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Abstract

We characterize the design of insurance schemes when policyhold-
ers face several insurable risks in a context of adverse selection. Split-
ting risks emerges as a feature of second-best Pareto-optimal alloca-
tions. This may take the form of risk-specific contracts, or of con-
tracts where risks are bundled, but subject to differential coverage
rules such as risk specific copayments, combined with a deductible, an
out-of-pocket maximum or a cap on coverage.
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1 Introduction

Most people are simultaneously affected by several insurable risks, including
property, casualty, liability and health risks. It is a fact that these various
categories of risks require specific underwriting and claim handling skills that
are not uniformly shared by all insurers. This is a suffi cient reason why we
may cover different risks through different insurers, and thus, for instance,
why, for instance, many people purchase automobile and medical insurance
from different insurers.
Understanding why similar risks incurred by the same economic unit (e.g.,

a family) are not covered by the same insurance contract is less obvious. To
take a concrete example, why is it the case that, most of the time, the auto-
mobile risks of both members of a couple who drive different cars are covered
by separate contracts, with specific premium and deductibles. Similarly, why
the health care risks of these two persons may be covered by independent
contracts?1

These very simple questions do not have simple answers. When there
are no transaction costs, risk averse individuals would optimally purchase
full coverage with actuarially fair insurance premium, and, obviously, in such
a case, it does not matter whether the risks of both members of a couple
are covered through specific contracts or through a unique contract. This is
no more true when insurers charge loaded premiums and households react
by purchasing partial coverage. A variant of the wellknown "theorem of
the deductible" says that, under proportional loading, households should be
covered by an "umbrella policy" with full marginal coverage of the total
losses beyond an aggregate deductible.2 The fact that they may choose to be
covered by separate insurance policies is inconsistent with this conclusion.

1These questions are legitimate insofar as both members of the couples have identical
access rights to the same set of contracts, and if they jointly manage their budget. Matters
should be seen differently in a collective approach to family decision making, where a
household is described as a group of individuals, with their own preferences and among
whom there is a coperative or non-cooperative decision process; see Bourguignon and
Chiappori (1992).

2Umbrella insurance usually refers to coverage provided as a complement to other poli-
cies, particularly automobile and homeowners liability policies. As others before us, we
use this terminology because the principle of umbrella policies is to globally protect poli-
cyholders against uncovered risks, without reference to the specificity of these risks. After
Eeckhoudt et al. (1991) who considered the particular case of a binomial distribution and,
more generally, Gollier and Schlesinger (1995) established the optimality of an umbrella
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A similar question arises with respect to the coverage of various risks in-
curred by an individual. This is particularly the case in medical insurance.
In an umbrella policy approach, the insurance indemnity depends on total
medical expenses measured on a per period basis. However, much more fre-
quently, various medical services (e.g., visits to general practitioners, visits
to specialists, inpatient care, dental care...) are bundled in a unique con-
tract, but the insurance indemnity depends on service specific copayments,
coinsurance rates or policy limits, frequently combined with an aggregate
deductible, an out-of-pocket maximum or a cap on the indemnity. Here also,
this casual observation of medical insurance contracts is at odds with the
optimality of umbrella policy. Likewise, homeowner insurance usually pro-
vides bundled coverage for both property and liability risks, with different
deductibles and policy limits for these risks.
The fact that risk specific policies and differential coverage of risks bun-

dled in a contract are so frequent suggests that splitting risks is often an
optimal answer to the insurance choice problem. Umbrella policies may be
suboptimal for various reasons that are ignored in the standard model of
insurance demand, and that would be worth further exploring. Most of them
are probably related with asymmetries of information between insurer and
insured, for instance when the two members of a couple do not react to fi-
nancial incentives in the same way under moral hazard, or when medical
expenses can be more or less easily monitored by insurers, depending on the
type of health care service (e.g., visit to general practionners vs inpatient
care).3

In this paper, we will analyze how the splitting of risks is a rational
answer to the adverse selection problem. We will consider a setting where
households face several risk exposures (only two, for the sake of simplicity),
with hidden information about the type of each one: they may be high risk or
low risk. For instance, in the case of health insurance, the two risk exposures

policy under linear transaction costs. As shown by Gollier (2013), this property as well
as the optimality of a straight deductible contract hold when policyholders dislike any
zero-mean lottery that would be added to their final wealth, which is more general than
the case of risk aversion under the expected utility criterion.

3Cohen (2006) considers a related issue. She analyzes the determinants of deductible
in insurance contracts that cover a risk that may materialize more than once during the
life of thee policy. She shows that aggregate deductibles may produce higher verifiction
costs and moral hazard costs than per-loss deductibles. In a similar perspective, Li. et al.
(2007) analyze the case of automobile insurance in Taiwan, and they provide evidence of
the incentive effects of increasing per-claim deductibles on the policyholders’behavior.
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may correspond to the medical expenses of each member of a couple, or to
different types of medical services. We will have high risk households with
two high risk exposures, medium risk households with a high risk and a
low risk (with two subgroups according to identity of the high and low risk
exposures), and low risk households with two low risks. An umbrella policy
provides coverage for the aggregate losses that may result from the two risk
exposures, while a risk specific policy only covers the loss of a particular
risk. In this setting, the coverage of risks may be splitted by purchasing
insurance through two risk specific policies, such as two automobile insurance
policies for the two cars owned by the household, or separate health insurance
contracts for each member of a couple. Bearing in mind the case of health
insurance, we may also consider that policyholders are individuals who face
two additive risks, each of them corresponding to a specific service, such as
visits to general practitionners and dental care. In that case, splitting risks
refers to the bundling of insurance coverage with service specific coverage,
possibly combined with a deductible, an out-of-pocket maximum or a cap on
indemnity.
Crocker and Snow (2011) study a related but different problem. They

analyze how the bundling of distinct perils (seen as factors that may be at
the origin of a loss) in a unique contract with differential deductibles improves
the effi ciency of insurance markets under adverse selection. They consider a
setting with two types of policyholders (high risks and low risks) where a loss
may result from various perils, and they show that bundling the coverage
of these perils in a unique contract facilitates the separation of high risks
and low risks. If the probabilities that the loss results from different perils
(conditionnally on a loss occurring) differ between high risk and low risk
individuals, then bundling perils with differential deductibles allows insurer
to implement a multidimensional screening that yields a Pareto effi ciency gain
and makes the existence of a Rothschild-Stiglitz equilibrium more likely.
Our perspective is different. We consider a setting in which each policy-

holder faces two risks that may be high or low, and potentially one loss per
risk. We thus have four types of policyholders and 0,1 or 2 losses. The issue
we consider is whether the aggregate loss that may result from multiple risk
exposures should be covered through an umbrella policy, and if not, whether
risk splitting takes the form of risk specific policies where risk exposures
are unbundled, or of a unique policy where risks are bundled but different
indemnity rules apply for each risk.
We will not try here to analyze the market equilibrium that may arise
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when there is adverse selection about multiple insurable risks, although this
should be an ultimate research objective. Our objective will be more mod-
estly limited to the characterization of effi cient allocations. Effi ciency will be
in a second-best sense, meaning that allocations should satisfy the incentive
compatibility conditions inherent in an hidden information setting. Implic-
itly, we presume that either competition forces or market regulation leads to
such a second-best Pareto optimal allocation.
The main lesson learned from the characterization of effi cient allocations

will be that risk splitting facilitates the separation of risk types. The intu-
ition for this result is as follows. As in the Rothschild-Stiglitz (1975) model,
unsurprisingly, at any second-best Pareto-optimal allocation, high risk house-
holds are fully covered, which may correspond to an umbrella policies or to
two risk specific policies. They are detered from choosing the risk coverage
of the "upward adjacent" type of household, which is the medium risk in the
present model, by providing partial coverage to this type. In our multiple
risk setting, partial coverage may correspond to several insurance schemes,
such as, for instance, a uniform proportional coinsurance for the two risk
exposures. It turns out that full coverage for the high risk exposure and par-
tial coverage for the low risk exposure is the most effi cient way to separate
high and medium risk households, since the existence or the absence of such
a low risk exposure is the only difference between these two categories of
households. This requires that medium risk households are covered by risk
specific insurance policies, with full coverage for their high risk and partial
coverage for their low risk.
The situation is different for low risk households, since their two risk ex-

posures are homogeneous (both are low risks), and their insurance policy
should include decreasing coverage at the margin for both risk exposures to
facilitate the separation from medium risk households. Risk specific policies
are not optimal for low risk household, but splitting the coverage of risk ex-
posures is again optimal, because of the (possibly uneven) pressure of the
two types of medium risk policyholders. It takes a form that will sound very
familiar in a health economics perspective: risk specific contributions of the
policyholder in the case of a loss (i.e., risk specific copayment in the terminol-
ogy of health insurance) should be combined with an aggregate deductible,
an out-of-pocket maximum or a cap on the insurance indemnity.
We will also consider the case when actuarial premiums are loaded up

because of transaction costs. This extension is of particular interest because
of the theorem of the deductible that states the optimality of an aggregate
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deductible when there is proportional loading and no asymmetry of informa-
tion. Taking into account the insurance loading will modify our conclusions
about the optimality of full coverage for high risk households and of risk
specific insurance contracts for medium risk households, but splitting risks
will remain an optimal answer to the adverse selection problem. In par-
ticular, high risk households should be protected by a straight deductible
contract, while medium and low risk households should be covered by a pol-
icy that includes risk specific copayments, combined either with an aggregate
deductible, an out-of-pocket maximum or a cap on the insurance indemnity.
The rest of the paper is arranged as follows. Section 2 presents our

model of insurance market with multiple risks and hidden information about
risk types. Section 3 shows why and how risk splitting may be an answer
to adverse selection. Section 4 analyzes the effect of transaction costs on
insurance schemes. Section 5 concludes. The proofs are in an appendix.

2 Model

2.1 Notations

We consider an economy where households are affected by two additive finan-
cial risk exposures (more briefly, risks), indexed by r ∈ {1, 2} and identified
by observable characteristics.4 We can think of the health care expenses
incurred by both members of a couple, hence the "household" terminology.
The model may also be interpreted as the case of a single person who faces
two risks, such as doctors’visit and inpatient care in the case of health in-
surance, or accident and theft risk in the case of automobile risk. For the
sake of notational simplicity, we assume that each risk r may lead to the
same loss L, with probability p` or ph, with 0 < p` < ph < 1, and that the
occurrence of these losses are independent events. Hence, r is a high risk
when the corresponding probability of loss is ph and it is a low risk when
the probability is p`. Thus, there are four household types characterized by a
double index ij, with i, j ∈ {h, `}, where i and j are the types of risk expo-
sures r = 1 and 2, respectively. Types hh and `` are high risk and low risk

4Hence, households cannot present their risk exposure 1 as belonging to category 2, and
vice versa. The analysis would be different if both risk exposures could be substituted,
as for instance in the case of property owners seeking fire insurance for a group of two
buildings without special features enabling to distinguish them.
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households because their two risks are either high or low. Types h` and `h
are medium risk households, because one of their risk exposures is high and
the other one is low. We denote λij the proportions of type ij households
with λhh +λh` +λ`h +λ`` = 1. Households have private information on their
type and all of them have the same initial wealth w0.
The state-contingent final wealth of a household is written asw = (w00, w01,

w10, w11), where wxy denotes its final wealth in state (x, y) ∈ {0, 1}2, where
x = 0 when risk r = 1 does not lead to a loss and x = 1 when it does, with
a similar interpretation of index y for risk r = 2. For instance, w10 is the
household’s final wealth when only risk 1 is at the origin of a loss.
Households are decision units: they are risk averse and they maximize

the expected utility of their aggregate final wealth wf , with utility function
u(wf ), such that u′ > 0, u′′ < 0. To obtain more specific results, we may
also assume that households are downward risk averse (or prudent), which
corresponds to the additional assumption u′′′ > 0, but we will mention it
explicitly when this assumption is needed. The expected utility of a type ij
household is denoted Uij(w) for all i, j ∈ {h, `}, with

Uhh(w) ≡ (1− ph)2u(w00) + ph(1− ph)[u(w01) + u(w10)] + p2hu(w11),

Uh`(w) ≡ (1− ph)(1− p`)(w00) + p`(1− ph)u(w01)

+ ph(1− p`)u(w10) + php`u(w11),

U`h(w) ≡ (1− ph)(1− p`)(w00) + ph(1− p`)u(w01)

+ p`(1− ph)u(w10) + php`u(w11),

U``(w) ≡ (1− p`)2u(w00) + p`(1− p`)[u(w01) + u(w10)] + p2``u(w11).

The state-contingent final wealth of a type ij household is denoted by
wij = (w00ij , w

01
ij , w

10
ij , w

11
ij ), with expected utility Uij(wij). An allocation A =

{whh, wh`, w`h, w`} specificies the state-contingent final wealth for each type
of household.
Insurance schemes5 are characterized by the non-negative indemnity T xy

paid by the insurer to the household when there are x and y losses, in risk
exposures r = 1 and 2, respectively, with (x, y) ∈ {0, 1}2 and T 00 = 0, and by
the premium P paid in all states by the policyholder to the insurer. If type
ij households are protected by an insurance scheme with coverage schedule

5We use the terminology "insurance scheme" instead of "insurance policy or contract"
because, in what follows, an insurance scheme may correspond to the combination of two
risk specific insurance policies.
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Tij ≡ (T 01ij , T
10
ij , T

11
ij ) and premium Pij, then we have

wxyij = w − (x+ y)L− Pij + T xyij for all x, y ∈ {0, 1}, (1)

with T 00ij = 0.
In what follows, for the sake of simplicity and realism, we will restrict

attention to insurance schemes where the indemnity does not increase more
than losses, and thus we assume6

0 ≤ T 01ij , T
10
ij ≤ L,

T 11ij − T 01ij ≤ L,

T 11ij − T 10ij ≤ L,

or, equivalently

w00ij − L ≤ w01ij ≤ w00ij ,

w00ij − L ≤ w10ij ≤ w00ij ,

w10ij − L ≤ w11ij ≤ w10ij ,

w01ij − L ≤ w11ij ≤ w01ij ,

for all i, j ∈ {h, `}.

2.2 Typical multirisk insurance schemes

Risk specific policies and umbrella policies are particular forms of insurance
schemes that restrict the set of feasible allocations. A risk specific insurance
policy provides coverage for a particular risk. A policy that covers risk 1 is
defined by an indemnity I1 paid to the household, should risk 1 lead to a
loss, and by an insurance premium Q1, with similar notations I2, Q2 for a
policy that covers risk 2. Hence, if type ij households are covered by two
risk specific policies (I1ij, Q

1
ij) and (I2ij, Q

2
ij), then we have

T 10ij = I1ij,

T 01ij = I2ij,

T 11ij = I1ij + I2ij,

Pij = Q1ij +Q2ij,

6In addition to the fact that overinsurance may be prohibited by law, policyholders
may be incentivized to deliberately create damages (e.g., by commiting arson in the case
of fire insurance) if coverage were larger than losses.
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which induces an allocation that satisfies

w11ij = w01ij + w10ij − w00ij for all i, j ∈ {h, `}. (2)

This characterization can be reversed: any allocation that satisfies (2) is
induced by an insurance scheme where type ij households are covered by
two risk-specific policies.
Under an umbrella policy, the coverage is a function of the household’s

total loss, and the policy may be written as (J1, J2, P ), where J1 and J2

denote the indemnity in the case of one or two losses, respectively, and, as
before, P is the total premium paid for the coverage of the two risks. Thus,
when type ij households are covered by an umbrella policy (J1ij, J

2
ij, Pij),we

have

T 10ij = T 01ij = J1ij,

T 11ij = J2ij.

The corresponding allocation satisfies

w01ij = w10ij for all i, j ∈ {h, `}, (3)

with, here also, an inverse relationship: any allocation that satisfies (3) is
induced by an umbrella policy for type ij households.
If an umbrella policy (J1ij, J

2
ij, Pij) provides the same state-contingent

wealth wij as two risk specific policies (I1ij, Q
1
ij) and (I2ij, Q

2
ij), then we have

w11ij − w01ij = w10ij − w00ij = w01ij − w00ij ,

from (2) and (3), and thus
J2ij = 2J1ij.

Hence, the indemnity is doubled when the loss is doubled, which means
that linear coinsurance is an umbrella policy equivalent to two separate risk
specific policies, both of them providing linear coinsurance at the same rate.
Risk specific policies and umbrella policies are far from being the only

forms of multirisk insurance schemes. Consider the case of risk specific copays
c1ij and c

2
ij combined with a deductible Dij, with c1ij +Dij < L and c2ij +Dij <

L. Hence the insurance indemnity is L − c1ij −Dij or L − c2ij −Dij if a loss
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affects risk exposure 1 or 2, and it is 2L − c1ij − c2ij −Dij if losses occur for
both risk exposures.7 Thus, we have

T 10ij = L− c1ij −Dij,

T 01ij = L− c2ij −Dij,

T 11ij = 2L− c1ij − c2ij −Dij,

and (1) gives

c1ij = w01ij − w11ij ,
c2ij = w10ij − w11ij ,
Dij = w00ij + w11ij − (w10ij + w01ij ).

Hence, wij can be sustained by non-negative copays c1ij, c
2
ij and deductible

Dij if
w00ij + w11ij ≥ w10ij + w01ij . (4)

Consider now the case where the insurance scheme of type ij households
includes risk specific copays c1ij, c

2
ij and an out-of-pocket maximumMij instead

of an aggregate deductible. Assume c1ij + c2ij ≥Mij and c1ij, c
1
ij < Mij , which

means that the out-of-pocket maximum is reached in the case of two losses.
In that case, we have

T 10ij = L− c1ij,
T 01ij = L− c2ij,
T 11ij = 2L−Mij,

and (1) yields

c1ij = w00ij − w10ij ,
c2ij = w00ij − w01ij ,
Mij = w00ij − w11ij .

7In health insurance, a copay (or copayment) is a set out-of-pocket amount paid by the
insured for health care services. We use this terminology although our approach is not
limited to health insurance. We assume, as in most health insurance contracts, that the
amounts paid in copays do not count toward meeting the deductible. In other words, the
insurance indemnity is equal to the difference between out-of-pocket costs above copays
and the deductible if this difference is positive, which is what we assume here. See section
4 for a more general formulation, in which the insurance indemnity may be nil in the case
of a unique loss.

10



Hence, the type ij state-dependent wealth can be sustained by non-negative
copays c1ij, c

2
ij and an out-of-pocket maximum Mij here also if (4) holds.

Finally, consider the case of risk specific copays c1ij and c
2
ij combined with

an upper limit on coverage ULij reached in the case of two losses. Thus, we
assume L − c1ij ≤ ULij, L − c2ij ≤ ULij and ULij ≤ 2L − c1ij − c2ij. In that
case, we have

T 10ij = L− c1ij,
T 01ij = L− c2ij,
T 11ij = ULij,

and (1) gives

c1ij = w00ij − w10ij ,
c2ij = w00ij − w01ij ,
ULij = 2L+ w11ij − w00ij ,

with ULij ≤ 2L− c1ij − c2ij if

w00ij + w11ij ≤ w10ij + w01ij , (5)

which is the condition under which wij can be sustained by non-negative
copays c1ij, c

2
ij and an upper limit on coverage ULij.

2.3 Incentive compatibility and feasibiity

The incentive compatibility of an allocation A = {whh, wh`, w`h, w``} requires
that any type ij household weakly prefers wij to wi′j′ if i 6= i′ and/or j′ 6= j,
i.e.,

Uij(wij) ≥ Uij(wi′j′), (6)

for all i, j, i′, j′ ∈ {h, `} such that i 6= i′ and/or j 6= j′.
Let Cij(w) be the expected wealth of a type ij household, for state-
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dependent wealth w = (w00, w01, w10, w11), with

Chh(w) ≡ (1− ph)2w00 + ph(1− ph)(w01 + w10) + p2hw
11,

Ch`(w) ≡ (1− ph)(1− p`)w00 + p`(1− ph)w01

+ ph(1− p`)w10 + php`w
11 ,

C`h(w) ≡ (1− ph)(1− p`)w00 + ph(1− p`)w01

+ p`(1− ph)w10 + php`w
11

C``(w) ≡ (1− p`)2w00 + p`(1− p`)(w01 + w10) + p2`w
11,

By definition, the allocation A is budget-balanced if the average wealth in
the population is lower or equal to the average wealth in the absence of any
redistribution between households. This is written as∑

i,j∈{h,`}

λijCij(wij) ≤ w, (7)

where
w = w0 − L[2λhhph + (λh` + λ`h)(ph + p`) + 2λ``p`].

Finally, we say that the allocationA is feasible if it is incentive compatible
and budget-balanced.
Any feasible allocation can be induced by an insurance scheme where

insurers offer menus of insurance schemes and make non-negative expected
profit when households choose their best scheme. Indeed, assume that each
type ij household chooses a scheme (Tij,Pij), among the offers available in
the insurance market. Then, the induced allocation A = {whh, wh`, w`h, w``}
is defined by Equation (1) for all i, j ∈ {h, `} and this allocation is incentive
compatible. Conversely, any incentive compatible allocation A is induced
by a menu of insurance contracts with coverage Ti ≡ (T 01ij , T

10
ij , T

11
ij ) and

premium Pij such that Pij = w00ij − w and T xyij = wxyij − w00ij + (x + y)L if
(x, y) 6= (0, 0).
Assume that insurers offer the menu of insurance schemes {(Tij, Pij), i, j =

h, `} and that (Tij, Pij) is chosen by type ij households in this menu. Assume
moreover that policyholders are evenly spread among insurers. Then insurers
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make non-negative expected profit if

λhh
[
Phh − ph(1− ph)(T 01hh + T 10hh)− p2hT 11hh

]
+λh`

[
Ph` − p`(1− ph)T 01h` − ph(1− p`)T 10h` − php`T 11h`

]
+λ`h

[
P`h − ph(1− p`)T 01`h − p`(1− ph)T 10`h − php`T 11`h

]
+λ``

[
P`` − p`(1− p`)(T 01`` + T 10`` )− p2`T 11``

]
≥ 0 (8)

A satisfies (7) if and only if (8) holds, which shows the correspondence be-
tween the insurers’break-even condition and the budget balance of alloca-
tions induced by insurance schemes. The results obtained sofar are summa-
rized in the following proposition.

Proposition 1 Conditions (6) and (7) define the set of feasible allocations
that can be induced by insurance schemes offered by insurers that break-even.
Under condition (2) type ij households can be covered by risk specific policies.
Under condition (3) they can be covered by an umbrella policy. Under condi-
tion (4) - respect. condition (5) - they can be covered by an insurance policy
that combines risk-specific copays with either a deductible or an out-of-pocket
maximum - respect. an upper limit on indemnity -.

2.4 Second-best Pareto-optimality

By definition, an allocation is second-best Pareto-optimal if it is feasible and
if there does not exist another feasible allocation with expected utility at
least as large for all types, and larger for at least one type. More explicitly,
let us consider a feasible allocation A∗ = {w∗hh, w∗h`, w∗`h, w∗``}, where w∗ij =
(w00∗ij , w

01∗
ij , w

10∗
ij , w

11∗
ij ) for i, j ∈ {h, `}. A∗ is second-best Pareto-optimal

if, for all i, j, Uij(wij) reaches its maximum at A∗ in the set of feasible
allocations A = {whh, wh`, w`h, w``} such that Ui′j′(wi′j′) ≥ Ui′j′(w

∗
i′j′) for all

i′, j′ ∈ {h, `}, i′ 6= i and/or j′ 6= j.
Investigating the competitive interactions that could lead to a particu-

lar second-best Pareto-optimal allocation is out of the scope of the present
paper. In what follows, we will limit ourselves to analyzing the insurance
contracts that sustain second-best Pareto-optimal allocations. Thus, we im-
plicitly presume that, in the absence of trade restraint (such as barriers to
entry or exogenous constraints on contracts), competitive forces should lead
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to a second-best Pareto optimal allocation, which is of course a debatable
assumption. We may also have in mind a regulated insurance market where
second-best Pareto-optimality results from public intervention, for instance
through taxation of contracts.

3 Risk splitting as an answer to adverse se-
lection

A second-best Pareto-optimal allocationA∗ = {w∗hh, w∗h`, w∗`h, w∗``}maximizes
U``(w``) in the set of feasible allocations A = {whh, wh`, w`h, w``} with ex-
pected utility at least equal to u∗ij ≡ Uij(w

∗
ij) for i, j ∈ {h, `}, i 6= ` and/or

j 6= `, and with u∗`` ≡ U``(w
∗
``). Incentive compatibility implies that lower

risk types reach weakly higher expected utility.8 We will assume

u∗hh < min{u∗h`, u∗`h} ≤ max{u∗h`, u∗`h} ≤ u∗``, (9)

where the strict inequality u∗hh < min{u∗h`, u∗`h} is made to exclude allocations
where high risk households are pooled with medium risk households, i.e.
where they have the same insurance coverage.9

Thus,A∗ maximizes U``(w``) with respect to whh, wh`, w`h andw``, subject
to
- Incentive compatibility constraints:

Uij(wij) ≥ Uij(wi′j′), (ICi
′j′

ij )

for all i, j, i′, j′ ∈ {h, `}, with i 6= i′ and/or j 6= j′,

- Individual rationality constraints:

Uij(wij) ≥ u∗ij, (IRij)

8This is true because overinsurance is excluded. In the Rothschild-Stiglitz (2016) set-
ting, with only one risk exposure per type, there exist second-best Pareto-optimal allo-
cations where high risk individuals are overcovered and reach a higher expected utility
than low risk individuals, and such allocations could also exist in the present setting if
overinsurance were allowed; See Crocker and Snow (1985).

9Such pooling allocations may be second-best Pareto-optimal. For instance, in the
standard Rothschild-Stiglitz model, the pooling allocation with full coverage at average
actuarial price is a second-best Pareto-optimum. Our results can be extended to the case
u∗hh = min{u∗h`, u∗`h}. Types hh and h` (respect. hh and `h) would be pooled with the
same coverage if u∗hh = u∗h` (respect. if u

∗
hh = u∗`h). See the comments on Proposition 2.
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for all i, j ∈ {h,m} with i 6= ` and/or j 6= `,

- Break-even constraint : ∑
i,j∈{h,`}

λiCi(wi) ≤ w, (BC)

and sign and no-overinsurance constraints.
Propositions 2 and 3 characterize the optimal solution to this problem,

and the associated insurance schemes. The proof of Proposition 2 is in two
stages. At the first stage, we characterize the optimal solution of the re-
laxed problem where only the "upward" incentive compatibility constraints
ICh`hh, IC

`h
hh, IC

``
hh, IC

``
h`, IC

``
`h are taken into account. At the second stage, we

show that the optimal solution of the relaxed problem satisfies the incentive
compatibility constraints that have been ignored at stage 1, and thus that
it is the solution of the complete problem.10 This leads us to the following
results:

w00hh = w10hh = w01hh = w11hh, (10)

w00h` = w10h` > w01h` = w11h`, (11)

w00`h = w01`h > w10`h = w11`h (12)

w00`` > w10`` > w11`` , (13)

w00`` > w01`` > w11`` , (14)

with correspondence in terms of insurance contracts stated in Proposition 2.

Proposition 2 Any second-best Pareto-optimal allocation is sustained by in-
surance schemes such that : high risk households are fully covered, medium
risk households are covered by risk-specific policies with full coverage for the
large risk and partial coverage for the low risk, and low risk households are
covered by a policy with partial coverage at the margin.

Proposition 2 states that households are covered by insurance contracts
that depend on their risk type, at the same time regarding the size and
contractual form of coverage. Equation (10) shows that, as in the Rothschild-
Stiglitz (1976) model, high risk households are fully covered, which means

10This approach is usual in adverse selection problems with the single-crossing condition
and an arbitrary number of types. It is less obvious here, because there are four possible
outcomes for each household, and not only two as in more standard models.
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that T 01hh = T 10hh = L and T 11hh = 2L. This is compatible either with an
umbrella policy (J1hh, J

2
hh, Phh) such that J

1
hh = L and J2hh = 2L, or with

two risk specific policies, (I1hh, Q
1
hh) and (I2hh, Q

2
hh), for risks r = 1 and 2,

respectively, with I1hh = I2hh = L and Q1hh +Q2hh = Phh.
Using (2) and equations (11) and (12) shows that medium risk households

are covered by two risk specific policies (I1h`, Q
1
h`) and (I2h`, Q

2
h`) such that

I1h` = L and I2h` < L, and (I1`h, Q
1
`h) and (I2`h, Q

2
`h) such that I

1
`h < L and

I2`h = L. Hence, type h` households have partial coverage policy for their
low risk r = 2, while full coverage is maintained for their high risk r = 1, an
symmetrically for type `h. This is not an astonishing conclusion, if we have
in mind the standard Rothschild-Stiglitz model where the contract chosen by
low risk individuals provides partial coverage, so that it is not attractive for
high risk individuals. However, it is striking, and of course logical, that the
same objective of reducing insurance compensation should lead insurers to
offer risk specific policies, where the low coverage is for the low risk exposure
only. Reducing the compensation for the high risk exposure would just be a
waste of risk protection, without any effect on the separation of type h` (or
`h) from hh, since both are equally affected by this high risk.11

Finally, from equation (13), low risk households are covered by an insur-
ance scheme that provides partial coverage at the margin, meaning that the
household’s final wealth decreases with the number of accidents.
A more technical remark should be made at this stage, in order to high-

light the determinants of the low risk household coverage. In the present
setting, households’indifference curves are 3-dimensional manifolds, in the
w = (w00, w01, w10, w11) 4-dimensional space, and their intersections are ei-
ther empty or they correspond to a continuum of points. Hence, indifference
curves cannot satisfy a single-crossing property as in more usual settings,
like the Rothshild-Stiglitz (1976) model, or its n-type extension analyzed by
Spence (1978). In adverse selection problems (including many screening or
signalling models), the single-crossing property guarantees that all incentive
constraints are satisfied when adjacent incentive constraints hold. In the
present setting, considering hh− h`, hh− `h, h`− `` and `h− `` as couples
of "upward" adjacent types, this would mean that IC``hh is strongly satis-
fied (i.e., satisfied and not binding) when ICh`hh, IC

``
h` and/or IC

`h
hh, IC

``
`h hold.

11It can be checked that the strict inequalities in (11) and (12) become equalities if
u∗h` = u∗hh and u

∗
h` = u∗`h, respectively. In that case, medium risks are pooled with high

risk policyholders and they have full coverage.
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When preferences satisfy this property, by an abuse of terminology, we say
that "local preferences are global", meaning that the strong incentive com-
patibility between non-adjacent household types follows from the incentive
compatibility between adjacent types.

Proposition 3 At a second-best Pareto-optimal allocation, low risk house-
holds should be covered by an insurance scheme that combines risk specific
copays c1``, c

2
`` with a deductible D``, an out-of-pocket maximum M`` or an

upper limit on coverage UL``. Assuming that households are downward risk
averse (or prudent, i.e., u′′′ > 0) and that local preferences are global are
suffi cient conditions for combining risk specific copays with a deductible or
with an out—of-pocket maximum to be optimal.

We know from Proposition 2 that low risk households should be partially
covered at the margin, and this may go through positive copays c1`` and
c2``. The state dependent wealth w`` should reach a compromise between
providing risk coverage to type `` households, and satisfying the incentive
compatibility constraints of higher risk types, namely IC``hh, IC

``
h` and IC

``
`h.

Intuitively, IC``h` will be all the easier without affecting too much the risk
protection of type `` households, when the coverage of risk exposure r = 1
is lower, i.e., when c1`` is larger, because r = 1 is a high risk for type h`
and a low risk for type ``. The conclusion is reversed for IC```h, with here
a reason for increasing c2``. Which copay should be the larger depends on
the relative importance of types h` and `h, including, among other things,
their weights λh`, λ`h and expected utility levels u∗h`, u

∗
`h. The non-adjacent

incentive compatibility constraint IC``hh does not justify treating differently
risks r = 1 and r = 2. Under the joint effect of adjacent and non-adjacent
constraints, two cases are generically possible. If

w00`` + w11`` > w10`` + w01`` , (15)

then we know from condition (4) that risk-specific copays combined with
either a deductible D`` or an out-of-pocket maximum M`` are optimal. On
the contrary, if

w00`` + w11`` < w10`` + w01`` , (16)

then risk-specific copays combined with an upper limit on idemnity UL``
are optimal. Proposition 3 shows that we are in the first case when local
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preferences are global - so that IC``hh is not binding - and the policyholders
are downward risk averse.12

4 On the role of transaction costs

Let us now consider how transaction costs affect our conclusions. We assume
that insurance premium should also cover such transaction costs, under the
form of proportional loading at rate σ. Hence, insurers make non-negative
expected profit if

λhh
{
Phh − (1 + σ)

[
ph(1− ph)(T 01hh + T 10hh)− p2hT 11hh

]}
+λh`

{
Ph` − (1 + σ)

[
ph(1− p`)T 01h` − p`(1− ph)T 10h` − php`T 11h`

]}
+λ`h

{
P`h − (1 + σ)

[
p`(1− ph)T 01`h − ph(1− p`)T 10`h − php`T 11`h

]}
+λ``

{
P`` − (1 + σ)

[
p`(1− p`)(T 01`` + T 10`` )− p2`T 11``

]}
≥ 0, (17)

instead of (8). Using (1) shows that the budget balance condition may still
be written as equation (7), after rewriting the households’expected wealth
as

Chh(w) ≡ [1− (1 + σ)ph(2− ph)]w00 + (1 + σ)ph(1− ph)(w01 + w10)

+ (1 + σ)p2hw
11,

Ch`(w) ≡ [1− (1 + σ)(ph + p` − php`)]w00 + (1 + σ)[p`(1− ph)w01

+ ph(1− p`)w10] + (1 + σ)php`w
11 ,

C`h(w) ≡ [1− (1 + σ)(ph + p` − php`)]w00 + (1 + σ)[ph(1− p`)w01

+ p`(1− ph)w10] + (1 + σ)php`w
11

C`(w) ≡ [1− (1 + σ)p`(2− p`)]w00 + (1 + σ)p`(1− p`)(w01 + w10)

+ (1 + σ)p2`w
11.

12These are suffi cient conditions, not necessary ones.
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With this new definition of insurance costs, second-best Pareto-optimal allo-
cations are such that

w00hh > w10hh = w01hh ≥ w11hh, (18)

w00h` > w10h` > w01h` = w11h`, (19)

w00`h > w01`h > w10`h = w11`h, (20)

w00`` > w10`` > w11`` , (21)

w00`` > w01`` > w11`` , (22)

with insurance contracts characterized in Proposition 4.

Proposition 4 If insurance pricing includes a positive loading, then any
second-best Pareto-optimal allocation is sustained by insurance schemes such
that: high risk households are covered by a straight deductible policy, medium
risk households are covered by a policy that combines a deductible or an out-
of-pocket maximum with a copayment for the low risk, and low risk households
are covered with a deductible and partial coverage at the margin, that may
be sustained by risk specific copays and either a deductible, an out-of-pocket
maximum or an upper limit on coverage.

The weak inequality in condition (18) is binding when the loading factor
σ is large, so that not providing positive coverage in the case of a single loss
is optimal. Indeed, the sign constraints T 01hh ≥ 0, T 10hh ≥ 0 are equivalent to
w00hh − w10hh ≤ L and w00hh − w01hh ≤ L, and these inequalities may be binding
for σ large. Thus, (18) can be more precisely rewritten as

w00hh > w10hh = w01hh = w11hh if w00hh − w10hh = w00hh − w01hh < L,

w00hh > w10hh = w01hh > w11hh if w00hh − w10hh = w00hh − w01hh = L.

This gives
T xyhh = sup{0, (x+ y)L−Dhh},

whereDhh is the deductible of type hh households. Hence, full coverage is just
replaced by a straight deductible as in usual insurance demand model with
proportional loading. There is nothing astonishing here, since incentive com-
patibility constraints do not justify distorting the high risk state-dependent
wealth.
(4) and (19),(20) show that medium risk households should be covered by

an insurance policy that combines a copay c2h` or c
1
`h for the low risk exposure
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(i.e., r = 2 for type h`, and r = 1 for type `h) and no copay for the high risk
exposure, with either a deductible Dh` or D`h, or an out-of-pocket maximum
Mh` or M`h. When the loading factor σ is large, providing no coverage for
the high risk may be optimal, and thus the optimal indemnity schedule is
written as

T xyh` = sup{0, xL+ y(L− c2h`)−Dh`},
T xy`h = sup{0, x(L− c1`h) + yL−Dh`}

Hence, as in Proposition 2, the high risk exposure should be more extensively
covered than the low risk, but because of insurance loading, partial coverage
of the high risk becomes optimal, and this takes the form of a copay.
Finally, from conditions (22) and (23), types `` should still be covered

by a mixture of risk specific copays c1``, c
2
``,and either a deductible, an out-of-

pocket maximum or an upper limit on coverage.13 For instance, in the case
of a deductible, this is written as

T xy`` = sup{0, x(L− c1``) + y(L− c2``)−D``}.

Hence, loading affects the size of the deductible, but not the structure of the
indemnity schedule, with specific indemnity rules for each risk exposure.

5 Conclusion

Although risk splitting is ubiquitous in insurance markets, economic theory
has lacks of arguments to explain why, more often than not, policyholders
are not covered by umbrella policies. In this paper, we have pursued the
idea that, under adverse selection, risk splitting facilitates the separation of
risk types, and thus that risk specific indemnity rules should be part and
parcel of insurance policies, except for high risk households. By doing so, we
have established that either risk specific insurance policies or the combination
of risk specific copays with a deductible, an out-of-pocket maximum, or an
upper limit on coverage are in fact optimal answers to the adverse selection
challenge.
Much work remains to be done to reach a fully satisfactory understand-

ing of the structure of insurance contracts when policyholders face multiple

13As in Proposition 3, a deductible or an out-of-pocket maximum is optimal if the
policyhoder is downward risk averse and if local preferences are global.
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risks. Future research in this field could consider a setting that would be
less restrictive than the one contemplated in this paper, with more than two
risk exposures and two risk types. Moreover, it would be worth exploring
alternative explanations of risk splitting, be they associated with other forms
of asymmetry of information between insurer and insured or with manager-
ial constraints. Finally, and most importantly, we have only explained why
risk splitting is inherently linked with second-best effi ciency, but we have
not analyzed how market strategies may actually lead to the implemention
of such insurance contracts. Understanding how competition forces interact
under adverse selection when policyholders face multiple risks is of prime
importance. It has to be noted that the analysis of insurance markets under
adverse selection has not reached a consensus in the case of one single risk
per policyholder,14 and undoubtly, considering multiple risk exposures is an
additional challenge for this line of research.

14See the survey of Mimra and Wambach (2014).
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Appendix 1: Proofs
Proof of Proposition 2

Consider a second-best Pareto optimal allocation with expected utility
u∗ij for type ij households, with i, j ∈ {h, `}. This allocation maximizes

(1− p`)2u(w00`` ) + (1− p`)p`[u(w01`` ) + u(w10`` )] + p2`u(w11`` ) (23)

with respect to whh, wh`, w`h, w``, subject to:

- Incentive compatibility constraints:

(1− ph)2u(w00hh) + ph(1− ph)[u(w01hh) + u(w10hh)] + p2hu(w11hh)

≥
(1− ph)2u(w00h`) + ph(1− ph)[u(w01h`) + u(w10h`)] + p2hu(w11h`),

(ICh`hh)

with a similar inequation for (IC`hhh),

(1− ph)2u(w00hh) + ph(1− ph)[u(w01hh) + u(w10hh)] + p2hu(w11hh)

≥
(1− ph)2u(w00`` ) + ph(1− ph)[u(w01`` ) + u(w10`` )] + p2hu(w11`` ),

(IC``hh)

(1− ph)(1− p`)u(w00h`) + p`(1− ph)u(w01h`) + ph(1− p`)u(w10h`) + php`u(w11h`)

≥
(1− ph)(1− p`)u(w00hh) + p`(1− ph)u(w01hh) + ph(1− p`)u(w10hh)] + php`u(w11hh),

(IChhh` )

with a similar inequation for (IChh`h ),

(1− ph)(1− p`)u(w00h`) + p`(1− ph)u(w01h`) + ph(1− p`)u(w10h`) + php`u(w11h`)

≥
(1− ph)(1− p`)u(w00`h) + p`(1− ph)u(w01`h) + ph(1− p`)u(w10`h)] + php`u(w11`h),

(IC`hh`)
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with a similar inequation for (ICh``h),

(1− ph)(1− p`)u(w00h`) + p`(1− ph)u(w01h`) + ph(1− p`)u(w10h`) + php`u(w11h`)

≥
(1− ph)(1− p`)u(w00`` ) + p`(1− ph)u(w01`` ) + ph(1− p`)u(w10`` )] + php`u(w11`` ),

(IC``h`)

with a similar inequation for (IC```h),

(1− p`)2u(w00`` ) + (1− p`)p`[u(w01`` ) + u(w10`` )] + p2`u(w11`` )

≥
(1− p`)2u(w00hh) + (1− p`)p`[u(w01hh) + u(w10hh)] + p2`u(w11hh),

(IChh`` )

(1− p`)2u(w00`` ) + (1− p`)p`[u(w01`` ) + u(w10`` )] + p2`u(w11`` )

≥
(1− p`)2u(w00h`) + (1− p`)p`[u(w01h`) + u(w10h`)] + p2`u(w11h`),

(ICh``` )

with a similar inequation for (IC`h`` ),

- Individual rationality constraints:

(1− ph)2u(w00hh) + (1− ph)ph[u(w01hh) + u(w10hh)]

+p2hu(w11hh) = u∗hh, (IRhh)

(1− ph)(1− p`)u(w00h`) + p`(1− ph)u(w01h`)

+ph(1− p`)u(w10h`)] + php`u(w11h`) = u∗h`, (IRh`)

with a similar equation for (IRh`), and subject to the break-even constraint
(BC), and to non-over insurance constraints:

w00ij ≥ w01ij , (NOI00/01ij )

w00ij ≥ w10ij , (NOI00/10ij )

w01ij ≥ w11ij , (NOI01/11ij )

w10ij ≥ w11ij , (NOI10/11ij )
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for i, j ∈ {h, `}. The rest of the proof is in two stages.

Stage 1
Let us characterize the optimal solution to a relaxed problem, in which

we delete the downward incentive compatibility constraints ICh``` , IC
`h
`` , IC

hh
h` ,

IChh`h and IC
hh
`` and the no-overinsurance constraints, except NOI

00/10
h` , NOI

01/11
h` ,

NOI
00/01
`h and NOI10/11`h . Let

αh`hh, α
`h
hh, α

``
hh, α

`h
h`, α

``
h`, α

h`
`h, α

``
`h ≥ 0

δ
00/10
h` , δ

01/11
h` , δ

00/01
`h , δ

10/11
`h , γ ≥ 0,

βhh, βh`, β`h,

be Lagrange multipliers associated with

ICh`hh, IC
`h
hh, IC

``
hh, IC

`h
h` , IC

``
h`, IC

h`
`h , IC

``
`h,

NOI
00/10
h` , NOI

01/11
h` , NOI

00/01
`h , NOI

10/11
`h , BC,

IRhh, IRh`, IR`h,

respectively. Let L be the Lagrangian of the relaxed problem. The first-order
optimality conditions are written as:

∂L
∂w00hh

= (1− ph)2[(αh`hh + α`hhh + α``hh + βhh)u
′(w00h )− γλhh] = 0, (24)

∂L
∂w01hh

= ph(1− ph)[(αh`hh + α`hhh + α``hh + βhh)u
′(w01h )− γλhh] = 0, (25)

∂L
∂w10hh

= ph(1− ph)[(αh`hh + α`hhh + α``hh + βhh)u
′(w10h )− γλhh] = 0, (26)

∂L
∂w11hh

= p2h[(α
h`
hh + α`hhh + α``hh + βhh)u

′(w11hh)− γλhh] = 0, (27)
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∂L
∂w00h`

= (1− ph)(1− p`)[(α`hh` + α``h` + βh`)u
′(w00h`)− γλh`]

− [(1− ph)2αh`hh + (1− ph)(1− p`)αh``h]u′(w00h`) + δ
00/10
h` = 0, (28)

∂L
∂w01h`

= p`(1− ph)[(α`hh` + α``h` + βh`)u
′(w01h`)− γλh`]

− [ph(1− ph)αh`hh + ph(1− p`)αh``h]u′(w01h`) + δ
01/11
h` = 0, (29)

∂L
∂w10h`

= ph(1− p`)[(α`hh` + α``h` + βh`)u
′(w10h`)− γλh`]

− [ph(1− ph)αh`hh + p`(1− ph)αh``h]u′(w10h`)− δ
00/10
h` = 0, (30)

∂L
∂w11h`

= php`[(α
`h
h` + α``h` + βh`)u

′(w11h`)− γλh`] = 0,

− [p2hα
h`
hh + p`phα

h`
`h]u

′(w11h`)− δ
01/11
h` = 0, (31)

with symmetric conditions for w`h, and

∂L
∂w00``

= (1− p`)2[u′(w00`` )− γλ``]

− [(1− ph)(1− p`)(α``h` + α```h) + (1− ph)2α``hh]u′(w00`` ) = 0, (32)
∂L
∂w01``

= p`(1− p`)[u′(w01`` )− γλ``]

− [p`(1− ph)α``h` + ph(1− p`)α```h + ph(1− ph)α``hh]u′(w01`` ) = 0,
(33)

∂L
∂w10``

= p`(1− p`)[u′(w10`` )− γλ``]

− [ph(1− p`)α``h` + p`(1− ph)α```h + ph(1− ph)α``hh]u′(w10`` ) = 0,
(34)

∂L
∂w11``

= p2` [(u
′(w11`` )− γλ``]

− [php`(α
``
h` + α```h) + p2hα

``
hh]u

′(w11` ) = 0. (35)

We have γ > 0, because equations (32)-(35) would lead to a contradiction
if γ = 0.15 Equations (24)-(27) then give αh`hh + α`hhh + α``hh + βhh > 0. Using
u′′ < 0 yields

w00hh = w01hh = w10hh = w11hh. (36)

15Equations (32)-(35) may be rewritten as (43)-(46) below, which cannot hold if γ = 0.
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Equations (28)-(31) may be rewritten as

u′(w00h`)

[
α`hh` + α``h` + βh` − αh`hh

1− ph
1− p`

− αh``h
]

= γλh` −
δ
00/10
h`

(1− ph)(1− p`)
,

(37)

u′(w01h`)

[
α`hh` + α``h` + βh` − αh`hh

ph
p`
− αh``h

ph(1− p`)
p`(1− ph)

]
= γλh` −

δ
01/11
h`

p`(1− ph)
,

(38)

u′(w10h`)

[
α`hh` + α``h` + βh` − αh`hh

1− ph
1− p`

− αh``h
p`(1− ph)
ph(1− p`)

]
= γλh` +

δ
00/10
h`

ph(1− p`)
(39)

u′(w11h`)

[
α`hh` + α``h` + βh` − αh`hh

ph
p`
− αh``h

]
= γλh` +

δ
01/11
h`

php`
. (40)

Suppose w10h` < w00h`, with δ
00/10
h` = 0. Using u′′ < 0 gives u′(w10h`) > u′(w00h`),

which contradicts (37) and (39). Thus, we have w10h` = w00h`. Similarly, w
11
h` <

w01h`, with δ
01/11
h` = 0, would contradict (38) and (40), and thus w11h` = w01h`. We

have w11h` ≤ w00h` from (37) and (40), or from the no-overinsurance constraints.
If w11h` = w00h`, then (36) gives u

∗
hh = u∗h`, which contradicts (9). Overall, we

have
w11h` = w01h` < w10h` = w00h`, (41)

and symmetrically

w11`h = w01`h < w10`h = w00`h. (42)

Equations (32)-(35) yield

u′(w00`` )

[
1− (α``h` + α```h)

1− ph
1− p`

− α``hh
(1− ph)2
(1− p`)2

]
= γλ``, (43)

u′(w01`` )

[
1− α``h`

1− ph
1− p`

− α```h
ph
p`
− α``hh

ph(1− ph)
p`(1− p`)

]
= γλ``, (44)

u′(w10`` )

[
1− α``h`

ph
p`
− α```h

1− ph
1− p`

− α``hh
ph(1− ph)
p`(1− p`)

]
= γλ``, (45)

u′(w11`` )

[
1− (α``h` + α```h)

ph
p`
− α``hh

p2h
p2`

]
= γλ``. (46)
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Let Φ(z) = u′−1(γλ``/1 − z), with z < 1. u′′ < 0 gives Φ′ < 0. Further-
more, we have Φ′′ > 0 if u′′′ > 0. Equations (43)-(46) give wxy`` = Φ(zxy) for
(x, y) ∈ {0, 1}, with

z00 = (α``h` + α```h)
1− ph
1− p`

+ α``hh
(1− ph)2
(1− p`)2

,

z01 = α``h`
1− ph
1− p`

+ α```h
ph
p`

+ α``hh
ph(1− ph)
p`(1− p`)

,

z10 = α``h`
ph
p`

+ α```h
1− ph
1− p`

+ α``hh
ph(1− ph)
p`(1− p`)

,

z11 = (α``h` + α```h)
ph
p`

+ α``hh
p2h
p2`
,

and thus
z00 < min{z01, z10} ≤ max{z01, z10} < z11,

which gives

w00`` > max{w01`` , w10`` } ≥ min{w01`` , w10`` } > w11`` .

Stage 2
Let us show that the optimal solution of the relaxed problem satisfies the

incentive constraints that have been ignored at stage 1.

1: Constraints ICh``` and IC
`h
`` .

If ICh``` were not satisfied, then we would have U``(w``) < U``(wh`). We
have

U``(wh`) = (1− p`)u(w00h`) + p`u(w11h`) = Uh`(wh`) = u∗h`,

and thus U``(w``) < u∗h`. At the optimal solution of the relaxed problem,
the expected utility of type `` households is at least equal to u∗``, which is
its value at the optimal solution of the complete problem. Thus, we have
u∗`` ≤ U``(w``), which implies u∗`` < u∗h`, which contradicts (9). The same
argument applies for IC`h`` .

2: Constraints IChhh` and IC
hh
`h .

If IChhh` were not satisfied, then we would have Uh`(wh`) < Uh`(whh).
Using u∗h` = Uh`(wh`) and Uh`(whh) = Uhh(whh) = u∗hh, would then give
u∗h` < u∗hh, which contradicts (9). The same argument holds for IC

hh
`h .
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3: Constraint IChh`` .

We may write

U``(w``) ≥ (1− p`)u(w00h`) + p`u(w11h`) (47)

> (1− ph)u(w00h`) + phu(w11h`) (48)

≥ Uhh(whh) (49)

= U``(whh) (50)

where (47),(48),(49) and (50) respectively result from ICh``` , from ph > p`
and w00h` ≥ w11h`, from IChhh` and from (36). Thus, IChh`` is satisfied.

Proof of Proposition 3

The first part of the proposition has been established in section 3. It
remains to show that w00`` +w11`` > w10`` +w01`` when u

′′′ > 0 and local preferences
are global. Observe first that Φ′′ > 0 if u′′′ > 0. Furthermore, when local
preferences are global, IC``hh is not binding, and thus α

``
hh = 0, which yields

z00 + z11 = z01 + z10.

In that case, lottery (z00, 1/2; z11, 1/2) is obtained from lottery (z01, 1/2; z10, 1/2)
by a mean-preserving spread. Using Φ′′ > 0 gives

w00`` + w11`` = Φ(z00) + Φ(z11)

> Φ(z01) + Φ(z10)

= w01`` + w10`` ,

which completes the proof.

Proof of Proposition 4

The proof is in two stages, as for Proposition 2.

Stage 1

We consider the relaxed problem as in the proof of Proposition 2, with
unchanged notations for Lagrange multipliers. The first-order optimality
conditions become
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∂L
∂w00hh

= (1− ph)2
[
(αh`hh + α`hhh + α``hh + βhh)u

′(w00hh)− γλhh
1− (1 + σ)ph(2− ph)

(1− ph)2

]
= 0,

(51)
∂L
∂w01hh

= ph(1− ph)[(αh`hh + α`hhh + α``hh + βhh)u
′(w01hh)− γλhh(1 + σ)] = 0,

(52)
∂L
∂w10hh

= ph(1− ph)[(αh`hh + α`hhh + α``hh + βhh)u
′(w10hh)− γλhh(1 + σ)] = 0,

(53)
∂L
∂w11hh

= p2h[(α
h`
hh + α`hhh + α``hh + βhh)u

′(w11hh)− γλhh(1 + σ)] = 0, (54)

∂L
∂w00h`

= (1− ph)(1− p`)
[
(α`hh` + α``h` + βh`)u

′(w00h`)− γλh`
1− (1 + σ)(ph + p` − php`)

(1− ph)(1− p`)

]
− [(1− ph)2αh`hh + (1− ph)(1− p`)αh``h]u′(w00h`) + δ

00/10
h` = 0, (55)

∂L
∂w01h`

= p`(1− ph)[(α`hh` + α``h` + βh`)u
′(w01h`)− γλh`(1 + σ)]

− [ph(1− ph)αh`hh + ph(1− p`)αh``h]u′(w01h`)− δ
01/11
h` = 0, (56)

∂L
∂w10h`

= ph(1− p`)[(α`hh` + α``h` + βh`)u
′(w10h`)− γλh`(1 + σ)]

− [ph(1− ph)αh`hh + p`(1− ph)αh``h]u′(w10h`) + δ
00/10
h` = 0, (57)

∂L
∂w11h`

= php`[(α
`h
h` + α``h` + βh`)u

′(w11h`)− γλh`(1 + σ)] = 0,

− [p2hα
h`
hh + p`phα

h`
`h]u

′(w11h`)− δ
01/11
h` = 0, (58)

with symmetric conditions for w`h, and
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∂L
∂w00``

= (1− p`)2
[
u′(w00` )− γλ`

1− (1 + σ)ph(2− ph)
(1− ph)2

]
− [(1− ph)(1− p`)(α``h` + α```h) + (1− ph)2α``hh]u′(w00`` ) = 0, (59)

∂L
∂w01``

= p`(1− p`)[u′(w01` )− γλ`(1 + σ)]

− [p`(1− ph)α``h` + ph(1− p`)α```h + ph(1− ph)α``hh]u′(w01`` ) = 0, (60)
∂L
∂w10``

= p`(1− p`)[u′(w10` )− γλ`(1 + σ)]

− [ph(1− p`)α``h` + p`(1− ph)α```h + ph(1− ph)α``hh]u′(w10`` ) = 0, (61)
∂L
∂w11``

= p2` [(u
′(w11` )− γλ`(1 + σ)]

− [php`(α
``
h` + α```h) + p2hα

``
hh]u

′(w11` ) = 0. (62)

Conditions (51)-(54), (55)-(58) and (59)-(62) respectively give (19)-(23),
with intermediate steps similar to the proof of Proposition 2.

Stage 2

The proof is straighforwardly adapted from the proof of Proposition 2.
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