂

∂y
+ σ0λ0D1

∂

∂x
,

and the source term

S1 =
(1

2
λ2
)

1
(x, y)D1Q

(0)(t, ξ).

The terminal and boundary conditions (11) for Qa are already satisfied by Q(0), and so we have

Q(1)(T, ξ, x, y) = 0, Q
(1)
ξ (t, 1, x, y) = 0, Q(1)(t, α, x, y) = 0. (21)

In Section 3.2.1, we show that Q(1) can be expressed in terms of partial derivatives of Q(0)

and R.
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3.2.1 Explicit expression for first order correction term

We now employ a transformation that enables us to find an explicit expression for Q(1) in terms
of partial derivatives of Q(0). For this purpose, we first note that Q(0)

ξ is a monotone function
from the following result on the zeroth order term.

Lemma 1. Q(0)(t, ξ) is a non-decreasing and concave function in the ξ variable.

The proof is given in Appendix A.1. This result allows us to define a change of variable
which is given as:

Definition 3. On [0, T ]× [α, 1], define,

z(t, ξ) := − logQ
(0)
ξ (t, ξ) +

1

2
λ2

0(T − t),

ψ(t) := − logQ
(0)
ξ (t, α) +

1

2
λ2

0(T − t), ϕ(t) := − logQ
(0)
ξ (t, 1) +

1

2
λ2

0(T − t),

and let
q(0)(t, z(t, ξ)) := Q(0)(t, ξ).

It is clear from the boundary condition (14) that we have ϕ(t) =∞ for all 0 ≤ t < T. Then,
we obtain the following PDE problem for q(0)(t, z).

Proposition 2. q(0)(t, z) satisfies the following linear PDE( ∂
∂t

+
1

2
λ2

0

∂

∂z2

)
q(0) = 0, on [0, T )× (ψ(t),∞),

and the terminal and boundary conditions are

q(0)(T, z) = U
((
U ′
)−1(

e−z
))
, lim

z→∞
q(0)
z (t, z) = 0, q(0)(t, ψ(t)) = U

((
U ′
)−1(

e−ψ(t)+
λ20
2

(T−t))).
The proof is given in Appendix A.3.

Lemma 2. Denote q
(
t, z(t, ξ), x, y

)
:= Q̂(t, ξ, x, y). Then, on [0, T )× (ψ(t),∞)× R2, we have(

∂

∂t
+A0 + B0

)
Q̂ =

(
∂

∂t
+A0 + C0

)
q,

where

C0 =
1

2
λ2

0

∂2

∂z2
+ ρβ0λ0

∂2

∂y∂z
+ σ0λ0

∂2

∂x∂z
. (22)

The above result follows from the calculations performed in the proof of Proposition 2 (also
see [12, Lemma 3.3]).

Next, we set Q̂ = Q(0) and q = q(0) in Lemma 2. Further we know that q(0) does not
depend on (x, y) and A0 and the last two terms in C0 have derivatives w.r.t. (x, y). Then, we
get the constant coefficient heat equation by applying the operator C0 as in Proposition 2. On
[0, T )× (ψ(t),∞), we have (

∂

∂t
+A0 + C0

)
q(0) = 0.

Finally, we define q(1) from Q(1) as

q(1)(t, z(t, ξ), x, y) := Q(1)(t, ξ, x, y). (23)
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Proposition 3. The alternative representation q(1)(t, z, x, y) of the first order correction term
satisfies (

∂

∂t
+A0 + C0

)
q(1) + S1 = 0, on [0, T )× (ψ(t),∞)× R2, (24)

where

S1(t, z, x, y) =
(1

2
λ2
)

1
(x, y)q(0)

z (t, z, x, y). (25)

The boundary conditions are

q(1)(T, z, x, y) = 0, q(1)(t, ψ(t), x, y) = 0, lim
z→∞

q(1)
z (t, z, x, y) = 0. (26)

The above result follows from Definition 2. The solution to (24) with boundary conditions
(26) is given in terms of derivatives of q(0) in the following proposition.

Proposition 4. The solution of the PDE in (24) with boundary conditions (26) is given by

q(1)(t, z, x, y) = (T − t)λ0A(t, x, y)q(0)
z (t, z) +

1

2
(T − t)2λ0Bq

(0)
zz (t, z), (27)

where

A(t, x, y) = λ1,0

[
(x− x̄) +

1

2
(T − t)b0

]
+ λ0,1

[
(y − ȳ) +

1

2
(T − t)c0

]
,

B = λ1,0σ0λ0 + λ0,1ρβ0λ0.

In the original variables, Q(1), the solution of (20) with terminal and boundary conditions (21),
is given by

Q(1)(t, ξ, x, y) = (T − t)λ0A(t, x, y)D1Q
(0) +

1

2
(T − t)2λ0B (D3 − 2D1)Q(0). (28)

The proof is given in Appendix A.4.

3.2.2 Summary of the first order value function approximation results

The coefficient polynomial approximation to the value function Q, solution to the PDE problem
(6)-(7) is then defined by setting a = 1: Q ≈ Q(0) +Q(1), where

• Zeroth order term: Q(0)(t, ξ) is estimated by numerically solving (13) with the boundary
conditions (14).

• First order term: Q(1)(t, ξ, x, y) is obtained from Proposition 4 and is given by (28).

3.3 Optimal strategy approximation

Once we have the estimates for Q(0) and Q(1) in the approximate expansion (8) of the value
function Q, we can find the first order approximation of the optimal strategy π∗ from the formula
in (1). In terms of Q(t, ξ, x, y), the optimal strategy is given by

π∗(t, l,m, x, y) = −m
[

(µ(x)− r)Qξ
(σ(x, y))2Qξξ

+
ρβ(y)Qyξ
σ(x, y)Qξξ

+
Qxξ
Qξξ

]
, with ξ =

l

m
.

To express the approximation for π∗ in terms of R, Q(0) and their spatial derivatives, we first
replace Q by Q(0) +Q(1) in the above formula, use the results in (28) and the following Lemma.
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Lemma 3. From the definition (15) of R, we have the following identities:

(i) (D1 +D2)D1Q
(0) = RRξξD1Q

(0),

(ii) (−2D1 +D3)Q(0) = D1D1Q
(0),

(iii)
(
D1 +D2

)
D1D1Q

(0) = R
(
Rξξ(3Rξ − 2) +RRξξξ

)
D1Q

(0).

Proof. We show the following using elementary manipulations. From (15) and (18), recall that

R = −
Q

(0)
ξ

Q
(0)
ξξ

, Dk = Rk ∂
k

∂ξk
, k = 1, 2, . . . .

(i) We have,

D1D1Q
(0) = D1(RQ(0)

ξ ) = RRξQ
(0)
ξ +R2Q

(0)
ξξ = (Rξ − 1)D1Q

(0), and

D2D1Q
(0) = RRξξD1Q

(0) − (Rξ − 1)D1Q
(0).

The above result and the distributive property of Dk operator completes the proof.
(ii) We have,

D3Q
(0) = R3∂ξ

(
−
Q

(0)
ξ

R

)
= R3

(
−
Q

(0)
ξξ

R
+
Q

(0)
ξ Rξ
R2

)
= (Rξ + 1)D1Q

(0).

This gives,

−2D1Q
(0) +D3Q

(0) = −2D1Q
(0) + (Rξ + 1)D1Q

(0) = (Rξ − 1)D1Q
(0).

The final conclusion follows from (i).
(iii) Using the previous calculations, we get

D1

(
(Rξ − 1)D1Q

(0)
)

= R2RξξQ
(0)
ξ + (Rξ − 1)D1D1Q

(0) = RRξξD1Q
(0) + (Rξ − 1)2D1Q

(0),

D2

(
(Rξ − 1)D1Q

(0)
)

= RD1

(
RRξξQ

(0)
ξ + (Rξ − 1)2Q

(0)
ξ

)
= R

(
RRξξξ +Rξξ(Rξ − 1)

)
D1Q

(0) +RD1

(
(Rξ − 1)2Q

(0)
ξ

)
= R

(
RRξξξ + 3Rξξ(Rξ − 1)

)
D1Q

(0) − (Rξ − 1)2D1Q
(0).

The sum of above two results concludes the proof.

Thus, we obtain the optimal strategy approximation as

π∗ ≈ m
[

(µ(x, y)− r)
(σ(x, y))2

R+ (T − t)λ0A(t, x, y)
(µ(x, y)− r)

(σ(x, y))2
R2Rξξ

+
1

2
(T − t)2λ0B

(µ(x, y)− r)
(σ(x, y))2

R2
(
Rξξ(3Rξ − 2) +RRξξξ

)
(29)

+ (T − t)λ0

(λ0,1ρβ(y)

σ(x, y)
+ λ1,0

)
R(Rξ − 1)

]
.

4 Examples and Numerical Implementation

In this section, we consider the stochastic volatility model as in Chacko and Viceira [1] with their
calibrated set of parameters and provide a detailed discussion of the numerical implementation of
our results obtained in Section 3. We discuss the effect of stochastic volatility on value function
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and optimal strategy for the case of power utility function and a mixture of two power utility
functions, as introduced in [8]. The latter allows for relative aversion that declines with wealth,
while for the former it is constant across wealth levels.

Under the considered stochastic volatility model [1, Section 1], the coefficients (µ, σ, c, β) in
Section 2 are independent of x and are given as

µ(y) = µ, σ(y) =
1
√
y
, c(y) = κ(θ − y), β(y) = δ

√
y.

The market calibrated values of the constants are

µ− r κ θ δ ρ

0.0811 0.3374 27.9345 0.6503 0.5241

We numerically solve for Q(0) backward in time via explicit finite-difference Euler scheme.
We approximate the domain [0, T ]× [α, 1] with a uniform mesh given as

M =
{

(tn, ξj) : n = 0, 1, . . . , N, j = 0, 1, . . . , J
}
,

where tn = T − n∆t, ξj = α+ j∆ξ. Let Qnj denote the numerical approximation of Q(0)(tn, ξj).
Then the discretized equation for Q(0) in the interior is written as

Qn+1
j = Qnj −

1

8
λ2

0∆t
(Qnj+1 −Qnj−1)2

(Qnj+1 − 2Qnj +Qnj−1)
. (30)

We start with the guess Q0
j = U(ξj), for all j = 0, 1, . . . , J , and the boundary conditions are

Qn+1
J = Qn+1

J−1, and, Q
n+1
0 = U(ξ0).

In Figure 1(a) and 2(a), we plot the numerical solution for the leading order expansion term
Q(0) obtained from (30). We can see that the zeroth order term is concave and non-decreasing
as expected from Lemma 1.
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Figure 1: Numerical solutions to (a) zeroth order value function Q(0) (b) relative utility correction
Q(1)/Q(0). Utility function used U(ξ) = ξ1−γ

1−γ , γ = 3.0

To find the first order correction term, we refer to formula (28). We can directly use R from
Proposition 1 in the formula instead of taking derivatives of Q(0). We note that to obtain Q(1),
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Figure 2: Numerical solutions to (a) zeroth order value function Q(0) (b) relative utility correction
Q(1)/Q(0). Utility function used U(ξ) = ξ1−γ1

1−γ1 + ξ1−γ2

1−γ2 , γ1 = 3.0, γ2 = 1.5.

we need to set the value for reference level ȳ. We set ȳ = y, the current value of the stochastic
volatility factor. This gives us

Q(1) =
(1

2
λ2
)

0,1
(T − t)2c0RQ(0)

ξ +
(1

2
λ2
)

0,1
(T − t)2λ0ρβ0

(
−2RQ(0)

ξ +R3∂3
ξQ

(0)
)

=
1

2
(µ− r)2(T − t)2

[
κ(θ − y)RQ(0)

ξ + ρδ(µ− r)y
(
−2RQ(0)

ξ +R3∂3
ξQ

(0)
)]
.

We use the regularity properties of R and Q(0) to compute the above expression. We obtain
estimates of R by numerically solving (16) with boundary conditions (17) via explicit finite-
difference Euler scheme. The discretized equation in the interior is written as

Rn+1
j = Rnj +

1

2
λ2

0∆t(Rnj )2
(Rnj+1 − 2Rnj +Rnj−1)

(∆ξ)2
,

and the boundary conditions Rn+1
J = 0, and Rn+1

0 = 0. As we solve the scheme backward in
time, we start with the guess R0

j = − U ′(ξj)
U ′′(ξj)

, for all j = 0, 1, . . . , J. In our market calibrated
stochastic volatility model, we set y = θ and plot the relative utility correction in Figure 1(b)
and Figure 2(b). We observe that the change in the value function due to the introduction of
stochastic volatility is negligible.

Next, we calculate the approximation to optimal strategy whose different terms are given
from (29) as

π∗0
m

= (µ− r)yR,

π∗1
m

=
(µ− r)3y2

2
(T − t)2

[
κ(θ − y)

(
R2Q

(0)
ξξ

)
+ ρδ

(
R2Rξξ(3Rξ − 2) +R3Rξξξ

)]
+ (µ− r)2(T − t)ρδyR

(
Rξ − 1

)
.

We suppose that the initial value of maximum wealth is unity, i.e. we set m = 1.0 and plot
numerical solution to the leading order term π0 and to the first order approximation π0 + π1 in
Figure 3(a) and 3(b). It is interesting to note that to achieve similar value functions without
and with the stochastic volatility correction, i.e. Q(0) and Q(0) +Q(1), we clearly need to employ
two very different investment policies, namely π0 and π0 + π1.
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Figure 3: Numerical solutions to the optimal strategy approximation for utility function (a) U(ξ) =
ξ1−γ

1−γ , γ = 3.0 (b) U(ξ) = ξ1−γ1

1−γ1 + ξ1−γ2

1−γ2 , γ1 = 3.0, γ2 = 1.5.

In Figure 3(a) and 3(b), we note that as the current wealth approaches to the maximum
wealth value, the optimal strategy is to gradually liquidate the position in the risky asset. In
the presence of stochastic volatility, the optimal strategy approximation π0 +π1 suggests to hold
the risky position longer than without the stochastic volatility correction as in π0. The corrected
strategy also suggests to sharply liquidate the position in the risky asset to safeguard from the
downside risk of stochastic volatility. On the other hand, when the current wealth moves away
from the drawdown barrier, the optimal strategy approximation π0 + π1 suggests to build up a
position in the risky asset at about the same trading rate to that in the case of constant volatility
approximation π0.

From the above results, we deduce that even in the presence of stochastic volatility, the
investor does not lose much value in his portfolio. However, to achieve similar value functions,
the investor has to deploy a remarkably different strategy corrected for stochastic volatility
π0 + π1 when compared to the constant volatility strategy π0. The larger position in the risky
asset when moving away from the drawdown barrier suggests leveraging the possible upside due
to stochastic volatility while holding on to the risky asset longer than in the constant volatility
case when close to the optimal level suggests caution towards a possible downside risk.

In the above results, we have set the level of stochastic volatility factor y to be the same as
the long term value θ. As it is clear that the level of stochastic volatility plays a crucial role in
the correction terms, we studied the effects when y moves in either direction away from its long
term value θ. We observed that even in these new cases, the relative utility correction remains
small. However, the optimal strategy in these cases exhibit remarkably different behaviors.
When the current level of volatility is higher than the long-term average y = 1.05× θ, in Figure
4(a) the optimal strategy approximation suggests to invest more in the risky asset compared
to the strategy without stochastic volatility correction. Also, as the portfolio wealth moves
away the drawdown barrier, the corrected optimal strategy suggests to build up the position in
risky asset at a much higher rate than suggested by π0. Whereas, in the case when the current
level of volatility is lower than the long-term average y = 0.95 × θ, in Figure 4(b) the optimal
strategy approximation suggests to invest less in the risky asset compared to the strategy without
stochastic volatility correction. Still close to the maximum wealth value, the corrected strategy
suggests to hold more risky asset than the constant volatility strategy suggests.
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Figure 4: Numerical solutions to the optimal strategy approximation for (a) y = 1.05×θ (b) y = 0.95×θ.
Utility function used U(ξ) = ξ1−γ

1−γ , γ = 3.0

5 Conclusion

We studied the impact of stochastic Sharpe ratio in a dynamic portfolio optimization problem
under a drawdown constraint. We proposed a new investor objective framework which allows
for a dimensionality reducing transformation. This new setting allowed us to employ coefficient
expansion technique to solve for different terms in the approximation of the value function
and optimal strategy. With the help of a nonlinear transformation we derived value function
expansion terms which can be numerically calculated and used to approximate the optimal
portfolio strategy. In a popular stochastic volatility model with market calibrated parameters,
we illustrated the remarkable differences between optimal strategies with and without stochastic
volatility correction.

The current problem requires further investigation which can be performed along the follow-
ing directions:

1. Approximation error analysis: In this work, we focussed our attention to capture the
first order effects of stochastic volatility on value function and optimal portfolio strategy.
We observed that the stochastic volatility correction to value function is small whereas
the corrected optimal strategy exhibited remarkably different behavior than the constant
volatility optimal strategy. This calls for an investigation of the higher order terms to look
for possible other interesting effects on the optimal strategy.

2. Multi-asset market model: We studied the portfolio optimization problem under drawdown
constraint in a stochastic volatility model which provides a sensible guide towards informed
investment decisions. However, in order to completely capture the market conditions, we
plan to tackle the same problem in a multi-asset model setting and study the effect of
stochastic volatility on investment strategies.

A Proofs

A.1 Proof of Lemma 1

Proof. Let us consider a market with a risky asset whose dynamics is given by a lognormal
model

dSt
St

= µ0dt+ σ0dB
(1)
t .
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With this risky asset in the market, we once again formulate our investor’s portfolio optimization
problem (see Section 2.1)

V(t, l,m) = sup
π∈Π

E
[
U
( LT
MT

)∣∣∣Lt = l,Mt = m
]
, t > 0,m > l > αm > 0,

where the admissible strategies are given by

Πα,t,l,m :=
{
π : measurable, F− adapted,Et,l,m

∫ T

t
π2
sds <∞ s.t. Ls ≥ αMs > 0 a.s., t ≤ s ≤ T

}
,

and F = {Ft : 0 ≤ t ≤ T} is the augmentation of the filtration generated by B(1). We define the
constant Sharpe ratio as λ0 := (µ0−r)

σ0
and the space domain as Oα := {(l,m) : m > l > αm >

0} ⊂ R2. Then, by proceeding as in Section 2.1, it can be shown that for V ∈ C1,2,1(R+ × Oα),
we have the following nonlinear PDE

∂tV −
1

2
λ2

0

(Vl)2

Vll
= 0, on [0, T )× Oα,

and the boundary conditions are

V(T, l,m) = U(l/m), Vm(t,m,m) = 0, V(t, αm,m) = U(α).

Similar to Section 2.2, we perform a change of variable ξ := l/m. It is then clear that the leading
order term in expansion (8), Q(0)(t, ξ) = V(t, l,m).

To first show that Q(0)(t, ·) is a non-decreasing function, we recall that in the constant
volatility model, for a portfolio strategy π, the discounted wealth process is given as

Ll,πt = l +

∫ t

0
πsσ0

(
λ0ds+ dB(1)

s

)
,

where l is the starting wealth value. Let (Ll,π)∗ denote the maximum of wealth process Ll,π over
the time period [0, T ]. Now, we consider l, l′ for a fixed value of m such that (t, l,m), (t, l′,m) ∈
[0, T )× Oα. Then, for l ≤ l′, we choose π ∈ Πα,t,l,m such that we have

Ll,π ≥ α(m ∨ (Ll,π)∗)

= α

(
m ∨

(
l +
(∫ t

0
πsσ0(λ0ds+ dB(1)

s )
)∗))

.

Add (l′ − l) to both sides of the inequality above to write

Ll
′,π ≥

((
αm+ (l′ − l)

)
∨
(
αl′ + α

(∫ t

0
πsσ0(λ0ds+ dB(1)

s )
)∗

+ (1− α)(l′ − l)
))

≥ α

(
m ∨

(
l′ +

(∫ t

0
πsσ0(λ0ds+ dB(1)

s )
)∗))

= α(m ∨ (Ll
′,π)∗),

which gives that Πα,t,l,m ⊂ Πα,t,l′,m. Thus, we get V(t, l,m) ≤ V(t, l′,m). For ξ := l
m and

ξ′ := l′

m , this gives us
Q(0)(t, ξ) ≤ Q(0)(t, ξ′).
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Next, it follows from the arguments presented in Lemma 3.2 Elie [6] that V(t, l,m) is non-
increasing in variable m. Thus, for fixed l and m ≤ m′ such that (t, l,m), (t, l,m′) ∈ [0, T )×Oα,
we have V(t, l,m′) ≤ V(t, l,m). Once again by defining ξ′ := l

m′ and ξ := l
m , we get

V(t, l,m′) ≤ V(t, l,m) =⇒ Q(0)(t, ξ′) ≤ Q(0)(t, ξ).

Therefore, we have shown that Q(0)(t, ·) is non-decreasing.
In order to show concavity of value function Q(0)(t, ·), we take motivation from the arguments

presented in Lemma 3.2 Elie [6]. First, we fix η ∈ [0, 1] and choose α ≤ ξ1, ξ2 ≤ 1. Our aim is
to show that V(t, l,m) is concave in its second argument, i.e.

ηV(t, l1,m) + (1− η)V(t, l2,m) ≤ V(t, ηl1 + (1− η)l2,m), (31)

where for a fixed value of m, we set l1 = mξ1 and l2 = mξ2. Now, suppose (31) is true. Then
by reversing the change of variables, we get in (31)

ηQ(0)(t, ξ1) + (1− η)Q(0)(t, ξ2) ≤ Q(0)(t, ηξ1 + (1− η)ξ2)

which gives us concavity of Q(0)(t, ·). It remains to show that (31) is indeed true.
We define process L(1) as the wealth process with starting wealth l1 and portfolio strategy

π1 ∈ Πα,t,l1,m. Similarly, we define the process L(2) with starting wealth l2 and portfolio strategy
π2 ∈ Πα,t,l2,m. Then, we have by definition

ηL(1) + (1− η)L(2) ≥ ηα(m ∨ (L(1))∗) + (1− η)α(m ∨ (L(2))∗)

≥ α
(
m ∨

(
ηL(1) + (1− β)L(2)

)∗)
.

This gives us that ηπ1+(1−η)π2 ∈ Πα,t,ηl1+(1−η)l2,m. From concavity property of utility function
U , it follows

ηEt

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]
+ (1− η)Et

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]

≤ Et

[
U

(
ηL

(1)
T

(m ∨ (L(1))∗T )
+

(1− η)L
(2)
T

(m ∨ (L(2))∗T )

)]
.

Next, we intend to show that

ηL
(1)
T

(m ∨ (L(1))∗T )
+

(1− η)L
(2)
T

(m ∨ (L(2))∗T )
≤

ηL
(1)
T + (1− η)L

(2)
T

(m ∨ (ηL(1) + (1− η)L(2))∗T )
. (32)

Consider the following possible scenarios where we compare the respective terms with m and
find the maximum

(L(1))∗T (L(2))∗T (ηL(1) + (1− η)L(2))∗T
Case 1 m m m
Case 2 m (L(2))∗T m
Case 3 (L(1))∗T m m
Case 4 (L(1))∗T (L(2))∗T –

It is clear that the inequality in (32) holds for Case 1–3 and we only need to consider
Case 4. We know from the optimality condition that for strategies π1 and π2 which attain the

18



maximum, the position in the risky asset becomes zero thereafter as the maximum possible
utility is achieved. It follows that for such strategies, we have

L
(1)
T = (L(1))∗T , L

(2)
T = (L(2))∗T .

Then, we get

ηL
(1)
T + (1− η)L

(2)
T

(m ∨ (ηL(1) + (1− η)L(2))∗T )
=

η(L(1))∗T + (1− η)(L(2))∗T
(m ∨ (ηL(1) + (1− η)L(2))∗T )

≥ 1,

due to

η(L(1))∗T + (1− η)(L(2))∗T ≥ m, η(L(1))∗T + (1− η)(L(2))∗T ≥ (ηL(1) + (1− η)L(2))∗T ).

Thus, we have shown that (32) is indeed true. This gives us

ηEt

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]
+ (1− η)Et

[
U

(
L

(1)
T

(m ∨ (L(1))∗T )

)]

≤ Et

[
U

(
ηL

(1)
T + (1− η)L

(2)
T

(m ∨ (ηL(1) + (1− η)L(2))∗T )

)]
≤ V(t, ηl1 + (1− η)l2,m).

As, π1, π2 are arbitrary, we have have shown (31). This concludes the proof for concavity of
Q(0)(t, ·).

A.2 Proof of Proposition 1

Proof. From the calculations performed in the proof of Proposition 2, we know that

∂tξQ
(0) = −λ

2
0

2
Q

(0)
ξ

(
−1 +Rξ

)
. (33)

Differentiating (15) w.r.t. t gives

Rt = −
Q

(0)
tξ

Q
(0)
ξξ

+
Q

(0)
ξ(

Q
(0)
ξξ

)2Q(0)
tξξ. (34)

Differentiating (33) w.r.t. ξ, we get

Q
(0)
tξξ = −λ

2
0

2
Q

(0)
ξξ

(
−1 +Rξ

)
− λ2

0

2
Q

(0)
ξ Rξξ.

Plugging back the above result and (33) into (34) gives the PDE for R. The terminal condition
at t = T is straightforward from the terminal condition for Q(0). At the boundary, ξ = α,Q(0) =

U(α) which due to the continuity of Q(0) across the boundary gives that Q(0)
t = 0. Then, due

to the continuity of derivatives w.r.t. space variables across the boundary, from (13) we get at
ξ = α,

(Q
(0)
ξ )2

Q
(0)
ξξ

= RQ(0)
ξ = 0.

As Q(0)
ξ

∣∣
ξ=α
6= 0, it gives that R

∣∣
ξ=α

= 0.
We know from our calculations in the proof of Lemma 1 and Section 3.3 that the optimal

strategy corresponding to the value function Q(0) is given as π0 := constant×R. It is clear that
as the portfolio wealth approaches to its maximum value, i.e. at ξ = 1, the optimal strategy
suggests to unwind the risky position, π0|ξ=1 = 0. This give us the right boundary condition for
R as R

∣∣
ξ=1

= 0.
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A.3 Proof of Proposition 2

Proof. In the definition Q(0)(t, ξ) = q(0)(t, z(t, ξ)), we differentiate w.r.t. t on both sides to write

∂tQ
(0) = ∂tq

(0) + q(0)
z

∂z

∂t

= ∂tq
(0) −

(Q(0)
tξ

Q
(0)
ξ

+
λ2

0

2

)
q(0)
z .

It is also straightforward to check from definition (18) of differential operators
(
Dk
)
k=1,2,...

that

D1Q
(0) = q(0)

z , D2Q
(0) = q(0)

zz −Rξq(0)
z . (35)

Next, we observe that PDE (19) can also be written as Q(0)
t = 1

2λ
2
0D2Q

(0). Differentiating this
w.r.t. ξ, we get

∂tξQ
(0) = λ2

0

(
1

2
R2Q

(0)
ξξξ +RRξQ

(0)
ξξ

)
.

Further, from the definition of R, we get RQ(0)
ξξ = −Q(0)

ξ which after differentiating w.r.t. ξ gives

R2Q
(0)
ξξξ = −RQ(0)

ξξ

(
1 +Rξ

)
.

Thus, we have

∂tξQ
(0) =

λ2
0

2
RQ(0)

ξξ

(
−1 +Rξ

)
= −λ

2
0

2
Q

(0)
ξ

(
−1 +Rξ

)
.

Finally, we collect all the expressions for ∂tQ(0),D1Q
(0) and D2Q

(0) in terms of q(0) to write(
∂t + λ2

0D1 +
λ2

0

2
D2

)
Q(0)

= ∂tq
(0) −

(
−λ

2
0

2

(
−1 +Rξ

)
+
λ2

0

2

)
q(0)
z + λ2

0q
(0)
z +

λ2
0

2

(
q(0)
zz −Rξq(0)

z

)
=
( ∂
∂t

+
1

2
λ2

0

∂

∂z2

)
q(0)

which gives us the desired PDE.
For the terminal boundary condition for q(0), it follows from the definition of z(t, ξ) and

terminal condition (14) that

q(0)(T, z) = U
((
U ′
)−1(

e−z
))
, ψ(T ) < z <∞.

The left boundary condition in (14) can also be easily transformed. Next, for the right boundary
condition in (14), we first note that

q(0)
z × ∂ξz = Q

(0)
ξ .

Now, as Q(0)
ξ = 0, for ξ = 1, it holds only if in the above relation we have

lim
z→∞

q(0)
z (t, z) = 0.

This completes the proof.
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A.4 Proof of Proposition 4

We first consider the PDE problem with a terminal condition

Hq + S = 0, q(T, z, x, y) = 0, (36)

where H is a constant coefficient linear operator

H :=
∂

∂t
+A0 + C0.

We suppose that the source term S is of the following special form

S(t, z, x, y) =
∑
k,l,n

(T − t)n(x− x̄)k(y − ȳ)lv(t, z, x, y) (37)

where the sum has a finite number of terms, and v is a solution of the homogeneous equation
Hv = 0.

Further, define the commutator of operators H and (x − x̄)I (I is the identity operator),
LX = [H, (x− x̄)I] as

LXv := H((x− x̄)v)− (x− x̄)Hv,

which from the definition of A0 (12) and C0 (22) gives

LX = b0I + σ2
0

∂

∂x
+ ρσ0β0

∂

∂y
+ σ0λ0

∂

∂z
. (38)

Similarly, define LY = [H, (y − ȳ)I], which gives

LY = c0I + β2
0

∂

∂y
+ ρσ0β0

∂

∂x
+ ρβ0λ0

∂

∂z
. (39)

Using LX and LY , we also define

MX(s) := (x− x̄)I + (s− t)LX , MY (s) := (y − ȳ)I + (s− t)LY .

Using these definitions, we first give the following result related to the homogeneous solution v,
from [12, Lemma 3.4]. Here, we provide the proof for the sake of completeness.

Lemma 4. For integers k, l, we have,

HMk
X(s)Ml

Y (s)v = 0.

Proof. We proceed by induction. We first calculate

HMX(s)v = H(x− x̄)v +H(s− t)LXv
= LXv + (x− x̄)Hv − LXv + (s− t)HLXv
= LXHv = 0,

where we have used the definition of the commutator LX , the fact that LX and H commute as
they are constant coefficient operators and that Hv = 0. Thus, we can then iterate over integer
k to show HMX(M(k−1)

X v) = 0 (as HMX(s)v = 0). Similarly, we can show that HMl
Y v = 0

for integer l. Finally, we have H(Mk
X(s) Ml

Y (s)v) = 0.
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Lemma 5. The solution q of equation (36) with zero terminal condition is

q(t, z, x, y) =
∑
k,l,n

∫ T

t
(T − s)nMk

X(s)Ml
Y (s)v(t, z, x, y) ds. (40)

Proof. This can be shown by using the form of source term (37) and Lemma 4. Let us suppose
that the source term consists of a monomial and is given as S(t, z, x, y) = (T − t)n(x− x̄)k(y −
ȳ)lv(t, z, x, y). In this case, from our claim, the solution should be given as

q(t, z, x, y) =

∫ T

t
(T − s)nMk

X(s)Ml
Y (s)v(t, z, x, y)ds.

We verify by computing

Hq = −(T − t)nMk
X(t)Ml

Y (t)v(t, z, x, y) +

∫ T

t
(T − s)nH

(
Mk

X(s)Ml
Y (s)v(t, z, x, y)

)
ds

= −(T − t)n(x− x̄)k(y − ȳ)lv(t, z, x, y)

= −S.

It is also easy to see that for the form of solution proposed in (40), the terminal condition at T
is satisfied. The result follows from linearity of the PDE problem.

Finally, we give the proof of Proposition 4.

Proof. We first observe that, since q(0) solves Hq(0) = 0, then q(0)
z also solves the homogeneous

equation, as the operator H has constant coefficients. We set v = q
(0)
z . From (25), the source

term is

S(t, z, x, y) =
((1

2
λ2
)

1,0
(x− x̄) +

(1

2
λ2
)

0,1
(y − ȳ)

)
v,

and so from Lemma 5, we obtain the solution

q(1)(t, z, x, y) =
[(1

2
λ2
)

1,0

(
(T − t)(x− x̄) +

1

2
(T − t)2LX

)
+
(1

2
λ2
)

0,1

(
(T − t)(y − ȳ) +

1

2
(T − t)2LY

)]
q(0)
z (t, z). (41)

From the expansion for λ(y), we get(1

2
λ2
)

1,0
= λ0λ1,0,

(1

2
λ2
)

0,1
= λ0λ0,1.

Putting back the expression of LX and LY from (38) and (39) into (41), we get the expression
in (27). The terminal condition at t = T is clearly satisfied.

It remains to check the boundary conditions for q(1). We show that the boundary conditions
for Q(1), corresponding to the original variables (t, ξ), are satisfied. Using (23) and (35), we
obtain (28). Now, due to the zero boundary condition at ξ = α for the risk-tolerance function
R, we get from (28) that Q(1)(t, α, x, y) = 0, which means that the left boundary condition in
(21) is satisfied. Consequently, the left boundary condition in (26) is satisfied for q(1).

Next, we calculate

Q
(1)
ξ (t, ξ, x, y) = (T − t)λ0A(t, x, y)

(
RξQ

(0)
ξ +RQ(0)

ξξ

)
+

1

2
(T − t)2λ0B

(
−2
[
RξQ

(0)
ξ +RQ(0)

ξξ

]
+ 3R2∂3

ξQ
(0) +R3∂4

ξQ
(0)
)
. (42)
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From our Assumption 2 on the boundedness of ∂kξQ
(0)(t, 1) for k ≤ 5, we have

lim
ξ→1
Rk∂(k+1)

ξ Q(0) = 0, k = 1, 2, 3.

Then, we can use the boundary condition of Q(0)
ξ and R at ξ = 1 to conclude from (42) that

Q
(1)
ξ (t, ξ, x, y)

∣∣∣
ξ=1

= 0,

which means that the right boundary condition in (21) is satisfied. This implies that the right
boundary condition in (26) is satisfied for q(1).
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