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Abstract This paper presents a rate-independent analytical model for porous
Tresca (J3-dependent) materials containing general ellipsoidal voids. The model
is based on the nonlinear variational homogenization method which uses a lin-
ear comparison material to estimate the response of the nonlinear porous solid
and is denoted as “MVAR”. Specifically, the model is derived by an original
approach starting from a novel porous single crystal model (Mbiakop et al.
[2015b,c]) by considering the limiting case of infinite slip systems which leads
readily to the corresponding Tresca criterion. The MVAR yield surface is then
validated using FEM on different unit-cells and various parameters including
several porosity levels, several stress triaxiality ratios, different Lode angle and
general void shapes and orientations. The MVAR model is found to be in good
agreement with the finite element results for all cases considered in this study.
Both the MVAR and the FEM computations reveal a strong sensitivity upon
the microstructure anisotropy (void shape and orientation), and a dependence
of the effective behavior on the third invariant of the applied stress. To the
best knowledge of the authors, this is the first model in the literature that is
able to deal with porous Tresca material and general void shapes and orien-
tations. Moreover, the MVAR is used in a predictive manner to investigate
the complex response of porous Tresca cases with strong coupling between the
J3-dependent matrix behavior and the (morphological) anisotropy induced by
the shape and orientation of the voids. The simplicity of the present analytical
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study opens the possibility to adapt the present model to experimental results
for various materials.

Keywords Tresca plasticity · Porous materials · Homogenization
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1 Introduction

The modeling of ductile damage growth of composites has been the subject
of numerous studies over the past fifty years. The large majority of avail-
able theories have been carried out in the context of two-phase material
systems comprising an isotropic rate-(in)dependent von Mises matrix phase
and a voided phase (pores of spherical, spheroidal or arbitrary ellipsoidal
shapes). In general, these studies use either limit analysis (see for instance
Tvergaard and Needleman [1984], Gologanu and Leblond [1993], Leblond et al.
[1994], Monchiet et al. [2007]) based on (Gurson [1977]) pioneering work, or
variational homogenization theories using the idea of a linear comparison com-
posite (see for instance Ponte Castañeda [1991], deBotton and Ponte Castañeda
[1995], Danas and Ponte Castañeda [2009a]).

Nevertheless, as discussed in Drucker [1949], for most isotropic metals the
yield surface is between the Von Mises and the Tresca one. In addition, the
yield Tresca criterion is the limiting case of infinite slip systems of the Schmid
law describing slip at single crystal level and hence derives naturally from a
physical-based model. Thus, an important question is the understanding of the
overall mechanical response of porous solids with Tresca matrix, i.e. exhibiting
a J2 and a third invariant J3 dependence, as well as a morphological anisotropy
induced by the shape and orientation of the voids.

Nonetheless, there have been only very few models for porous plastic Tresca
materials in the literature. These studies involve the study of rate-independent
metals containing spherical voids under axisymmetric (Cazacu et al. [2014]) or
general loading conditions (Revil-Baudard and Cazacu [2014]). While each one
of these studies has its own significant contribution to the understanding of the
effective response of porous plastic Tresca materials none of them is general
enough in the sense of arbitrary void shapes and orientations.

The scope of the present work is to develop a three-dimensional model that
is able to deal with Tresca matrix, arbitrary ellipsoidal void shapes and general
loading conditions. The model is derived by an original approach starting from
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a novel porous single crystal model (Mbiakop et al. [2015b,c]) and considering
the limiting case on infinite slip systems.

More specifically, in Section 2, we present the original framework that leads
to a fully analytical model, called the modified variational (MVAR) model (see
Danas and Aravas [2012], Mbiakop et al. [2015b,c]), in three-dimensions. Sub-
sequently, in Section 3, we present in detail the finite element (FE) periodic
unit-cells which will be used to assess the MVAR model as well as to visu-
alize the underlying stress fields in the context of porous Tresca materials.
Furthermore, in Sections 4 and 5, we present comparison between the MVAR
predictions, the FE computations and Cazacu et al. [2014] predictions for a
wide range of porosities, arbitrary ellipsoidal void shapes and orientations,
porosities and general loading conditions. Finally, we conclude with Section 6.

2 A MVAR porous Tresca model

Let us consider a representative volume element (RVE) of a porous plastic
Tresca material occupying a domain Ω. The material is analyzed as a two-
phase composite comprising the plastic Tresca matrix (subdomain Ω(1)) and
the vacuous phase (subdomain Ω(2)). The hypothesis of separation of length
scales is made and it implies that the size of the voids (microstructure) is much
smaller than the size of the matrix and the variation of the loading conditions
at the level of the matrix, thus allowing for the homogenization of such a
material system.

2.1 Microstructure

In the present study, following previous work of Willis [1977], we consider a
“particulate” microstructure which is a generalization of the Eshelby [1957] di-
lute microstructure in the non-dilute regime. More specifically, we consider a
“particulate” porous material (see Fig. 1) consisting of ellipsoidal voids aligned
at a certain direction, whereas the distribution function, which is also taken
to be ellipsoidal in shape, provides information about the distribution of the
centers of the pores. For simplicity, one will also consider that the shape and
orientation of the distribution function is identical to the shape and orienta-
tion of the voids themselves (see Danas and Ponte Castañeda [2009a]). Nev-
ertheless, this analysis can be readily extended to distribution of a differ-
ent shape and orientation than the voids (Ponte Castañeda and Willis [1995],
Kailasam and Ponte Castañeda [1998], Agoras and Ponte Castañeda [2013, 2014]).
Thus, as shown in Fig. 1, the internal variables characterizing the state of the
microstructure are:

• The porosity or volume fraction of the voids f = V2/V , where V = V1+V2

is the total volume, with V1 and V2 being the volume occupied by the matrix
and the vacuous phase, respectively.
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• The two aspect ratios of the lengths of the principal axes of the represen-
tative ellipsoidal void 2ai (i = 1, 2, 3), expressed as w1 = a3/a1, w2 = a3/a2
(w3 = 1).

• The orientation unit vectors of the representative ellipsoidal void n(i),
(i = 1, 2, 3), defining an orthonormal basis set.

Ellipsoidal voidRVE 

(a) (b) (c)

Fig. 1 Representative volume element (b) constituted of representative ellipsoidal voids (c)
embedded in a Tresca plastic matrix (a).

The above set of the microstructural variables can then be denoted by the
set

sα =
{
f, w1, w2, n

(1), n(2), n(3)
}

(1)

To conclude, in the general case, where the aspect ratios and the orientation
of the ellipsoidal voids are such that w1 ̸= w2 ̸= 1 and n(i) ̸= e(i), the overall
porous material behavior becomes highly anisotropic. Therefore estimating its
overall response is a difficult challenge.

2.2 Constitutive behavior of the constituents

The matrix phase is an isotropic plastic material obeying the Tresca yield
criterion. Thus, the onset of plastic deformation occurs when the maximum
shear stress over all planes reaches a certain critical value, as described by the
following relation

max
i,j

|σi − σj | = σ0, (2)

where σi, ∀i = 1, 2, 3 and σ0 denote respectively the Cauchy principal stresses
and the uniaxial yield in tension.

It is useful to recall at this point that the Tresca yield criterion is a par-
ticular case of the Schmid yield criterion of a single crystal, when all the slip
systems have the same critical resolved shear stress CRSS, and their number
tends to infinite (see Mbiakop et al. [2015c] for more details). This remark will
be of major importance in the further developments.



Title Suppressed Due to Excessive Length 5

2.3 Modified variational estimate for porous Tresca matrix

In the present work, we will make use of the general, nonlinear homogeniza-
tion methods developed by Ponte Castañeda [1991, 2002], which are based
on the construction of a linear comparison composite (LCC) with the same
microstructure as the nonlinear composite. Using this suitably designed vari-
ational principle, it is shown in (Mbiakop et al. [2015c]) that a modified vari-
ational estimate of the effective viscoplastic stress potential of a general crys-
talline porous material can be defined such that

Ũmvar (σ) = (1− f)−n
K∑
s=1

γ̇
(s)
0

(
τ
(s)
0

)−n

n+ 1

(
σ · Ŝ(s) · σ

)(n+1)/2

, (3)

with

Ŝ(s) ≡ Ŝmvar,(s) = Ŝvar,(s) +
(
q2J − 1

)
J · Ŝvar,(s) · J, (4)

Ŝvar,(s) = µ(s) ⊗ µ(s) +
f

K
Ŝ∗
K , ∀s = 1,K, (5)

where n ≥ 1, K, γ̇
(s)
0 , τ

(s)
0 and µ(s) denote the creep exponent, the number

of slip systems, the reference slip-rate, the reference flow stress (also denoted
critical resolved shear stress CRSS) and the second-order Schmid tensor of the

sth slip system, respectively. In addition, Ŝ∗
K is a microstructural tensor related

to the Eshelby tensor P (Eshelby [1957]). This tensor contains information on
the void shape and orientation and is detailed in Mbiakop et al. [2015c] (in
that reference the subscript K is not used). The factor qJ has been originally
introduced in Aravas and Ponte Castañeda [2004] and allows to recover the
hydrostatic point corresponding to a composite spherical assemblages CSA
(Hashin [1962], Gurson [1977], Leblond et al. [1994]) voided microstructure
and an isotropic (von Mises or Tresca) matrix. In the present case, it is set
equal to

qJ =

√
15

4f

1− f

ln(1/f)
. (6)

As we will see in the following, this allows to recover the Gurson [1977] hydro-
static point in the case of spherical voids and pure hydrostatic loading.

One can then show after some lengthy algebra and numerical validation (see
Appendix A in Mbiakop et al. [2015c]) that in the limit of inifinte equiangular

slip systems K → ∞ the fourth order tensor Ŝ∗
K (see more details in Appendix

A) can be approximated in terms of the corresponding tensor for a von Mises
matrix and takes the simple form

Ŝ∗
∞ = lim

K→∞

1

K
Ŝ∗
K

∼=
1

5

(
Q̂−1 − 1

2
K

)
. (7)

Here, K is the fourth-order deviatoric identity projection tensor and Q̂ is a
microstructural tensor directly associated to the Esheslby tensor for a porous
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material with a von Mises matrix. Detailed expressions for the evaluation of
this tensor are given in Appendix A of Cao et al. [2015] (see also Appendix A
in Aravas and Ponte Castañeda [2004]).

Moreover, as noted in the previous subsection, the Tresca yield criterion
can be seen as a single crystal criterion consisting of infinite slip systems with

equal CRSS τ
(s)
0 = τ0. First, we consider the rate-independent limit n −→ ∞

in equation (3), which leads to

max
s=1,K


(
τ (s)

τ0

)2

+
f

K τ20
σ ·
(
Ŝ∗
K − J · Ŝ∗

KJ
)
· σ+

f q2J
K τ20

σ · J · Ŝ∗
KJ · σ − (1− f)

2

}
= 0. (8)

Subsequently, we consider the limit of infinite slip systems, K → ∞, by proper
parametrization of the slip system orientations (see for instance Appendix A
in Mbiakop et al. [2015c]). To achive that, we first write down the identity

lim
K→∞

(
max
s=1,K

∣∣∣τ (s)∣∣∣) =
maxi,j |σi − σj |

2
, (9)

where σi, ∀i = 1, 2, 3 denote the average principal stresses. Further, we set
τ0 = σ0/2 with σ0 being the yield stress in uniaxial tension in order to recover
the original Tresca yield condition in the non-voided solid (f = 0).

Then, by taking the limit K → ∞ in (8) together with use of equations
(6), (7) and (9), we obtain the final porous Tresca yield condition

(maxi,j |σi − σj |)2

σ2
0

+
4 f

σ2
0

σ ·
(
Ŝ∗
∞ − J · Ŝ∗

∞J
)
· σ+

15 (1− f)
2

(σ0 ln f)
2 σ · J · Ŝ∗

∞J · σ − (1− f)
2
= 0 (10)

In passing, we note that this model can be put in a pseudo-viscoplastic for-
mulation following for instance the approach proposed by Han et al. [2013].

In the special case of spherical voids, it can be easily shown that

Ŝ∗
∞

∣∣∣
w1=w2=1

=
1

15
K+

1

20
J, (11)

and consequently the MVAR model becomes fully analytical, and takes the
form

(maxi,j |σi − σj |)2

σ2
0

+
8 f

45σ2
0

σ2
eq +

9 (1− f)
2

(2σ0 ln f)
2σ

2
m − (1− f)

2
= 0. (12)

In the limit of purely hydrostatic loadings, the above expression recovers the
Gurson hydrostatic point, i.e., |σm|/σ0 = 2 ln(1/f)/3.

In the general context of ellipsoidal voids, a numerical computation of
the integrals involved in the evaluation of Ŝ∗

∞ is necessary, which can be
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easily performed following the procedure described in several studies (see
Aravas and Ponte Castañeda [2004], Danas and Aravas [2012], Cao et al. [2015]).

In the following, we present a numerical homogenization analysis which
will serve to assess the accuracy of the proposed homogenization model.

3 Numerical homogenization

Numerical techniques such as the finite element method are able to solve for
the local field in a porous material, provided that the exact location and dis-
tribution of the pores is known. However, in most cases of interest, the only
available information is the void volume fraction (or porosity) and, possibly,
the two-point probability distribution function of the voids (i.e., isotropic, or-
thotropic etc). In addition, for sufficient accuracy the element size that should
be used in a finite element program must be much smaller than the size of the
voids, which in turn is smaller than the size of the periodic unit-cell, especially
when multiple pores are considered. This leads to very dense meshes and con-
sequently time consuming computation. Therefore, it is very difficult to use
the numerical results in a multi-scale analysis, especially when the unit-cell is
rather complex.

Nevertheless, one could use the numerical periodic homogenization tech-
nique as a rigorous test-bed to assess the simpler analytical models as the one
proposed in the previous section. More precisely, we can analyze the problem
of a periodic porous material considering a unit-cell that contains a given dis-
tribution of voids. By the way, it is well known that a random porous material
(e.g., the one in the analytical model presented in the previous section) and
the periodic material exhibit similar effective behavior either in the case where
the distribution of voids is complex enough (adequate for large porosity) or in
the limiting case where the porosity is small enough. Moreover, in these cases,
the periodic unit-cell estimates, and consequently the effective properties of
the periodic composite, are independent of the prescribed periodic boundary
conditions (Gilormini and Michel [1998]). In this regard then, the compari-
son between the proposed model and the FE periodic unit-cell calculations
are meaningful provided that complex periodic geometries are considered or
porosity is small.

The following FE calculations have been carried out through the Mohr-
Coulomb plasticity model of the commercial code Abaqus (Abaqus [2009]),
where the friction angle of the material is taken equal to ϕ = 0 in order to
reduce to the pressure-independent plastic Tresca model.

3.1 Unit-cell geometries

In order to validate the model, as explained before, FE periodic unit-cell cal-
culations need to be carried out. Hence, several unit-cell geometries used in
our computations, subjected to periodic boundary conditions, are presented
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in this subsection. The present FE calculations are carried out under a small
strain assumption since the scope of the study is the estimation of the effective
response of the porous material with a given microstructural realization but
not the evolution of microstructure which is left for a subsequent work.

In the case of ellipsoidal voids, geometries with one void in the middle
of the unit-cell can be used to estimate the effective behavior of the porous
material, since small porosities (f = 1%) would be considered in the present
study (see fig 3).

a) b)
z

r z
r

c) d)

Fig. 2 Undeformed finite element unit-cell geometry in the case of (a) a single void ax-
isymmetric spherical shell; (b) a single void axisymmetric cylindrical unit-cell, and (c), (d)
an isotropic distribution of 50 spherical voids;

Moreover, for spherical voids, one should consider more complex distribu-
tion of voids in order to address possible distribution effects. Indeed, let us
consider for various porosities f = 0.01%, 0.1%, 1%, 2%, hydrostatic loading
conditions applied on different geometries. First of all, an axisymmetric spher-
ical shell consisting of quadrilateral 4-node elements CAX4 (see 2a), secondly
an axisymmetric cylindrical unit-cell “one pore geometry” with axisymmetric
elements CAX4 (see 2b) as the one used by Cazacu et al. [2014] and finally
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a) b)

Fig. 3 Undeformed unit-cell geometry with a single ellipsoidal void.

multipore geometries (here with 50 pores) to achieve isotropic distributions
(fig 2c,d)).

In the context of this study, i.e. rate-independent Tresca matrix, the re-
sults obtained are compared in fig 4 with the theoretical hydrostatic limit of
the effective behavior of composite spherical assemblages CSA (Hashin [1962],
Gurson [1977], Leblond et al. [1994]), expressed as σm = −2σ0 ln(f)/3. As

σ σ/m 0

Theory, CSA

FEM, axisymmetric spherical shell

FEM, multipore

FEM, axisymmetric cylindrical unit-cell

Fig. 4 Representation of the average hydrostatic stress as a function of the porosity in a
porous Tresca matrix, for several mesh geometries.

it is shown, the axisymmetric spherical shell geometry (fig 2a) matches, as
expected, to the exact average hydrostatic behavior in all the cases. However,
the axisymmetric cylindrical unit-cell (fig 2b) tends to underestimate the over-
all response with a relative error of ∼ 3% at small porosities (f = 0.01%)
and reaching ∼ 10% at moderate ones (f = 2%). Similar discrepancies were
reported in Cazacu et al. [2014] where FE computation on an axisymmetric
cylindrical unit-cell were also performed. Furthermore, the multipore geome-
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tries seems to deal well with the average hydrostatic behavior, since more
sophisticated distribution of voids is chosen and thus tend to achieve isotropic
distributions. These discrepancies are merely due to the fact that the cylin-
drical unit-cell in Fig 2b is not isotropic. As the porosity becomes smaller
(f ≤ 0.01%) the void concentration becomes almost dilute and thus the distri-
bution effects due to the unit-cell geometry less important. However, caution
should always be made in this context to a rate-independent plasticity with a
matrix phase described by a vertex-type yield criterion (Tresca matrix) since
the material tends to localize strongly. Therefore, the interpretation of the
FEM results should be interpreted with caution and maybe contrasted in the
future with FFT results (see for instance Vincent et al. [2014]).

Consequently, in the case of spherical voids, we should make use of monodis-
perse distributions (e.g. fig 2c) that are constructed by means of a random
sequential adsorption algorithm (see Rintoul and Torquato [1997], Torquato
[2002]) which generates the coordinates of the pore centers. For monodisperse
distributions, the radius of each void is

Rm = L

(
3 f

4πN

)1/3

, (13)

with N being the number of pores in the unit-cell and f the porosity.
In addition, the sequential addition of voids is constrained so that the

distance between a given void and the rest of the voids as well as the bound-
aries of the unit-cell takes a minimum value that guaranties adequate spa-
tial discretization. In order to achieve this goal, we use the rules detailed
in [Segurado and Llorca, 2002, Fritzen et al., 2012, Lopez-Pamies et al., 2013,
Mbiakop et al., 2015c]).

Furthermore, periodic boundary conditions have to be applied to these
geometries since the validation of the model requires periodic FE unit-cell
calculations.

3.2 Periodic boundary conditions and loading

The periodic boundary conditions are expressed in this case as (Michel et al.
[1999], Miehe et al. [1999])

v(x) = D · x+ v∗(x), v∗ periodic, (14)

where the second-order tensor D denotes the symmetric part of the average
velocity gradient, x denotes the spatial coordinates and v∗ is a periodic field.

As shown in Mbiakop et al. [2015c], a simple algebraic analysis reveals that
all periodic linear constraints between the nodes can be written in terms of the
velocities of three corner nodes, i.e., vi(L1, 0, 0), vi(0, L2, 0) and vi(0, 0, L3).
These, in turn, are given in terms of the average velocity gradient D. This,
further, implies that the only nodes that boundary conditions need to be
applied are (L1, 0, 0), (0, L2, 0) and (0, 0, L3) (together with the axes origin
(0, 0, 0) which is fixed).
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Moreover, in order to validate the model proposed in this study, it is con-
venient to apply D in such a way that the average stress triaxiality and Lode
parameter in the unit-cell remain constant. In this regard then, one will use
the methodology originally proposed by (Barsoum and Faleskog [2007]) and
further discussed in (Mbiakop et al. [2015c]).

As a consequence of the above-defined load and the periodic boundary con-
ditions, the average deformation in the unit-cell is entirely described by the dis-
placements of the three corner nodes, e.g., u1(L1, 0, 0) = U1(t), u2(0, L2, 0) =
U2(t) and u3(0, 0, L2) = U3(t), denoted compactly as

U = {U1(t), U2(t), U3(t)}, U̇ = {U̇1(t), U̇2(t), U̇3(t)} ≡ {v1(t), v2(t), v3(t)}.
(15)

The stress state in the unit-cell is then controlled via a time-dependent kine-
matic constraint [Michel et al., 1999] obtained by equilibrating the rate of work
in the unit-cell with the rate of work done by the fictitious node on the unit-
cell at time t. Next, in order to control the loading path in the stress space, we
couple the average stress σ in the unit-cell with the generalized force vector
associated with a fictitious node.

In addition, the principal components of the stress field can be expressed
as a function of the average stress triaxiality XΣ and the average Lode angle
θ, via

3

2σeq
{σ1, σ2, σ3} =

{
cos θ,− cos

(
θ +

π

3

)
,− cos

(
θ − π

3

)}
+

3

2
XΣ{1, 1, 1}.

(16)
where σeq denotes the equivalent Von Mises part of σ.

Then, nonlinear kinematic constraints between the degrees of freedom cor-
responding to the sides of the unit-cell (i.e., U) and the degrees of freedom of
the fictitious node are applied in the finite element software ABAQUS [Abaqus,
2009] by use of the multi-point constraint user subroutine (MPC) in order to
control the loading path (stress triaxiality and Lode angle).

Furthermore, before proceeding with the results, it is useful to carry out
a small numerical convergence study of the geometries. In order to achieve
this goal, let us consider a porosity f = 1%, triaxial loading conditions XΣ =
1, 3, θ = 0o applied on several geometries, e.g. axisymmetric cylindrical unit-
cell and, multipore unit-cells with 20, 50, 100 pores. As shown in figure 5 in
almost all the cases, the axisymmetric cylindrical unit-cell (fig 2b) tends to
underestimate the overall response provided by the multipore geometries. In
addition, the convergence is reached with 50 pores for the range of stress
triaxiality and Lode angle considered. Thus, since the numerical validation of
the MVAR would be performed for the full range of stress triaxialities, all the
simulations presented next would be carried out with the multipore geometry
with 50 pores.
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a)

FEM, axisymmetric cylindrical unit-cell

FEM, 20 pores

FEM, 50 pores

FEM, 100 pores

f = 1%

X  = 1,  = 0

b)

FEM, axisymmetric cylindrical unit-cell

FEM, 20 pores

FEM, 50 pores

FEM, 100 pores

f = 1%

X  = 3,  = 0

Fig. 5 Plots of the average hydrostatic stress as a function of the average hydrostatic strain
for isotropic microstructures, i.e. spherical voids w1 = w2 = 1. Comparison between several
geometries, precisely axisymmetric cylindrical unit-cell, multipore unit-cell with 20, 50, 100
pores, for a Lode angle θ = 0o, a porosity f = 1% and various triaxialities (a) XΣ = 1, (b)
XΣ = 3.

4 Results - I: Assessment of the MVAR via FE simulations

This section presents results for the instantaneous effective behavior of the
rate-independent porous Tresca material comprising voids with spherical and
non-spherical shape, as predicted by the modified variational model (MVAR)
proposed in this work. Next, the predictions of the yield surface obtained using
the MVAR are compared with the FE simulations described in section 3. The
effect of the void shape on the resulting yield surface will ba particularly
analyzed. Moreover, in the case of axisymmetric loadings, results will also be
compared with predictions proposed by Cazacu et al. [2014] model.

4.1 Isotropic microstructures

The Fig. 6 displays yield surfaces for spherical voids (i.e., w1 = w2 = 1) as
predicted by the FE simulations, the modified variational model (MVAR), the
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Cazacu et al. [2014] model, for four different porosities f = (0.1, 1, 2, 4)% and
both axisymmetric (average Lode angle θ = 0o, 60o) and non axisymmetric
loadings conditions (θ = 30o). The agreement between the MVAR and the FE
calculations is satisfactory for a large range of porosities and for full loading
conditions (stress triaxiality, Lode angle). The largest difference between the
MVAR and the FE is found for larger porosities (f = 4%). In the axisymmetric
case (θ = 0o, 60o), when the Cazacu et al. [2014] model is also tested, we
remark that the predictions coincide at deviatoric loadings, i.e. σm = 0 but
are different for most of the triaxiality considered. In addition, the MVAR gives
a significantly softer prediction when σm increases. In the purely hydrostatic
limit, i.e. σeq = 0, the MVAR model attains the analytical spherical shell
solution and coincides with the Cazacu et al. [2014] model as expected.

At this point, it is worth noting that for axisymmetric loadings, the Cazacu et al.
[2014] yield surface is not symmetric with respect to the σm = 0 vertical axis.
This implies that the plastic Tresca strain-rate corresponding to the normal
of the yield surface for a purely deviatoric part exhibits a hydrostatic part,
as already discussed in (Danas et al. [2008a], Cazacu et al. [2014]). This is at-
tributed to the fact that the isotropic Cazacu et al. [2014] yield surface exhibits
a coupling between first and the third invariant, i.e., mean stress and Lode
angle. Such coupling, also confirmed by the FE simulations, is not addressed
in the more accurate MVAR model.

In the following, we attempt to reveal the differences between the pre-
dictions obtained by the MVAR in the context of a Mises (J2-dependent)
matrix and a Tresca matrix (J2, J3-dependent). Thus, Fig. 7 shows yield sur-
faces for spherical voids (w1 = w2 = 1) as predicted by the FE simulations,
the MVAR-Tresca porous model and the MVAR-Von Mises porous model
(Danas and Aravas [2012]) for the porosity f = 1% and both axisymmetric
(θ = 0o) and non axisymmetric loadings conditions (θ = 30o).

Let us first consider the axisymmetric case, θ = 0o. The MVAR-Von Mises
yield surface is as expected closer to the MVAR-Tresca yield surface as the
MVAR-Von Mises model is not dependent up on the third invariant. Nonethe-
less, it is noted that the porous Von Mises material exhibits a J3 dependence
but only minor (see Danas et al. [2008b]), and is not further discussed here.

In order to have a better understanding on the differences between porous
Tresca and porous Von Mises yield surfaces, we present, next, contours of
the equivalent Von Mises stress, for spherical voids, a porosity f = 1%, a
triaxiality XΣ = 3 and a Lode angle θ = 0o. Then, as observed in fig. 8, the
stress amplitude is in most of the unit-cell regions lower in the case of a Tresca
matrix than in the Von Mises one. Thus, as previously discussed, the porous
Tresca material is expected to be softer than a porous Von Mises material
for the same microstructure considered, and in general lead to increase void
growth at large triaxialities, in accord with recent results by Cazacu et al.
[2014], Revil-Baudard and Cazacu [2014].
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4.2 Anisotropic microstructures

Figure 9 shows FE simulations and MVAR yield surfaces for spherical voids
(w1 = w2 = 1), prolate voids (w1 = w2 = 3), oblate voids (w1 = w2 = 1/3) and
arbitrary ellipsoidal voids (w1 = 3, w2 = 1/3). The porosity is set equal to f =
1%, whereas the loading is axisymmetric along the x1-axis (θ = 0o). A good
agrement between the numerical FE predictions and the MVAR is seen for the
full range of stress triaxialities, except in the case of average purely deviatoric,
where a relative difference in the order of 2 − 6% is noticed. Furthermore,
the main observation in this figure is that non-spherical void shapes have a
dramatic influence on the yield surface of the porous material as predicted
by both the MVAR model and FE simulations. First, the slopes of the yield
surfaces depend strongly on the void shape. For instance, a porous material
with ellipsoidal voids (w1 = 3, w2 = 1/3) is softer than that with oblate voids
(w1 = w2 = 1/3) in the full range of stress triaxialities whereas they exhibit
the same maximum average Von Mises stress (at XΣ = 0). Moreover, for
the same value of porosity, non-spherical void shapes lead to a significantly
more compliant response at high values of the mean stress, especially in the
case of oblate and arbitrary ellipsoidal voids. Moreover, it is evident from
this figure that arbitrary ellipsoidal shapes (w1 = 3, w2 = 1/3) lead to very
different responses when compared with spheroidal shapes (w1 = w2 = 3 or
w1 = w2 = 1/3).

Finally, one should mention at this point that a series of additional triaxial
loading conditions and several void shapes have also been considered and the
MVAR has been found to be in good agreement (similar to the one observed
in the previous results) with the corresponding FE calculations. However, no
such results are shown here for brevity.

5 Results - II: Coupling between the Tresca matrix behavior, void
shape and orientation

Hereafter, we attempt to reveal the complex coupling between the Tresca yield
criterion features and the (morphological) void anisotropy resulting from the
ellipsoidal void shape and orientation.

5.1 Effect of void shape and orientation

In this section, we discuss in more detail the effect of microstructure anisotropy
upon the effective response of the porous composite. Figure 10 displays several
MVAR yield surfaces for a porous plastic Tresca material. The effect of poros-
ity is investigated by setting f = (1%, 5%, 10%) for different microstructures
(a) w1 = w2 = 1 and (b) w1 = 3, w2 = 1/3, n(1) = e(1), n(2) = e(2). In these
figures, the yield surfaces exhibit as expected a gradual shrinking with increas-
ing porosity for both spherical (w1 = w2 = 1) and ellipsoidal (w1 = w−1

2 = 3)
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voids. However, while for the case of spherical voids (w1 = w2 = 1), in Fig. 10a,
the curves are symmetric with respect to the σeq/σ0 axis, the curves for the
ellipsoidal voids (w1 = w−1

2 = 3), in Fig. 10b, become asymmetric as already
discussed in the context of Fig. 9. As a consequence of this asymmetry, the
MVAR estimates are found to be slightly stiffer in the negative pressure regime
(σm/σ0 < 0) than in the positive pressure regime (σm/σ0 > 0).

The figure 11 shows yield surfaces in the σm/σ0 − σeq/σ0 plane for a
porous plastic Tresca material. The porosity is set to f = 10%. The ef-
fects of the void aspect ratios and orientation are investigated by choosing
w1 = w−1

2 = (1/3, 1, 3) for an orientation n(1) = e(1), n(2) = e(2). For the
two considered anisotropic microstructures , i.e. w1 = w−1

2 = w = 3 and
w1 = w−1

2 = w = 1/3, the porous solids exhibit the same hydrostatic behavior.
This can be explained by the fact that the second microstructure is derived
from the first one through a π/2 rotation around the x3 axis (see fig. 11).
Thus, since the hydrostatic loading is isotropic in character i.e. doesn’t ex-
hibit any preferential direction, the overall hydrostatic response is expected
to be the same in both cases. This feature was also discussed in earlier stud-
ies (Danas and Ponte Castañeda [2009b]) and is a necessary requirement of
any model that involves void shape effect. In addition, the MVAR estimates
are found to be stiffer in the negative pressure regime (σm/σ0 < 0) for
w1 = w−1

2 = w = 3 while the average behavior is softer in the negative
pressure regime (σm/σ0 < 0) for w1 = w−1

2 = w = 0.2. Moreover, there is
a strong sensitivity of the hydrostatic average behavior on the void aspect
ratios, since σm/σ0 gets an increase of 50% from the considered ellipsoidal
microstructures (w1 = w−1

2 = (1/3, 3)) to the spherical one (w1 = w2 = 1).

5.2 Π-plane cross sections

In this section, we investigate the effective response of the porous plastic Tresca
material in the deviatoric plane, i.e. Π-plane.

Specifically, Fig. 12 displays yield surfaces in the Π-plane (or octahe-
dral plane) corresponding to different fixed overall hydrostatic stresses σm =
0, σm = ±0.5σH

m, σm = ±0.9σH
m, where σH

m denotes the hydrostatic point of
the MVAR model for each of the given cases in Fig. 12a,b, respectively. Note
that when the voids are spherical the hydrostatic MVAR point coincides with
that of the CSA microstructure whereas in the case of ellipsoidal voids it is
simply an estimate.

More specifically, in Fig. 12a, which corresponds to spherical voids (w1 =
w2 = 1), we observe a gradual shrinking of the curves with increasing σm

as expected. At small values of σm = 0, the curve exhibits an almost dis-
crete character. However, it is important to notice that as shown in the an-
alytical expression of the model in relation (12), the MVAR yield surfaces
are all “rounded”. Indeed, depending on the relative dominance of the terms
(maxi,j |σi − σj |)2/σ2

0 and
(
8 f σ2

eq

)
/
(
45σ2

0

)
in the equation (12), the sur-

faces are mainly “rounded” or exhibit “vertex - like” character. In the con-
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text of this study, since we focuss on small porosities (i.e. low f), the term(
8 f σ2

eq

)
/
(
45σ2

0

)
is smaller and thus, the “vertex - like” character is dom-

inant. We stress however that the homogenized model (see equation 12) is
strictly convex (even if the initial Tresca matrix is simply convex) as a result
of the homogenization procedure. Furthermore, when one increases σm, the
porous Tresca preserves the original deviatoric symmetries of the Tresca ma-
trix for all values of σm. In particular, in this case the curve is fully symmetric
with respect to the three axes σ′

1, σ
′
2 and σ′

3 and exhibits the same symmetries
as the ones of the original Tresca matrix. As we will see in the following this
feature is not in agrement with FEM but only marginally.

In addition, Fig. 12b shows yield surfaces for ellipsoidal voids with aspect
ratios w1 = 3, w2 = 1/3, aligned with the applied load, and the same level of
hydrostatic stress. In this case, a gradual shrinking of the curves appears while
increasing σm, as expected. Again, as discussed previously, the curves exhibit a
quasi discrete character even if rigourously there are no corners. Nevertheless,
by contrast to the case of spherical voids microstructure, the yield surfaces
exhibit full asymmetry for finite hydrostatic stresses σm = 0, but preserve the
hexagonal symmetry (π/3 symmetry) for σm ̸= 0. The observed asymmetry
is much more pronounced at higher values of σm. Furthermore, it should be
stressed that point symmetry of the curves with respect to the global origin
and σm = 0 is still preserved if one compares the continuous (σm ≥ 0) with
the dashed lines (σm ≤ 0).

Next, a numerical validation of the predictions of the MVAR model in the
Π-plane is carried out for spherical voids with a porosity f = 1%, at level of
pressure σm = 0 (see Fig. 13a) and σm = ±0.5σH

m (see Fig. 13b).
As shown in fig. 13a, i.e. for isotropic microstructure and zero average hy-

drostratic stress, the agreement between the MVAR and the FE calculations is
satisfactory for a large range of Lode angle and thus, the full Π-plane. Further-
more, for the intermediate pressure level cases σm = ±0.5σH

m shown in fig. 13b,
the “rounded” character seems more pronounced in the FE results while the
“vertex - like” character is dominant in the MVAR predictions. Moreover it is
useful to precise that except in the limit of zero porosity, the “vertex-like” re-
sponse does not correspond to perfectly flat sectors, as shown in equation (10)
through the term

(
8 f σ2

eq

)
/
(
45σ2

0

)
. A similar qualitative result of a more

rounded yield surface was already found in the Revil-Baudard and Cazacu
[2014] model. Nonetheless, a good quantitative agrement between the MVAR
and the FE is still observed in such context. In addition, it is interesting to
notice that as predicted by the MVAR, there is no significant difference be-
tween the positive and negative pressure regime, at least in the results shown
here.

Furthermore, in order to assess the coupling between the invariants σeq,
σm = 0 and θ, the normalized average equivalent Von Mises stress is extracted
from fig. 13 and plotted in fig. 14 as a function of the average Lode angle in the
Π-plane (or octahedral plane) for a porous plastic Tresca material containing
spherical voids with a porosity f = 1%, at level of pressure σm = 0 and
σm = ±0.5σH

m.
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In the case of σm = 0, the average equivalent stress σeq exhibits a min-
imum and an axial symmetry for θ = π/6 whereas the maximum is reached
for axisymmetric states, i.e θ = 0, π/3. In contrast, when σm increases (for
instance σm = ±0.5σH

m), the minimum is still observed for θ = π/6 but the
π/6 symmetry is lost even marginally. Indeed, only the hexagonal symmetry
(π/3 symmetry) is preserved for σm ̸= 0.

Such observations are in qualitative agrement with those made by Revil-Baudard and Cazacu
[2014].

6 Conclusions

An analytical yield function in closed form for porous plastic Tresca materials
has been proposed in this study. It is theoretically motivated using an original
approach that consists in considering the limiting case of infinite slip systems
in a variational homogenization porous single crystal model (Mbiakop et al.
[2015b,c]). The modified variational (MVAR) model presented in this study
has been validated by comparison with full field FE calculations of single- and
multi-void periodic unit-cells. The MVAR model has been found to be in good
agreement with the FE results for a very wide range of parameters describing
the porosity, the void shapes and orientations. The MVAR model has shown
strong predictive capabilities while exhibiting critical qualitative features.

More precisely, the MVAR model has been able to predict the strong de-
pendence of the effective response, and especially of the average hydrostatic
stress upon the shape and orientation of the voids. Nonetheless, the MVAR
model appears to retain the original symmetries of the pure Tresca matrix cri-
terion when plotted to the Π-plane. This is in contrast with the full field FEM
simulations which exhibit a transition from a π/6 symmetry at low triaxialities
to a π/3 symmetry at high ones. Even if this symmetry breaking seems to be
marginal in the yield surface the effects will be stronger at the normal and
hence if void shape evolution is considered, since the normal to the octahedral
plane controls the void shape evolution while the one to the meridional plane
(precisely the hydrostatic strain rate) controls the void growth.

In addition, it is useful to note that the Tresca yield condition together
with the von Mises yield condition are special cases of the Hershey [1954] yield
condition (see also Hosford [1972]). In this regard, albeit not straightforward,
it seems feasible that the existing class of the porous MVAR models for a von
Mises matrix [Danas and Aravas, 2012] and for a Tresca matrix, which is the
scope of the present study, can be extended to include the case of a porous
Hosford model (see for instance Cohen et al. [2009]). Such a study is underway.

Finally, it is important to mention that several important issues, such as
strain-hardening and microstructure evolution that were not studied in this pa-
per will be considered in further studies. Moreover, it would also be interesting
to study the effects of cyclic loading conditions upon microstructure evolution
using similar ideas, as addressed numerically for instance in Mbiakop et al.
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[2015a] for a Von Mises material. Such developments are underway and will
be presented in the future.

A Microstructural tensor in the limiting case of K → ∞ (isotropic
Tresca matrix)

In the case of slip systems with identical CRSS τ0 and reference slip-rate γ̇0, the compliance
tensor SK of the linear comparison composite is given in (Mbiakop et al. [2015b,c]) by
setting λ(s) = λ and ρ(s) = ρ,

SK =
1

2λ

K∑
s=1

E(s) +
1

2ρ

K∑
s=1

F(s) +
1

3κ
J, with E(s) = 2µ(s) ⊗ µ(s), F(s) = K−E(s), (17)

∀s = 1,K, where λ, ρ, κ serve to denote eigenvalues. While λ is optimized in the con-
text of the variational homogenization method, ρ, κ are set to infinity (see more details in
Mbiakop et al. [2015c]).

In addition, the microstructural tensor can easily be computed in the case of an isotropic
von Mises compliance matrix, whose compliance tensor of the corresponding linear compar-
ison composite is SMises = (2µ0)−1K + (3κ0)−1J), following for instance the numerical
framework described in Aravas and Ponte Castañeda [2004] and Danas [2008]).

Moreover, the numerical computation of the hydrostatic part of S∗/K in the infinite
number of slip systems context (i.e. Tresca matrix) for spherical voids leads to a result (up to
2%) close to the microstructural tensor associated with the compliance tensor of a von Mises
matrix. In addition, it was shown (Benallal [2015]) and we observe through FE simulations
that a porous von Mises material and a porous Tresca material exhibit the same hydrostatic
point. Hence, one can, as a first approximation, use the tensor SMises instead of S in the
limiting case K → ∞. Suitable values for µ0 and κ0 must consequently be used. In order to
achieve this goal, the deviatoric and hydrostatic projections of both tensors lead to

µ0 =
5

K
λ

+ K
ρ

, κ0 = κ (18)

Thus, using the identity (18), one can readily show that in the limit ρ → ∞, κ → ∞ and

K → ∞, the microstructural tensor Ŝ∗
K leads to equation (7).
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K. Danas and P. Ponte Castañeda. A finite-strain model for anisotropic viscoplastic porous
media: Ii-applications. Eur. J. Mech. A/Solids, 28:402–416, 2009b.
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Fig. 6 Yield surfaces in the σm − σeq plane for isotropic microstructures, i.e. spherical
voids w1 = w2 = 1. Comparison between the FE multipore simulations and the modified
variational MVAR for three Lode angles θ = 0o, 30o, 60o and various porosities (a) f =
0.1%, (b) f = 1%, (c) f = 2%, (d) f = 4%. The blue color (line or points) corresponds to
the Lode angle θ = 0o while the red color corresponds to the Lode angle θ = 60o.
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Fig. 7 Yield surfaces in the σm−σeq plane for isotropic microstructures, i.e. spherical voids

w1 = w2 = 1, a porosity f = 1%, Lode angle θ = 0o, 30o. Comparison between the FE
multipore simulations, the MVAR-Tresca porous model and the MVAR-Von Mises porous
model.
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Tresca matrix Von Mises matrix
Fig. 8 Contours of the equivalent Von Mises stress in the case of spherical voids, a porosity
f = 1%, a triaxiality XΣ = 3 and a Lode angle θ = 0o for (a) a Tresca matrix and (b) a
Von Mises matrix.
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Fig. 9 Yield surfaces in the σm − σeq plane for isotropic (spherical voids w1 = w2 = 1)
and anisotropic microstructures: prolate voids w1 = w2 = 3, oblate voids w1 = w2 = 1/3
and ellipsoidal voids w1 = 3, w2 = 1/3. Comparison between the FE simulations and the
modified variational MVAR for f = 1% and Lode angle θ = 0o.
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Fig. 10 Yield surfaces for a porous plastic Tresca material. The effect of porosity is inves-
tigated by choosing f = (1%, 5%, 10%) for different void shapes (a) w1 = w2 = 1 and (b)
w1 = 3, w2 = 1/3, n(1) = e(1), n(2) = e(2).
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Fig. 11 Yield surfaces for a porous plastic Tresca material with ellipsoidal voids. The
porosity is set to f = 10%. The effect of (a) the void aspect ratios is investigated by
choosing w1 = w−1

2 = (1/3, 1, 3) for an orientation n(1) = e(1), n(2) = e(2).
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Fig. 12 Yield surfaces in the Π-plane (or octahedral plane) for a porous plastic Tresca
material with a porosity f = 1%, void shapes and orientations (a) w1 = w2 = 1 and (b)
w1 = 3, w2 = 1/3, n(1) = e(1), n(2) = e(2) at different level of pressure. The dashed line
curves correspond to the negative pressure regime while the continuous one correspond to
the positive pressure regime. The uniaxial yield in tension is set to σ0 = 1
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Fig. 13 Yield surfaces in the Π-plane (or octahedral plane) for a porous plastic Tresca
material containing spherical voids with a porosity f = 1%, at level of pressure (a) σm = 0
and (b) σm = ±0.5σH

m, where σH
m denotes the hydrostatic point for hydrostatic loading.

Comparison between the FE multipore simulations and the MVAR-Tresca porous model
when the uniaxial yield in tension is set to σ0 = 1.

Fig. 14 Representation of the normalized average equivalent Von Mises stress as a function
of the average Lode angle in the Π-plane (or octahedral plane) for a porous plastic Tresca
material containing spherical voids with a porosity f = 1%, at level of pressure σm =
0 and σm = ±0.5σH

m, where σH
m denotes the hydrostatic point for hydrostatic loading.

Comparison between the FE multipore simulations and the MVAR-Tresca porous model
when the uniaxial yield in tension is set to σ0 = 1. The dashed lines indicate the symmetry
lines.


