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Abstract

In this work we derive a general model for N−phase isotropic, incompressible, rate-
independent elasto-plastic materials at finite strains. The model is based on the non-
linear homogenization variational (or modified secant) method which makes use of a
linear comparison composite (LCC) material to estimate the effective flow stress of the
nonlinear composite material. The homogenization approach leads to an optimization
problem which needs to be solved numerically for the general case of a N−phase com-
posite. In the special case of a two-phase composite an analytical result is obtained for
the effective flow stress of the elasto-plastic composite material. Next, the model is val-
idated by periodic three-dimensional unit cell calculations comprising a large number
of spherical inclusions (of various sizes and of two different types) distributed randomly
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in a matrix phase. We find that the use of the lower Hashin-Shtrikman bound for the
LCC gives the best predictions by comparison with the unit cell calculations for both
the macroscopic stress-strain response as well as for the average strains in each of the
phases. The formulation is subsequently extended to include hardening of the different
phases. Interestingly, the model is found to be in excellent agreement even in the case
where each of the phases follows a rather different hardening response.
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1 Introduction

The present work deals with the analytical and numerical estimation of the effective as well
as the phase average response of N−phase incompressible isotropic elasto-plastic metallic
composites. Special attention is given to particulate microstructures, i.e., composite materi-
als which can be considered to comprise a distinct matrix phase and an isotropic distribution
of spherical particles [46] (or in a more general setting an isotropic distribution of phases
[45]). In the present study, the particles are considered to be stiffer than the matrix phase,
which is the case in most metallic materials of interest, such as TRIP steels, dual phase
steels, aluminum alloys and others. Such materials, usually contain second-phase particles
(e.g., intermetallics, carbon particles) or just second and third phase variants (e.g., retained
austenite, bainite, martensitic phases). In addition, these phases/particles tend to reinforce
the yield strength of the composite while they usually have different strength and hardening
behavior than the host matrix phase.

In the literature of nonlinear homogenization there exists a large number of studies for two-
phase composite materials. The reader is referred to Ponte Castañeda and Suquet [33], Ponte
Castañeda [32], Idiart et al. [15], and Idiart [16] for a review of the nonlinear homogenization
schemes such as the ones used in the present work and relevant estimates. Nonetheless,
very few studies exist in the context of three- or N−phase rate independent elasto plastic
composites.

In view of this, the present work uses the nonlinear variational homogenization method
(Ponte Castañeda [29]) or equivalently the modified secant method (Suquet [43]), which
makes use of a linear comparison composite (LCC) material, to estimate the effective re-
sponse of a N−phase nonlinear composite material. Even though, this method exists for
several years most of the studies in the context of composite materials have been focused on
two-phase composites where the optimization process required by the method can be done
analytically (see for instance [8]). Nevertheless, as the number of phases increases to three or
more the optimization can only be done numerically. Perhaps, that is the reason that in his
original work, Ponte Castañeda [30] proposed general expressions (and bounds) for N−phase
composites, but its numerical/analytical resolution remained untractable until today due to
the complex optimization procedures required by the nonlinear homogenization method.

It should be pointed out at this point that these homogenization theories treat separately
the elastic (which in the present case is trivial) and the plastic homogenization problem. That
of course has certain impact if cyclic loading is considered which is beyond the scope of the
present work and is not considered here. Nevertheless, recently, Lahellec and Suquet [19]
proposed an incremental variational formulation for materials with a hereditary behavior
described by two potentials: a free energy and a dissipation function. This method has
been introduced mainly to deal with the coupled elasto-plastic response of composites in an
attempt to resolve the cyclic response of these materials (see also recent work by Brassart
et al. [5]). Note that these more advanced methods use the aforementioned or variants of
the LCC estimates. In this regard, the present study, albeit not using this coupled scheme,
reveals the nature of equations required to deal with a general N−phase composite material
and could be potentially useful in the future for such more complete incremental schemes,
which are based upon those simpler LCC homogenization theories.
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1.1 Scope of the present work and major results

The scope of the present work is to provide a semi-analytical model for N−phase isotropic,
incompressible rate-independent elasto-plastic materials. Simple analytical expressions are
given for the effective yield stress of a two-phase composite (see also [8]), while a simple semi-
analytical expression (requiring the solution of a constrained optimization problem for N−1
scalar quantities) is given for the N−phase composite. Additional analytical expresssions are
also provided for the phase concentration tensors and average strains in each phase in terms
of the aforementioned optimized scalar quantities. In the context of two- and three-phase
materials the model is assessed by appropriate three-dimensional multi-particle two- and
three-phase periodic unit cell calculations considering both hardening and non-hardening
phases. The agreement is found to be good not only for the effective yield stress but also for
the phase average strains thus allowing for the extension of this model to include arbitrary
isotropic hardening of the phases.

Specifically, we use the methodology developed by Ponte Castañeda and co-workers [29,
43] to derive a model for the rate-independent elastoplastic behavior of a macroscopically
isotropic composite comprising N phases. When the constituent phases are perfectly plastic
the corresponding flow stress of the composite material σ̃0 is determined from the solution
of a constrained optimization problem:

σ̃0 =

√

√

√

√

√

√

inf
y(i)≥0
y(1)=1
i=2,...,N

(

N
∑

r=1

c(r)σ
(r)
0

2
y(r)

)(

N
∑

p=1

c(p)

3 y(p) + 2 y0

)(

N
∑

s=1

c(s) y(s)

3 y(s) + 2 y0

)−1

. (1)

where N is the number of phases, (c(i), σ
(i)
0 ) are the volume fraction and flow stress of phase

i, and y(i) are positive optimization parameters. In turn, y0 is a reference scalar to be chosen
according to various linear homogenization schemes. For instance, best results are obtained
with the well known Hashin-Shtrikman lower bound choice, i.e., y0 = y(1) = 1.
In the special case of a two-phase composite (N = 2), the optimization problem is solved
analytically and the estimate for the composite flow stress becomes

σ̃0

σ
(1)
0

=

{

5 c(2) r+c(1)
√

9+6 c(2)−6 c(2) r2

3+2 c(2)
if 1 ≤ r ≤ 5/

√
4 + 6 c(2),

1
2

√
4 + 6 c(2) if r ≥ 5/

√
4 + 6 c(2),

(2)

where r = σ
(2)
0 /σ

(1)
0 is the contrast ratio. The predictions of the homogenization model agree

well with the predictions of detailed three-dimensional unit cell finite element calculations
as shown in the following.
The homogenization technique provides also accurate estimates for the average strains in
the constituent phases. These estimates form the basis for the development of an approxi-
mate analytical model for the elastoplastic behavior of a composite with hardening phases.
A method for the numerical integration of the resulting elastic-plastic equations is devel-
oped and the model is implemented into the ABAQUS general purpose finite element code.
The predictions of the model agree well with the results of detailed unit cell finite element
calculations of a composite with hardening phases.
Standard notation is used throughout. Boldface symbols denote tensors the orders of which
are indicated by the context. The usual summation convention is used for repeated Latin
indices of tensor components with respect to a fixed Cartesian coordinate system with base
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vectors ei (i = 1, 2, 3). The prefice det indicates the determinant, a superscript T indicates
the transpose, and the subscripts s and a the symmetric and anti-symmetric parts of a
second-order tensor. A superposed dot denotes the material time derivative. Let A, B be
second-order tensors, and C, D fourth-order tensors; the following products are used in the
text: (A · B)ij = Aik Bkj , A : B = Aij Bij , (AB)ijkl = Aij Bkl, (C : A)ij = CijklAkl, and
(C : D)ijkl = Cijpq Dpqkl. The inverse C−1 of a fourth-order tensor C that has the “minor”
symmetries Cijkl = Cjikl = Cijlk is defined so that C : C−1 = C−1 : C = I, where I is the
symmetric fourth-order identity tensor with Cartesian components Iijkl = (δik δjl+δil δjk)/2,
δij being the Kronecker delta.

2 Power-law creep and perfect plasticity

We consider an incompressible creeping solid characterized by a power-law stress potential
U of the form

U (σe) =
σ0 ε̇0
n + 1

(

σe

σ0

)n+1

, (3)

where σ0 is a reference stress, ε̇0 a reference strain rate, n the creep exponent (1 ≤ n ≤ ∞),

σe =
√

3
2
s : s the von Mises equivalent stress, σ the stress tensor, p = σkk/3 the hydrostatic

stress, and s = σ − p δ the stress deviator, δ being the second-order identity tensor. The
corresponding deformation rate D is defined as

D =
∂U

∂σ
= ˙̄εN, ˙̄ε = ε̇0

(

σe

σ0

)n

, N =
∂σe

∂σ
=

3

2 σe

s , (4)

where N is a second order tensor of constant magnitude (N : N = 3
2
) that defines the

direction of D and ˙̄ε =
√

2
3
D : D is the equivalent plastic strain rate that defines the

magnitude of D. Note that Dkk = 0.
The special case in which the exponent takes the value of unity (n = 1) corresponds to a
linearly viscous solid:

UL(σe) =
σ2
e

6µ
, D =

∂UL

∂σ
=

s

2µ
, (5)

where µ = σ0/(3 ε̇0) is the viscosity.
The other limiting case n → ∞ corresponds to a perfectly plastic solid that obeys the von
Mises yield condition with flow stress σ0. In this case the stress function (3) becomes1

U∞(σe) =

{

0 when σe ≤ σ0 ,
∞ when σe > σ0 .

(6)

The threshold stress σ0 in (6) is the flow stress of the material, and the flow rule is written
in the form

D = ˙̄εN, N =
3

2 σe

s , (with ˙̄ε = 0 if σe < σ0), (7)

where the equivalent plastic strain rate ˙̄ε is not defined locally by the constitutive equations
and becomes one of the primary unknowns in the rate boundary value problem.

1 Here we take into account that lim
n→∞

A
n+1

n+1 =

{

0 if A ≤ 1,
∞ if A > 1.

5



3 The homogenization method

We consider a composite material made of N isotropic, incompressible viscoplastic phases.
The phases are distributed randomly and isotropically and are characterized by viscoplastic

stress potentials U (r) of the form (3) with constants
(

σ
(r)
0 , ε̇0, n

(r)
)

and µ(r) in the linear case,

i.e.,

U (r)
(

σ(r)
e

)

=
σ
(r)
0 ε̇0

n(r) + 1

(

σ
(r)
e

σ
(r)
0

)n(r)+1

, U
(r)
L (σ(r)

e ) =
σ
(r)
e

2

6µ(r)
, (8)

where σ
(r)
e is the von Mises equivalent stress in phase r. The volume fraction of each phase

is c(r)
(

N
∑

r=1

c(r) = 1

)

.

The constitutive equation of the isotropic nonlinear composite is written in terms of the
effective viscoplastic stress potential Ũ(σ), so that

D =
∂Ũ

∂σ
, (9)

where σ andD are respectively the macroscopic stress and deformation rate in the composite.
An estimate for Ũ is obtained by using the variational methodology of Ponte Castañeda and
co-workers ([29], [31], [33]). This methodology has also been proposed independently for
power-law materials by Michel and Suquet [25] and interpreted as a secant homogenization
method by Suquet [43]. The final form of the estimate reads (Ponte Castañeda [30])

Ũ(σe) = sup
µ(r)≥0

[

ŨL

(

σe, µ̃(µ
(r))
)

−
N
∑

r=1

c(r) v(r)
(

µ(r)
)

]

, ŨL =
σ2
e

6 µ̃(µ(r))
, (10)

where σe is the macroscopic von Mises equivalent stress,

v(r)
(

µ(r)
)

= sup
σ
(r)
e ≥0

[

U
(r)
L

(

σ(r)
e , µ(r)

)

− U (r)
(

σ(r)
e

)

]

, (11)

U
(r)
L =

σ
(r)
e

2

6µ(r)
, U (r) =

σ
(r)
0 ε̇0

n(r) + 1

(

σ
(r)
e

σ
(r)
0

)n(r)+1

. (12)

The effective stress potential Ũ(σ) is defined in (10) in terms of the quadratic effective stress
potential ŨL of a “linear comparison composite” (LCC) evaluated at the macroscopic stress
σe and the “corrector functions” v(r), which are defined in (11) as the optimal difference

between the quadratic potentials U
(r)
L and the actual potentials of the non-linear materials

U (r). The stress tensors σ
(r)
e in (11) are obtained by the “sup” operation in that equation

and hence v(r) are only functions of the individual viscosities of the linearized phases, µ(r). It
is worth noting at this point that the estimate (10) of Ũ may have the character of a rigorous
bound provided that the corresponding estimate ŨL has also the same character of a bound
as discussed in the following. Nonetheless the scope of the present work is to insist mainly
on a good estimate by comparison with numerical unit cell calculations and not necessarily
on rigorous bounds.
In this view, the quadratic potential ŨL of the LCC in (10b) uses the effective viscosity
µ̃ of the LCC that depends on the individual viscosities µ(r) and the corresponding volume
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fractions c(r). One way to estimate µ̃ is to use the well-known Hashin-Shtrikman relationship
for particulate composites (e.g., see Willis [46])

µ̃
(

µ(r)
)

=

(

N
∑

s=1

c(s) µ(s)

3µ0 + 2µ(s)

)(

N
∑

r=1

c(r)

3µ0 + 2µ(r)

)−1

, (13)

where µ0 is a “reference viscosity” to be chosen appropriately. An upper bound for µ̃ is
produced by (13) when µ0 is chosen to be the maximum of all µ(r) and a lower bound is
produced when µ0 is the minimum of all µ(r) (Willis [46]).

An important observation made by several authors is that the Hashin-Shtrikman bounds are
accurate estimates for composites with particulate microstructures, at least for two-phase
systems at moderate volume fraction (Bonnenfant et al. [3]); in particular, the upper bound
is a good estimate when the stiffest material is the matrix phase and contains inclusions of
the most compliant material, whereas the lower bound is a good estimate for the inverse
situation in which the most compliant material is the matrix phase containing inclusions of
the stiffest material.

When no phase plays clearly the role of a matrix, the effective properties of the composite
may be estimated by the self-consistent method of Hill [14]. In this case, the relevant mi-
crostructure is granular in character, being composed of ellipsoidal particles of the different
phases with varying size so as to fill space. Equation (13) provides Hill’s self-consistent esti-
mate, if µ0 is identified with the effective modulus µ̃; in this case, (13) becomes a polynomial
equation of order 2N for µ̃ (Willis [46]).

3.1 Strain-rate concentration in the phases

An approximation for the strain field in the non-linear composite may be obtained from
the strain field in the LCC evaluated at the optimal comparison moduli µ̂(r) defined by the
optimization problem in (10). In particular, the average deformation rate field in the phases
D(r) may be written in terms of the macroscopic deformation rate D in the form (Ponte
Castañeda and co-workers [31], [37], [17],[34]):

D(r) = A(r)
(

µ̂(i)(σe)
)

: D, r = 1, 2, · · · , N, (14)

where A(r) are the fourth-order strain concentration tensors of the LCC, evaluated at the
optimal values2, µ̂(r), of the comparison moduli, defined by the solution of the optimization
problem in (10). It is emphasized that the optimal values µ̂(r) depend in a nonlinear manner
upon the macroscopic von Mises equivalent σe, and consequently the strain concentration
tensors A(r) are in general nonlinear functions of the macroscopic stress tensor σ.

For isotropic composite materials with random microstructures and “ellipsoidal symmetry”,
A(r) is of the form (Ponte Castañeda [31])

A(r) = E(r) :

(

N
∑

s=1

c(s)E(s)

)−1

, E(r) =
[

I + S0 : L
−1
0 :

(

L
(r) −L0

)]−1

, (15)

2Henceforth the superscript (̂.) serves to denote the optimal value of the relevant quantity obtained by
the corresponding optimization described in the previous section.
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where I is the symmetric fourth order identity tensor with Cartesian components Iijkl =
(δik δjl+δil δjk)/2, S0 is the well known tensor of Eshelby [9] for the linear “reference material”
with elasticity tensor L0 introduced in (13), and

L0 = 2µ0K+ 3 κ0J , L
(r) = 2 µ̂(r)

K+ 3 κ(r)
J , J =

1

3
δ δ, K = I −J . (16)

The quantities (µ0, κ0) and (µ̂(r), κ(r)) in (16) are the shear and bulk viscosities of the LCC;
the bulk viscosities κ0 and κ(r) are set to ∞ after the final expression for D(r) in (14)
is derived, in order to take into account the incompressible nature of the phases and the
composite.
For composites consisting of an isotropic matrix and a uniform distribution of spherical
inclusions, the Eshelby tensor has the form

S0 =
6 (κ0 + 2µ0)

5 (3 κ0 + 4µ0)
K+

3 κ0

3 κ0 + 4µ0

J . (17)

Using (16) and (17) in (15b) and taking into account that J : J = J , K : K = K, and
J : K = 0, we conclude that

E(r) =
5µ0 (3 κ0 + 4µ0)

µ0 (9 κ0 + 8µ0) + 6 (κ0 + 2µ0) µ̂(r)
K+

3 κ0 + 4µ0

3 κ(r) + 4µ0
J . (18)

Then, using (15), after some lengthy but otherwise straightforward calculations we reach the
following expression for the strain concentration tensors:

A(r) =
1

3 κ(r) + 4µ0

(

N
∑

s=1

c(s)

3 κ(s) + 4µ0

)−1

J +

+
1

µ0 (9 κ0 + 8µ0) + 6 (κ0 + 2µ0) µ̂(r)

[

N
∑

s=1

c(s)

µ0 (9 κ0 + 8µ0) + 6 (κ0 + 2µ0) µ̂(s)

]−1

K. (19)

Finally, using (14), taking into account the incompressibility condition Dkk = 0 (or J : D =
0), and considering the limit κ0 → ∞, we find

D(r) = lim
κ0→∞

(

A(r) : D
)

= α(r)D, α(r) =
1

3µ0 + 2 µ̂(r)

(

N
∑

s=1

c(s)

3µ0 + 2 µ̂(s)

)−1

. (20)

We emphasize again that the strain concentration factors α(r) depend in general on the
macroscopic stress σ (or macroscopic deformation rate D) through the optimal moduli µ̂(i).
Equation (20) implies that

˙̄ε(r) =

√

2

3
D(r) : D(r) = α(r)

√

2

3
D : D = α(r) ˙̄ε or

dε̄(r)

dε̄
= α(r) , (21)

where ˙̄ε(r) and ˙̄ε are the average equivalent strain rates in the phases and the average macro-
scopic equivalent strain rate respectively.
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3.2 Perfectly plastic phases

We consider the case of perfectly plastic phases (n(r) → ∞). The optimization in (10) and
(11) as n(r) → ∞ is carried out in three steps. In the first step, we consider the optimiza-

tion over σ
(r)
e in (11). All creep exponents are set equal in the second step, i.e., we set

n(1) = n(2) = · · · = n(N) ≡ n. In the final third step we consider the limit n → ∞. Details
of the calculations are given in the following.

Step 1: Calculation of σ
(r)
e in (11)

The “inner” optimization in (11) is carried out by setting equal to zero the derivatives

∂

∂σ
(r)
e

(

U
(r)
L − U (r)

)

= 0, (22)

which defines the optimal values of σ
(r)
e as

σ(r)
e =







(

σ
(r)
0

)n(r)

3µ(r) ε̇0







1

n(r)
−1

≡ σ̂(r)
e . (23)

When the optimal values σ̂
(r)
e are substituted into (10), the expression for the estimate of

the effective stress potential becomes

Ũ(σe) = sup
µ(r)≥0



















σ2
e

6 µ̃(µ(r))
− 1

2

N
∑

r=1

n(r) − 1

n(r) + 1







(

σ
(r)
0

)n(r)

ε̇0







2

n(r)
−1

c(r)

(3µ(r))
n(r)+1

n(r)
−1



















, (24)

where µ̃(µ(r)) is defined in (13). Substitution of the expression (13) for µ̃ into (24) leads to

Ũ(σe) = sup
y(r)≥0
y(1)=1

sup
µ(1)>0

[

F
(

y(r)
) σ2

e

6µ(1)
− I

(

µ(1), y(r)
)

]

, (25)

where

F
(

y(r)
)

=
µ(1)

µ̃
=

(

N
∑

r=1

c(r) y(r)

3 y(r) + 2 y0

)(

N
∑

s=1

c(s)

3 y(s) + 2 y0

)−1

, (26)

I
(

µ(1), y(r)
)

=
1

2

N
∑

r=1

c(r)
n(r) − 1

n(r) + 1







(

σ
(r)
0

)n(r)

ε̇0







2

n(r)
−1
(

y(r)

3µ(1)

)

n(r)+1

n(r)
−1

, (27)

y(r) =
µ(1)

µ(r)
(with y(1) = 1), and y0 =

µ(1)

µ0
. (28)

The optimal values of y(r) in (25) depend on the values of the volume fractions c(r), the

material properties (σ
(r)
0 , n(r), ε̇0), and the macroscopic von Mises equivalent stress σe.
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The strain concentration values α(r) defined in (20) can be written in the form

α(r) =
ŷ(r)

3 ŷ(r) + 2 y0

(

N
∑

s=1

c(s) ŷ(s)

3 ŷ(s) + 2 y0

)−1

, r = 2, ..., N, (29)

where ŷ(r) are the optimal values of y(r) resulting from the optimization in (25).

Step 2: Equal creep exponents
(

n(1) = n(2) = · · · = n(N) ≡ n
)

When all “creep exponents” are set equal, i.e., n(1) = n(2) = · · · = n(N) ≡ n, equation (25)
becomes

Ũ = sup
y(r)≥0
y(1)=1

sup
µ(1)>0

[

σ2
e

6µ(1)
F
(

y(r)
)

− n− 1

2(n + 1)

H
(

y(r)
)

(3µ(1))
n+1
n−1

]

, (30)

where F
(

y(r)
)

is defined in (26) and

H
(

y(r)
)

=
N
∑

r=1

c(r)





(

σ
(r)
0

)n

ε̇0





2
n−1

(

y(r)
)

n+1
n−1 . (31)

The optimal value of µ(1) in (30) is determined by calculating the partial derivative of the
quantity in brackets with respect to µ(1) and setting it equal to zero. The resulting value for
µ(1) is

µ(1) =
1

3

[

H
(

y(r)
)

F (y(r))

1

σ2
e

]
n−1
2

≡ µ̂(1)
(

y(r)
)

> 0 (32)

and (30) becomes

Ũ(σe) =
σn+1
e

n + 1

√

√

√

√

√

sup
y(r)≥0
y(1)=1

[F (y(r))]n+1

[H(y(r))]n−1
=

σn+1
e

n+ 1






sup
y(r)≥0
y(1)=1

F
(

y(r)
)

H (y(r))
n−1
n+1







n+1
2

. (33)

It is interesting to note that the expression for the effective stress potential given in (33) is
of the power-law type defined in (3), i.e., when all phases have the same creep exponent n,
the effective behavior of the composite is also of the power-law type with creep exponent n
implying that Ũ is a homogeneous function of degree n + 1 in σ. Also, the optimal values
of y(r) in (33) are now independent of the macroscopic von Mises equivalent stress σe.

Step 3: Perfectly plastic phases (n → ∞)

Using (33) and taking into account that

lim
n→∞

[a(n)]n+1

n + 1
=

{

0 when a (∞) ≤ 1 ,
∞ when a (∞) > 1 ,

(34)
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we find

lim
n→∞

Ũ(σe) =







































0 when σe

√

√

√

√

sup
y(r)≥0
y(1)=1

F(y(r))
H∞(y(r))

≤ 1 ,

∞ when σe

√

√

√

√

sup
y(r)≥0
y(1)=1

F(y(r))
H∞(y(r))

> 1 ,

(35)

where F
(

y(r)
)

is defined in (26) and

H∞
(

y(r)
)

= lim
n→∞

H
(

y(r)
)

=

N
∑

r=1

c(r)σ
(r)
0

2
y(r). (36)

Equation (35) can be written also as

lim
n→∞

Ũ(σe) =

{

0 when σe ≤ σ̃0 ,
∞ when σe > σ̃0 ,

(37)

with

σ̃0 =

√

√

√

√
inf

y(r)≥0
y(1)=1

H∞ (y(r))

F (y(r))
, r = 2, ..., N (38)

where H∞
(

y(r)
)

and F
(

y(r)
)

are defined in (36) and (26) respectively, i.e.,

σ̃0(c
(r), σ

(r)
0 ) =

√

√

√

√

√

√

inf
y(i)≥0
y(1)=1
i=2,...,N

(

N
∑

r=1

c(r)σ
(r)
0

2
y(r)

)(

N
∑

p=1

c(p)

3 y(p) + 2 y0

)(

N
∑

s=1

c(s) y(s)

3 y(s) + 2 y0

)−1

.

(39)
Comparing the above equation (37) with (6), we conclude that, when all phases are perfectly
plastic (n = ∞), the form of the estimated effective stress potential Ũ(σe) corresponds to
a perfectly plastic material that obeys the von Mises yield condition with a flow stress σ̃0

defined in (39). This effective flow stress, in turn, is a function of the phase volume fractions

c(r) as well as of the phase flow stresses σ
(r)
0 .

Calculation of the estimated effective yield stress σ̃0 requires the solution of the constrained
optimization problem in (39) for the values of y(r), which define in turn the appropriate values
of the viscosities µ(r) (see (28)). In the special case of a two-phase composite the solution
of the optimization problem in (39) can be found analytically as described in section 3.2.1.
The solution of more general cases presented in the following are obtained by using the
methodology of Kaufman et al. [18] and the CONMAX software (http://www.netlib.
org/opt/conmax.f) for the solution of the optimization problem in (39).
The optimal values y(r) in (39) depend on the values of the volume fractions c(r) and the

flow stresses σ
(r)
0 of the phases but are independent of the macroscopic stress state. Also,

depending on the parameters of the problem, the optimal values ŷ(r) = µ̂(1)/µ̂(r) may be one
of the extreme values 0 or ∞. The value ŷ(r) = 0 corresponds to a rigid comparison material
for phase r, whereas ŷ(r) = ∞ corresponds to an incompressible comparison material with
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zero stiffness (i.e., to an “incompressible void” comparison material). It should be noted

that it is possible to have ŷ(r) = µ̂(1)/µ̂(r) = 0 (rigid comparison material) even for finite σ
(r)
0

(e.g., see deBottton and Ponte Castañeda [8] and section 3.2.1 below).

The strain concentration values α(r) defined in (20) can be written in the form

α(r) =
ŷ(r)

3 ŷ(r) + 2 y0

(

N
∑

s=1

c(s) ŷ(s)

3 ŷ(s) + 2 y0

)−1

, (40)

where ŷ(r) are the optimal values of y(r) resulting from the optimization in (39).

3.2.1 The two-phase perfectly plastic composite — An analytic estimate for

the effective flow stress and the strain concentration factors

We consider an isotropic two-phase composite (N = 2, c1 + c2 = 1). Each phase is perfectly

plastic with flow stress σ
(1)
0 and σ

(2)
0 . We treat phase 1 as the “matrix” and phase 2 with

σ
(2)
0 > σ

(1)
0 as the reinforcing particles. In that case it is possible to obtain analytical

expressions for the effective flow stress σ̃0.

The estimate for σ̃0 depends on the chosen value of the reference viscosity µ0 in (13). Results
for various choices of µ0 are reported in Papadioti [27] and will be discussed briefly later in
this section. Here we present in some detail the formulation based on a Hashin-Strikman
lower bound with µ0 = µ(1) (y0 = 1); as it will be discussed in the following section 4,
this particular choice of µ0 shows the best agreement with detailed unit cell finite element
calculations. For µ0 = µ(1), the ratio H∞/F in (38) takes the value

H∞
(

y(2)
)

F (y(2))
= σ

(1)
0

2 (
c(1) + c(2) r2 y(2)

) 2 + 3 c(2) + 3 c(1) y(2)

2 c(1) + (3 + 2 c(2)) y(2)
, r =

σ
(2)
0

σ
(1)
0

> 1. (41)

The optimum value of y(2) to be used in (38) is calculated by using the condition

∂

∂y(2)

(

H∞

F

)

= 0 (42)

together with the constraint y(2) ≥ 0. After some lengthy, but straightforward, calculations
we find the resulting optimal value ŷ(2) to be

ŷ(2) =







1
3+2 c(2)

[

−2 c(1) + 5√
3

√

(3 + 2 c(2)) 1
r2

− 2 c(2)
]

if 1 ≤ r ≤ rcr

(

c(2) ≤ c
(2)
cr

)

,

0 if r ≥ rcr

(

c(2) ≥ c
(2)
cr

)

,

(43)
where

rcr =
5√

4 + 6 c(2)
and c(2)cr =

1

6

[

(

5

r

)2

− 4

]

. (44)

According to (43), for a given particle concentration c(2), when the contrast ratio r = σ
(2)
0 /σ

(1)
0

is larger than a value rcr, the comparison material for phase 2 (particles) is rigid (ŷ(2) = 0).
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The corresponding estimate for the effective flow stress resulting from (38) is

σ̃0

σ
(1)
0

=







1
3+2 c(2)

(

5 c(2) r + c(1)
√

9 + 6 c(2)(1− r2)
)

if 1 ≤ r ≤ rcr

(

c(2) ≤ c
(2)
cr

)

,

1
2

√
4 + 6 c(2) if rcr ≤ r

(

c
(2)
cr ≤ c(2)

)

.

(45)
The result stated in (45) was first presented by deBottton and Ponte Castañeda [8], who
used a “dissipation function” formulation (as opposed to the “stress potential” approach used

here). For all volume fractions c(2), there is a value rcr of the contrast ratio r = σ
(2)
0 /σ

(1)
0

beyond which the predicted effective flow stress σ̃0 does not vary with r. For values of r
larger than rcr, the optimal value of y(2) = µ(1)/µ(2) vanishes or µ(2) = ∞, i.e., for r ≥ rcr the

comparison material 2 (particles) does not deform; therefore, further increase of σ
(2)
0 does

not change the effective flow stress σ̃0.

1 2 3 4
0.0

0.5

1.0

1.5

2.0

self consistent

H-S-

H-S+

2 0.30c

2
0
1

0

0
1

0

 

 

Figure 1: Variation of effective normalized flow stress σ̃0/σ
(1)
0 with contrast ratio r = σ

(2)
0 /σ

(1)
0

as predicted by various models for a volume fraction c(2) = 0.30.

The estimate for the effective flow stress σ̃0 depends on the choice of the reference viscosity
µ0. Figure 1 shows the predicted σ̃0 for various choices of µ0 for a volume fraction c(2) = 0.30.
The curves marked H-S− and H-S+ correspond to µ0 = µ(1) and µ0 = µ(2) respectively, and
“self consistent” corresponds to µ0 = µ̃. We emphasize that the Hashin-Shtrikman lower
bound H-S− (µ0 = µ(1)) shows the best agreement with detailed unit cell finite element
calculations presented in the following section.
The strain concentration values α(r) given in (29) can be written in the form

α(1) =
dε̄(1)

dε̄
=

1

(2 y0 + 3)D , α(2) =
dε̄(2)

dε̄
=

ŷ(2)

(2 y0 + 3 ŷ(2))D , (46)
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where

D =
c(1)

2 y0 + 3
+

c(2) ŷ(2)

2 y0 + 3 ŷ(2)
(47)

and ŷ(2) is defined in (43).

4 Unit cell finite element calculations and assessment

of the models

In this section we present the results of unit cell finite element calculations for a composite
material made up of a statistically isotropic random distribution of isotropic, linearly-elastic
perfectly-plastic spherical inclusions embedded in a continuous, isotropic, linearly-elastic
perfectly-plastic matrix. The elastic Young modulus used in the finite element calculations
for all phases is three orders of magnitude higher than the highest yield stress involved; this
minimizes the effects of elasticity and the results are very close to those of rigid-perfectly-
plastic materials.
We study numerically two- and three-phase composites. The matrix is labelled as phase 1
and the reinforcing particles are spherical and have higher flow stresses (σ

(i)
0 > σ

(1)
0 , i > 1).

The periodic unit cell is a cube with edge size L and is constructed using the method
presented by Segurado and Llorca [39] (see also [10]) and extended to polydisperse inclusion
distributions by Lopez-Pamies et al. [21]. The virtual microstructure contains a dispersion of
a sufficiently large number of non-overlapping spheres of uniform (monodisperse) or different
(polydisperse) size. The inclusions are randomly located within the cell and are generated
using the Random Sequential Adsorption Algorithm (RSA) [38]. In addition, the unit cell is
periodic, i.e., it can be repeated in all three directions to represent a 3-D periodic structure.
For the two-phase composite and for c(2) ≤ 0.20 monodisperse spheres are used; for higher
volume fractions polydisperse (variable size) distributions are used. In the present study, the
two-phase polydisperse approach of Lopez-Pamies et al. [21] is readily extended to obtain
virtual microstructures with three-phases or more. For instance, denoting the matrix phase
with 1 and the two inclusion phases with 2 and 3, the extension is straightforward and
requires the continuous alternation of spheres of phase 2 and spheres of phase 3 during the
RSA process. Of course this simple extension can be repeated as often as necessary to obtain
an N−phase virtual microstructure provided that the concentration of each of the phases
is known. Moreover, as discussed briefly in the following, a convergence study with respect
to the number of spheres is done for all virtual microstructures used in this study to ensure
isotropy and ergodicity of the virtual unit cell.
Finite element discretizations of the cubic unit cell were created from the particle center dis-
tributions using the mesh generator code NETGEN [40], which has the capability to create
periodic meshes as required. All calculations were carried out using the ABAQUS general
purpose finite element code (Hibbitt [13]). Three dimensional 10-node quadratic tetrahedral
elements with a constant pressure interpolation were used (C3D10H in ABAQUS); all anal-
yses were carried out incrementally and accounted for geometry changes due to deformation
(finite strain solutions).
Figure 2 shows the finite element meshes used for a two-phase composite with volume frac-
tions c(2) =0.10, 0.20, 0.30, and 0.40. The distributions are monodisperse for c(2) =0.10 and
0.20, and polydisperse for c(2) =0.30 and 0.40. Figure 3 shows a typical finite element mesh
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of a unit cell for a three-phase polydisperse composite for a matrix with volume fraction
c(1) = 0.60 and two different inclusion types with c(2) = 0.25 and c(3) = 0.15.

Figure 2: Finite element discretization of cubic unit cells for two-phase composites containing
a random distribution of 30 spherical particles for volume fractions of 10, 20, 30 and 40%.
The finite element meshes have (200,869; 112,281; 165,371; 159,303) nodes and (83,270;
45,679; 67,790; 65,543) elements respectively. The corresponding total numbers of degrees
of freedom, including pressures, are (436,067; 245,485; 360,533; 346,823).

4.1 The effective yield stress

We determine numerically the effective yield stress by solving the problem of a unit cell
loaded in uniaxial tension. Periodicity conditions are imposed on the boundary of the unit
cell. A detailed discussion of the periodic boundary consitions on a unit cell can be found in
Suquet [41] or Michel et al. [26]. Here, the periodic boundary conditions on the unit cell are
imposed as follows (see Mbiakop et al. [23] and Papadioti [27] for more details). Referring
to Fig. 4, if we fix vertex 1 in order to eliminate rigid body translations, then, in view of
the periodicity of the displacement field, we can write the displacements u at vertices 2, 4,
and 5 of the unit cell in the form

u
(2)
i = (Fi1 − δi1)L, u

(4)
i = (Fi2 − δi2)L, u

(5)
i = (Fi3 − δi3)L, (48)

where Fij are the components of the macroscopic deformation gradient F. The periodicity
of the problem requires also that the displacements of material points at the same position
on opposite faces of the cell should satisfy the conditions

uRIGHT − uLEFT = u(2), uTOP − uBOTTOM = u(4), uFRONT − uBACK = u(5), (49)
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Figure 3: Finite element discretization of a cubic unit cell for a three-phase composite
containing a random distribution of 30 polydisperse spherical particles with volume fractions
c(2) = 0.25 (yellow) and c(3) = 0.15 (blue). The finite element mesh has 303,953 nodes,
124,225 elements, and the total number of degrees of freedom, including pressures, is 663,409.

where the superscripts (LEFT, RIGHT), (BOTTOM, TOP), and (BACK, FRONT) denote
collectively all material points located respectively on the faces of the cell at (X1 = 0, X1 =
L), (X2 = 0, X2 = L), and (X3 = 0, X3 = L). Equations (49) show that the periodic
constraints between all corresponding opposite boundary points can be written in terms
of the displacements of the three vertex points (u(2),u(4),u(5)), which are defined, in turn,
in (48) by the macroscopic deformation gradient F. In ABAQUS, for given F, we impose
boundary conditions on (u(2),u(4),u(5)) according to (48), and the periodicity constraints
(49) are enforced through a “user MPC” subroutine (or the “EQUATION” option).

For the problem of uniaxial tension in direction 1, the deformation gradient is of the form

F = λ e1 e1 + λt(e2 e2 + e3 e3), (50)

where (λ, λt) are the axial and transverse stretch ratios and ei the base vectors along the
coordinate axes shown in Fig. 4; the boundary conditions (48) become

u
(2)
1 = (λ− 1)L, u

(4)
2 = u

(5)
3 = (λt − 1)L, (51)

u
(2)
2 = u

(2)
3 = u

(4)
1 = u

(4)
3 = u

(5)
1 = u

(5)
2 = 0. (52)

In ABAQUS, we prescribe u
(2)
1 (i.e., λ) and set R

(4)
2 = R

(5)
3 = 0, where R

(N)
i denotes the i-th

component of the force at node N . The quantities R
(2)
1 and (u

(4)
2 , u

(5)
3 ), i.e., λt, are determined

by the finite element solution. The corresponding macroscopic stresses σij are determined
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Figure 4: Periodic unit cell.

from the numerical calculation of the average stresses < σij > in the finite element solution:3

< σij >=
1

Vcell

∫

Vcell

σij(x) dV, (53)

where Vcell is the total volume of the deformed finite element mesh.
The conditions u

(4)
2 = u

(5)
3 and < σ22 >=< σ33 >=< σ12 >=< σ13 >=< σ23 >= 0 are used

to verify the correctness of the finite element solution.
The nodal displacement u

(2)
1 was increased gradually, the solution was developed incremen-

tally, and the average stress < σ11 > was determined by (53) at the end of every increment.

As u
(2)
1 increases, the calculated average stress < σ11 > reaches a constant value, which

defines the effective flow stress of the composite σ̃0.
Figure 5 shows the variation of the calculated effective flow stress from the unit cell finite ele-
ment calculations with the contrast ratio r = σ

(2)
0 /σ

(1)
0 for various volume fractions, together

with the predictions (39) of the homogenization model, based on he Hashin-Shtrikman lower
bound H-S− (µ0 = µ(1)).4 For that data shown in Fig. 5, the maximum difference between
the predictions (39) and the results of the unit cell finite element calculations is 3% (note
that the vertical axis in Fig. 1 starts at the value of 1). It is also interesting to mention that

an increase of the flow stress σ
(2)
0 in the inclusions beyond (approximately) two times the

flow stress of the matrix (2 σ
(1)
0 ) does not change the effective flow stress of the composite

for all volume fractions considered here. The finite element calculations confirm the fact
that, for σ

(2)
0 & 2 σ

(1)
0 , the inclusions do not deform plastically in the deforming unit cell

and are in agreement with earlier numerical results of Suquet [44] for c(2) = 30% and by
Ponte Castañeda and Suquet [36] and Idiart et al. [15] for c(2) = 15%. As we will see in

3 The alternative calculation < σ11 >= R
(2)
1 /Acell appears to be less convenient as it requires evaluation

of the current cross sectional area of the deformed cell Acell which in general does not remain flat due to the
complex microstructure of the unit cell.

4 Of all possible choices for µ0 shown in Fig. 1, the Hashin-Shtrikman lower bound H-S− (µ0 = µ(1))
gives the best estimate by comparison to the predictions of the unit cell results.
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the following, this result is due to the fact that the particles behave as being rigid beyond
further increase of σ

(2)
0 .

1 2 3 4
1.00

1.05

1.10
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2
0
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0
1
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c(2)=0.40
c(2)=0.30
c(2)=0.20
c(2)=0.10

Figure 5: Variation of normalized effective flow stress σ̃0/σ
(1)
0 with contrast ratio r = σ

(2)
0 /σ

(1)
0

for different values of the volume fraction c(2). The full triangles are the results of the unit
cell finite element calculations and the solid lines are the predictions (39) of the model based
on the H-S− estimate (µ0 = µ(1)). The maximum difference between the numerical results
and the analytical estimates is 3%.

Figure 6 shows the variation of σ̃0/σ
(1)
0 of a three-phase composite for different values of

the volume fraction c(3) as determined from the unit cell finite element calculations and
the predictions (39) of the homogenization model. The material data are typical for a
TRIP 5 steel with a ferritic matrix (phase 1) containing retained austenite (phase 2), which
transforms gradually to martensite (phase 3) as the TRIP steel deforms plastically (e.g., see
Papatriantafillou et al. [28]).

In order to check the isotropy of the unit cell, we carried out calculations for uniaxial tension
in directions 2 and 3. In all cases, the results were identical to those shown in Figs. 5 and 6.

4.2 The strain concentration tensors

The unit cell finite element calculations discussed above were used also to determine the
strain concentration factors defined in (20) as follows. At the end of every increment in
the finite element solution the average value of the Eulerian logarithmic strain tensor ε(r)

was determined in every phase of the composite, where the superscript (r) denotes “phase
r”. The macroscopic axial logarithmic strain was also determined as ε̄ = lnλ, where λ is
the axial stretch ratio used in (51) to drive the finite element calculations. Interestingly, the
components of < ε(r) > are found to be proportional to ε̄ in the context of the present study;
in particular, it is found that

< ε
(r)
ij >= Cij ε̄, (54)

5 TRIP is the acronym for TRansformation Induced Plasticity.
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Figure 6: Variation of effective normalized flow stress σ̃0/σ
(1)
0 of a three-phase composite

with a matrix volume fraction c(1) = 0.60 for different values of the volume fraction c(3). The
homogenization estimates are based on H-S− and the contrast ratios are σ

(2)
0 /σ

(1)
0 = 1.875

and σ
(3)
0 /σ

(1)
0 = 5.

which leads to the following estimate for the strain concentration α(r):

α(r) =
dε̄(r)

dε̄
=

√

2

3
Cij Cij. (55)

Figure 7 shows the variation of the strain concentration factors α(r) in a two-phase composite
with the contrast ratio r = σ

(2)
0 /σ

(1)
0 for various volume fractions as determined from the

unit cell finite element calculations (equation (54)) and the homogenization theory (equations
(46)—(47)).

An important observation in the context of this figure is that at a contrast ratio of r ≃ 2,
a sharp transition is observed where the particles start behaving as being rigid, i.e., the
average strain in the particle is almost zero. This is validated by both the model and the
numerical results. In terms of the homogenization procedure, this implies that the case of
infinite contrast, i.e., rigid particles, and finite contrast is very similar beyond a value of
r ≃ 2. A weak dependence of this sharp transition upon the volume fraction c is observed
in these figures.

Similar plots for a three-phase composite are shown in Fig. 8. The predictions of homoge-
nization theory agree well with the results of the unit cell finite element calculations.

Figure 8 shows, in turn, the strain concentration factors in a three-phase material. The
comparison between the model and the finite element simulations is qualitatively good,
whereas the model tends to underestimate the straining of the middle phase, i.e., the one
with yield stress σ

(2)
0 /σ

(1)
0 = 1.875. Again, in the case of the third phase, when σ

(3)
0 /σ

(1)
0 = 5,

the particle behaves as rigid which is consistent with the observations of the previous figure.
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Figure 7: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell finite
element calculations and homogenization theory (equations (46) and (47)) for a two-phase
composite.

4.3 On the possible dependence of the effective flow stress on J3

Suquet and Ponte Castañeda [42, 35] studied the effective mechanical behavior of weakly
inhomogeneous composites and showed that, for the case of incompressible “power-law”
phases, the effective potential of the composite may depend, to second order, on the third
invariant of the applied strain.

We carry out detailed unit cell finite element calculations in order to check for a possible
dependence of the effective yield stress σ̃0 on the third invariant J3 of the stress deviator s
(J3 = dets, where ‘det’ denotes the determinant). We identify the coordinate axes shown in
Fig. 4 with the principal directions of the stress tensor and write the principal stresses in
the form







σ1

σ2

σ3







= σe



XΣ







1
1
1







+
2

3







cos
(

θ + π
6

)

sin θ
− cos

(

θ − π
6

)









 , (56)
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Figure 8: Strain concentration factors α(i) = dε̄(i)/dε̄ as determined from unit cell finite
element calculations and homogenization theory (equation (40)) for a three-phase composite.

where XΣ = p/σe is the stress triaxiality and θ is the “Lode angle”, so that

J3 = dets = − 2

27
σ3
e sin 3θ. (57)

Angle θ takes values in the range −30◦ ≤ θ ≤ 30◦, where, to within a given hydrostatic
stress, θ = −30◦ corresponds to uniaxial tension, θ = 0 to pure shear, and θ = 30◦ to
uniaxial compression.

It is stressed at this point that the composite materials considered in this work are
plastically incompressible and thus the applied stress triaxiality affects only the elastic part
which is of no interest here. Thus the only relevant invariant studied in this section, apart
from the J2 invariant, is the third deviatoric invariant J3 defined above. The study of the
effect of J3, in turn, allows for a complete analysis of general triaxial loading states.
As a consequence of the applied periodic boundary conditions and the symmetry of the
problem, the macroscopic (average) deformation of the unit cell is entirely described by the
displacements of the “reference vertices” (2,4,5), as shown in Fig. 4, which can be written
in the form

u(2) = U1 e1, u(4) = U2 e2, u(5) = U3 e3. (58)

In ABAQUS, the displacements (U1, U2, U3) are tied, through “user multipoint constraints”,
to the degrees of freedom of a fictitious node, which is properly displaced so that the desired
triaxiality XΣ and Lode angle θ are achieved. Details of the numerical formulation can be
found in Mbiakop et al. [23, 24] (see also Barsoum and Faleskog [2] and Papadioti [27]).
We carry out finite element calculations in which the unit cell is loaded with XΣ = 1/3 and
Lode angles in the range −30◦ ≤ θ ≤ 30◦. The finite element analysis is carried out incre-
mentally; at the end of each increment the average stress < σ > and the corresponding von

Mises equivalent stress σ̄e =
√

3
2
< s >:< s > are calculated. As the applied displacement
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of the fictitious node increases, σ̄e takes a constant value, which defines the effective flow
stress σ̃0 of the periodic composite.
In order to verify that the desired values have been indeed achieved, the triaxiality and
Lode angle corresponding to the average stress < σ > are determined at the end of every
increment. Also, since the coordinate axes in the finite element solution are assumed to
coincide with the principal stress directions, the conditions < σ12 >=< σ13 >=< σ23 >= 0
are checked at the end of every increment to verify the accuracy of the finite element solution.
Figure 9 shows the variation of the effective flow stress σ̃0, as determined from unit cell
finite element calculations, with Lode angle θ for particle volume fractions c(2) =0.10, 0.20,
0.30, and 0.40. Figure 9 shows that the effective flow stress of the composite is essentially
independent of the third stress invariant J3, which is in agreement with earlier results by
Suquet [44], Ponte Castañeda and Suquet [36] and Idiart [16] in the case of rigid particles.
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Figure 9: Variation of effective normalized flow stress σ̃0/σ
(1)
0 with Lode angle θ for particle

volume fractions of 10, 20, 30, and 40%. The results show almost no depedence on J3.

==

5 Hardening phases

In this section we present an approximate method for the prediction of the incremental
elastoplastic behavior of macroscopically isotropic composites made of N isotropic, rate-
independent, elastic-plastic hardening phases. Let the flow stresses σ

(i)
y of each phase be

known functions of the corresponding equivalent plastic strains ε̄(i) (i = 1, 2, . . . , N). At
every point of the homogenized composite the “internal variables” that characterize the local
state of the homogenized continuum are the local values of the equivalent plastic strains in
the phases q =

(

ε̄(1), ε̄(2), · · · , ε̄(N)
)

.
For simplicity, we consider infinitesimal displacement gradients (small strains and rotations);
the method is easily extended to cover the case of finite geometry changes as discussed in
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Appendix. The elastic and plastic response of the homogenized composite are treated inde-
pendently, and combined later to obtain the full elastic-plastic response. The infinitesimal
strain tensor ε at every point in the homogenized material is written as

ε = ε
e + ε

p, (59)

where εe and εp are the elastic and plastic parts. Linear isotropic elastic behavior is assumed:

ε
e = M

e : σ or σ = L
e : εe, (60)

where M
e is the isotropic elastic compliance tensor, which is the inverse of the isotropic

elasticity tensor Le:

L
e = 2µK+ 3 κJ , M

e = (Le)−1 =
1

2µ
K+

1

3 κ
J , (61)

and µ and κ denote the effective elastic shear and bulk moduli of the composite.
Let t be a loading (time-like) parameter and consider an infinitesimal change from tn to
tn+1 = tn +∆t, where ∆t is “small”. We use the notation An and An+1 to denote the values
of A at the start tn and the end tn+1 of the increment and set ∆A = An+1−An. We assume
that the effective flow stress is, to a first approximation, constant over the period (tn, tn+1)
and can be determined by the optimization problem in (39), in which the flow stresses of
the phases take values

σ
(i)
0 = (1− β) σ

(i)
0

∣

∣

∣

n
+ β σ

(i)
0

∣

∣

∣

n+1
, 0 ≤ β ≤ 1. (62)

where

σ
(i)
0

∣

∣

∣

n
= σ(i)

y

(

ε̄(i)n

)

and σ
(i)
0

∣

∣

∣

n+1
= σ(i)

y

(

ε̄
(i)
n+1

)

= σ(i)
y

(

ε̄(i)n +∆ε̄(i)
)

. (63)

Put in other words, the composite is assumed to behave as “incrementally perfectly plastic”
with a flow stress σ̃0(qn+1), which is updated at every increment. The value of σ̃0(qn+1)

is calculated by the solution of the corresponding optimization problem (39) using the σ
(i)
0

values defined in (62). The solution of the optimization problem (39) defines also the optimal
values ŷ(r)(qn+1), which determine the corresponding strain concentration factors α(i) in (40)
for the increment. The actual calculation is implicit in general, except when β = 0 is used
in (62).
Over any time increment (tn, tn+1) the effective yield condition of the composite is written
in the form

Φ (σ,qn+1) = σe − σ̃0 (qn+1) = 0, (64)

where σ̃0 (qn+1) is determined from the solution of the optimization problem (39) with σ
(i)
0

defined in (62), and the associated flow rule is

ε̇
p = ˙̄εN, N =

3

2 σe

s, (65)

where ˙̄ε =
√

2
3
ε̇
p : ε̇p is the macroscopic effective equivalent plastic strain rate. The evolution

of the equivalent plastic strains in the phases are written in terms of the strain concentration
factors α(i) defined in (40) in terms of the optimal values ŷ(r) (qn+1), i.e.,

q̇i = ˙̄ε α(i)(qn+1), i = 1, 2, · · · , N. (66)
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5.1 Numerical integration of constitutive equations

In the following, we present a method for the numerical integration of the resulting constitu-
tive equations in the context of a displacement driven finite element formulation. In a finite
element environment, the solution is developed incrementally and the constitutive equations
are integrated at the element Gauss points. At a Gauss point in the finite element mesh,
the solution (εn,σn,qn) at time tn as well as the infinitesimal strain εn+1 at time tn+1 are
known, and the problem is to determine (σn+1,qn+1).
A backward Euler integration scheme is used for the numerical integration of the flow rule
(65):

∆ε
p = ∆ε̄Nn+1. (67)

The elasticity equation (60) is written in the form

σn+1 = σn +L
e : (∆ε−∆ε

p) = σ
e − 2µ∆ε̄Nn+1, (68)

where σe = σn+L
e : ∆ε is the (known) “elastic predictor”. Considering the deviatoric part

of last equation and using the definition (65) of Nn+1 we conclude that the stress deviator
sn+1 is co-linear with the deviatoric part of the elastic predictor se. Therefore, we can
determine the direction Nn+1 of the plastic strain rate at tn+1 by using the known elastic
predictor as

Nn+1 =
3

2 σe

sn+1 =
3

2 σe
e

se = known, (69)

where σe
e =

√

3
2
se : se is the von Mises equivalent stress of the elastic predictor. Projecting

(68) in the direction of the plastic strain rate Nn+1 and taking into account that σ : N = σe

and N : N = 3
2
, we find σe|n+1 = σe

e − 3µ∆ε̄. Therefore, the yield condition (64) can be
written at the end of the increment in the form

σe
e − 3µ∆ε̄− σ̃0 (qn +∆q) = 0. (70)

The evolution of the equivalent plastic strains in the phases (66) are written also as

∆qi = ∆ε̄ α(i)(qn +∆q), i = 1, 2, · · · , N. (71)

The problem of integrating the elastoplastic equations for the homogenized composite reduces
to the solution of the set of N + 1 non-linear equations (70) and (71) for ∆ε̄ and ∆q =
(

∆ε̄(1),∆ε̄(2), · · · ,∆ε̄(N)
)

. These equations are solved by using Newton’s method. In every

Newton iteration the values of ∆q are used to calculate the corresponding σ
(i)
0 from (62)

and then the optimization problem (39) is solved by using the CONMAX software [18] to
determine the optimal values ŷ(i); the values of the effective flow stress σ̃0 and the strain
concentration factors α(i) are then determined and the iterations are continued until the set
tolerances are met. Details on the calculation of the Jacobian of the Newton loop are given
in [27].
It is emphasized that the calculations are much simpler for a two-phase composite; in that
case, one does not need to invoke CONMAX, since σ̃0 is defined analytically by (45).
Once ∆ε̄ and ∆q are calculated, equations (68) and (71) are used to determine the stress
σn+1 and the state variables qn+1.
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Remark 1. In the special case where the value β = 0 is used in (62), the effective flow
stress of the composite σ̃0 and the strain concentration factors α(i) are determined using the

values of the flow stresses of the phases σ
(i)
0

∣

∣

∣

n
at the start of the increment, and equations

(70) and (71) can be solved analytically:

∆ε̄ =
σe
e − σ̃0 (qn)

3µ
and ∆qi = ∆ε̄ α(i)(qn). (72)

The integration scheme described above is implemented into the ABAQUS general purpose
finite element program [13]. This code provides a general interface so that a particular
constitutive model can be introduced as a user subroutine (UMAT). The finite element for-
mulation is based on the weak form of the momentum balance, the solution is carried out
incrementally, and the discretized nonlinear equations are solved using Newton’s method. In
the calculations, the Jacobian of the global Newton scheme is approximated by the tangent
stiffness matrix. Such an approximation of the Jacobian is first-order accurate as the size of
the increment ∆t → 0; it should be emphasized, however, that the aforementioned approxi-
mation influences only the rate of convergence of the Newton loop and not the accuracy of
the results.

5.2 Unit cell calculations and assessment of the model with hard-

ening phases

In this section we present the results of unit cell finite element calculations for a composite
material made up of a statistically isotropic random distribution of isotropic, linearly-elastic
hardening-plastic spherical inclusions embedded in a continuous, isotropic, linearly-elastic
hardening-plastic matrix. All analyses were carried out incrementally and accounted for
geometry changes due to deformation (finite strain solutions).

In all cases analyzed, the matrix material is identified as “phase 1” and the flow stress σ
(i)
y

of “phase i” is a function of the corresponding equivalent plastic strain ε̄p:

σ(i)
y

(

ε̄(i)
)

= σ
(i)
0

(

1 +
ε̄(i)

ε
(i)
0

)
1

η(i)

, ε
(i)
0 =

σ
(i)
0

E
, (73)

where σ
(i)
0 = σ

(i)
y (0) is the yield stress of phase i, E is the elastic Young’s modulus, and

the hardening exponents η(i) take values in the region 1 ≤ η(i) ≤ ∞, with the limiting
case η(i) = ∞ corresponding to perfect plasticity. Note that this hardening exponents
are completely uncorrelated to the creep exponent n(i) used in the definitions of the stress
potentials in the previous sections.

The values E = 917 σ
(1)
0 and ν = 0.3 for Young’s modulus E and Poisson ratio ν are used

in the calculations. In addition, one-element finite element calculations were carried out,
in which the element is subjected to the same deformation gradient as the unit cell and
the corresponding uniform stress state in the element is calculated by using the algorithm
described in section 5.1 for the homogenized material.
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5.2.1 Two-phase composites

We analyze first a two-phase composite with

σ
(2)
0

σ
(1)
0

= 1.5, η(1) = 5, η(2) = 3. (74)

The corresponding stress-strain curves of the phases in uniaxial tension are shown in Fig.
10.
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Figure 10: Uniaxial stress-strain curves of phases.

Figure 11 shows the results of the unit cell finite element calculations together with the
predictions of the homogenization model for the case of uniaxial tension in direction 1 and
for inclusion volume fractions c2 =0.10, 0.20, 0.30, and 0.40. The quantity σ̃ in Fig. 11 is
the average stress < σ11 > in the unit cell calculations and the uniform σ11 stress compo-
nent in the corresponding one-element homogenization calculation. The predictions of the
homogenization model agree well with the numerical results. It is also evident from these
figures that as we increase the volume fraction of the stiffer particle phase which also has a
higher hardening exponent, this leads to a reinforcement of the composite both at the level
of the yield strength as well as in its hardening response. It is also interesting to note that
even though we have added the hardening behavior of the phases heuristically to the homog-
enization model for perfectly plastic phases (see equation (45)), the corresponding analytical
estimates are in excellent agreement with those obtained by the finite element calculations
(see also relevant discussion in [44]). This, in turn, suggests that such a simplified approach
is sufficient for this class of materials.
Calculations are also carried out for finite shear deformation. In this case, the deformation
gradient used in (48) is of the form

F = δ + γ e1 e2, (75)

where γ is the amount of shearing on the 1-2 plane. Figure 12 shows the deformed unit cell
at γ = 0.15 for various inclusion volume fractions c2.
Figure 13 shows the results of the unit cell finite element calculations together with the
predictions of the homogenization model for the case of finite shear on the 1-2 plane and for
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Figure 11: Stress-strain curves of the two-phase composite in uniaxial tension for different
values of the volume fraction c(2). The solid lines are the results of the unit cell finite
element calculations and the dash lines are the predictions (39) of the model based on the
H-S− estimate (µ0 = µ(1)).

inclusion volume fractions c2 =0.10, 0.20, 0.30, and 0.40. The quantity τ̃ in Fig. 13 is

τ̃ =

√

1

2
sij sij , (76)

where sij is identified with the average deviatoric stresses < sij > in the unit cell calculations
and with the uniform deviatoric stresses sij in the one-element homogenization calculations.
Again, the predictions of the homogenization model agree well with the numerical results.
Similar observations to those made in the context of Figure 11 could also be made in Figure
13 regarding the effect of volume fraction and the hardening exponent of the phases upon
the effective response under shear loadings.

5.2.2 Three-phase composites

We consider next a three-phase composite with

σ
(2)
0

σ
(1)
0

= 1.875,
σ
(3)
0

σ
(1)
0

= 5, η(1) = 5, η(2) = 3, η(3) = 2.5. (77)
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Figure 12: Deformed configurations of unit cells in simple shear (γ = 0.15) for various values
of the volume fraction c(2).

The problems of uniaxial tension and finite shear deformation are solved.
Figure 14 shows the deformed unit cells for uniaxial tension at λ = 1.20 and finite shear
γ = 0.20.
Figure 15 shows the stress-strain curves in uniaxial tension and finite shear, for a three-phase
composite with composition c(1) = 0.60, c(2) = 0.25, and c(3) = 0.15. The predictions of the
homogenization model agree well with the results of the unit cell finite element calculations.
The model is capable of predicting sufficiently well both the initial yield strength of the
three-phase composite as well the hardening evolution as a function of the applied strains
both in uniaxial tension and shear loadings.

6 Concluding remarks

The present work presents a simple semi-analytical model for the estimation of the effec-
tive as well as the phase average response of N−phase incompressible isotropic elasto-plastic
metallic materials. The model is based on the original variational method of Ponte Castañeda
[29], which is based on a linear comparison composite technique. The resulting expression for
the effective yield strength of the composite requires the solution of a constrained optimiza-
tion problem for N − 1 scalar variables and is much simpler and tractable than the original
expressions given in [30]. This is achieved by use of the methodology of Kaufman et al. [18].
In the special case of a two-phase composite, we provide a fully explicit expression which is
given via a piecewise function defined in equation (45). Due to its simplicity and numeri-
cal efficiency, the proposed N−phase model is numerically implemented in a user-material
subroutine which, in turn, allows for the simulation of three dimensional geometries.
In addition, the N−phase analytical model is compared with full field three dimensional
finite element simulations of two- and three-phase multi-particle periodic unit cells. The
proposed model is found to be in good agreement with the finite element results in most
of the cases considered here, even at large particle volume fractions and different hardening
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Figure 13: Shear stress-shear strain curves of the two-phase composite in simple shear for
different values of the volume fraction c(2). The solid lines are the results of the unit cell
finite element calculations and the dash lines are the predictions (39) of the model based on
the H-S− estimate (µ0 = µ(1)).

exponents. The agreement is good both for the effective average stress strain response, as
well as for the phase average strain fields. This last observation allowed to extend the model
in a heuristic manner to account for arbitrary isotropic hardening of the phases, both in
a small and finite strain formalism. The present combined analytical and numerical study
reveals several nontrivial features which are summarized in the following.

One of the main non-intuitive observations in the present work, which is in accord with
former literature, is that in the context of a two-phase composite when the strength of the
particles is almost twice that of the matrix the particles behave as being rigid for all volume
fractions considered here. In other words, we obtain a rather sharp transition when the yield
stress of the particle is about two times that of the matrix beyond which the strain in the
particle is negligible, thus leading to an almost rigid response of the particle in the sense of
straining for a large range of volume fractions. This result was shown for the effective yield
stress by Suquet [44] and Idiart [16] for given particle volume fraction, whereby it is further
shown here that this sharp transition is weakly sensitive to the particle volume fraction (at
least for volume fractions up to 40%). This, in turn, may have significant implications in
the strengthening of the composite and possible debonding/failure of the particle/matrix
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Figure 14: Deformed configurations of unit cells of the three-phase composite in uniaxial
tension (λ = 1.20) and simple shear (γ = 0.20).
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Figure 15: Stress-strain curves of the three-phase composite in uniaxial tension and simple
shear. The solid lines are the results of the unit cell finite element calculations and the dash
lines are the predictions (39) of the model based on the H-S− estimate (µ0 = µ(1)).

interface [4], since beyond that contrast ratio the particle stops deforming. This of course
leads to stress and strain concentrations in the matrix/article interface.

A second observation, which has already been made in the context of a plastic matrix
with rigid particles by Suquet [44] and Idiart [16] is that the numerical estimates exhibit a
dependence on the third invariant (J3) of the stress tensor, i.e., on the Lode parameter or
Lode angle. Nonetheless, this dependence is extremely weak and thus the present model,
which does not take into account this dependence, is sufficiently accurate for the estimation
of the effective response as well as of the phase average strains (which depend apriori upon
the normal to the yield surface). This observation of course is valid for phases described by
a von Mises (J2) yield response and does not hold in the case of plastic solids that depend
directly on the third invariant J3 via Tresca, Hoshford or Drucker-Prager plasticity (see for
instance Barthélémy and Dormieux [1] and Barthélémy et al. [22]).

A third, and perhaps more important finding of this work at least from a more practical
point of view, is related to the extension of the model to arbitrary isotropic hardening of the
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phases. In the present work, we carry out first the nonlinear homogenization for perfectly
plastic phases and then the hardening is added heuristically at the definition of the yield
stresses of each of the phases. This of course is an approximation and does not take into
account explicitly the coupling between the different hardening exponents of the different
phases. Nevertheless, the resulting estimates are in very good agreement with the full field
finite element results (which include this coupling) suggesting that this strategy is sufficient
for the materials and loadings considered in this study. This good agreement can be directly
associated with the fact that the model predicts accurately enough the phase average strains.
This, however, may not be true if one considers kinematic hardening of the phases or more
complex non-proportional loadings but again in this case a more advanced homogenization
method needs to be used such as the one proposed by Lahellec and Suquet [19].
Finally, in this study, we do not consider the extreme case of a three-phase composite com-
prising stiff particles and voids. The reason is that the presence of a soft compressible phase
would introduce a dependence on an additional invariant, i.e, pressure (I1) and the material
would be plastically compressible (see for instance Garajeu and Suqet [11] and He et al.
[12]). A vast amount of studies has been carried out in the context of voided materials and
is very well known that the present method by default would lead to overly stiff estimates
unless corrected (see for instance recent work of Danas and Aravas [7] and Cao et al. [6]).
Such work is now underway and will be reported elsewhere.
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Appendix: Finite strain formulation

The constitutive equations become

D = De +Dp, (78)

De = M
e :

∇
σ, (79)

Dp = ˙̄εN, N =
3

2 σe

s, (80)

σ
(i)
0 = (1− β) σ

(i)
0

∣

∣

∣

n
+ β σ

(i)
0

∣

∣

∣

n+1
, (81)

Φ(σ,q) = σe − σ̃0(q) = 0, (82)

q̇i = ˙̄ε α(i)(q), i = 1, 2, · · · , N, (83)

where ∇ denotes the Jaumann or co-rotational derivative.
In a finite element environment, the solution is developed incrementally and the constitutive
equations are integrated at the element Gauss integration points. Let F denote the defor-
mation gradient tensor. At a given Gauss point, the solution (Fn,σn,qn) at time tn as well
as the deformation gradient Fn+1 at time tn+1 are known, and the problem is to determine
(σn+1,qn+1).
The time variation of the deformation gradient F during the time increment [tn, tn+1] can
be written as

F(t) = ∆F(t) · Fn = R(t) ·U(t) · Fn, tn ≤ t ≤ tn+1, (84)

where R(t) and U(t) are the rotation and right stretch tensors associated with ∆F(t). The
corresponding deformation rate D(t) and spin W(t) tensors are given by

D(t) ≡
[

Ḟ(t) · F−1(t)
]

s
=
[

∆Ḟ(t) ·∆F−1(t)
]

s
, (85)

and
W(t) ≡

[

Ḟ(t) · F−1(t)
]

a
=
[

∆Ḟ(t) ·∆F−1(t)
]

a
, (86)

where the subscripts s and a denote the symmetric and anti-symmetric parts, respectively.
If it is assumed that the Lagrangian triad associated with ∆F(t) (i.e., the eigenvectors of
U(t)) remains fixed over the time interval (tn, tn+1), it can be shown readily that

D(t) = R(t) · Ė(t) ·RT (t), W(t) = Ṙ(t) ·RT (t),
∇
σ(t) = R(t) · ˙̂σ(t) ·RT (t), (87)

where a superscript T indicates the transpose of a second-order tensor, E(t) = lnU(t)
is the logarithmic strain relative to the configuration at the start of the increment, and
σ̂(t) = RT (t) · σ(t) ·R(t).
It is noted that at the start of the increment (t = tn)

∆Fn = Rn = Un = δ, σ̂n = σn, and En = 0, (88)

whereas at the end of the increment (t = tn+1)

∆Fn+1 = Fn+1 · F−1
n = Rn+1 ·Un+1 = known, and En+1 = lnUn+1 = known. (89)
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Then, the constitutive equations of the model can be written as

Ė = Ėe + Ėp or E = Ee + Ep, (90)

Ėe = M
e : ˙̂σ or Ee

n+1 = M
e : (σ̂n+1 − σn) , (91)

Ėp = ˙̄ε N̂, N̂ =
3

2 σe

ŝ, (92)

σ
(i)
0 = (1− β) σ

(i)
0

∣

∣

∣

n
+ β σ

(i)
0

∣

∣

∣

n+1
, (93)

Φ(σ̂,q) = σe − σ̃0(q) = 0, (94)

q̇i = ˙̄ε α(i)(q), i = 1, 2, · · · , N, (95)

where we took into account that Ee
n = 0, σ̂n = σn, and σe =

√

3
2
s : s =

√

3
2
ŝ : ŝ. The con-

stitutive equations listed above are identical to those of the infinitesimal strain formulation
and can be integrated as described in section 5. The integration determines σ̂n+1 and the
true stresses are calculated as σn+1 = Rn+1 · σ̂n+1 ·RT

n+1.
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[11] M. Gărăjeu and P. Suquet, ‘Effective properties of porous ideally plastic or viscoplastic
materials containing rigid particles’, J. Mech. Phys. Solids 45 (1997), 873–902.

[12] Z. He, L. Dormieux and D. Kondo, ‘Strength properties of a DruckerPrager porous
medium reinforced by rigid particles’, Int. J. Plasticity 51 (2013) 218–240.

[13] H.D. Hibbitt, ‘ABAQUS/EPGEN — A general purpose finite element code with
emphasis in nonlinear applications’, Nucl. Engng. Des. 77 (1977) 271–297.

[14] R. Hill, ‘A self-consistent mechanics of composite materials’, J. Mech. Phys. Solids
13 (1965) 213–222.

[15] M.I. Idiart, H. Moulinec, P. Ponte Castañeda and P. Suquet, ‘Macroscopic behavior
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