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Abstract

This paper analyzes the optimal insurance for low probability -
high severity accidents, such as nuclear catastrophes, both from the-
oretical and applied standpoints. We show that the risk premium of
such catastrophic events may be a non-negligible proportion of indi-
viduals’ wealth when the index of absolute risk aversion is sufficiently
large in the accident state, and we characterize the optimal asymp-
totic insurance coverage when the probability of the accident tends to
zero. In the case of the limited liability of an industrial firm that may
cause large scale damage, the limit corporate insurance contract corre-
sponds to a straight deductible indemnification rule, in which victims
are ranked according to the severity of their losses. As an application
of these general principles, we consider the optimal corporate liability
insurance for nuclear risk, in a setting where the risk is transferred
to financial markets through catastrophe bonds. A model calibrated
with French data allows us to estimate the optimal liability of a nu-
clear energy producer. This leads us to the conclusion that the lower
limit adopted in 2004 through the revision of the Paris Convention is
probably inferior to the socially optimal level.
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1 Introduction
What qualifies a low probability-high severity accident risk as a disaster risk?
How should individuals and societies cover these risks? The present paper
approaches these questions from theoretical and applied perspectives. Our
motivation and ultimate objective is to analyze the case of nuclear accident
risk.

We address the first question by characterizing individual preferences
under which the risk premium may remain significant when potential losses
are large, even when the loss probability is very small. The Arrow-Pratt
formula provides a benchmark for small risks: the normalized risk premium
(i.e. the risk premium per unit of variance) is approximately half of the index
of absolute risk aversion, evaluated at the risk free reference point. In the
case of a disaster risk, we show that the normalized risk premium has a lower
bound which is half of a weighted average of absolute risk aversion values
in the interval defined by the potential values of final wealth. In particular,
under decreasing absolute risk aversion, a high absolute risk aversion (or,
equivalently, a low risk tolerance) in the accident state may entail a large risk
premium, even if the accident probability is very low. We then investigate
the optimal insurance coverage of an individual who faces the risk of an
accident with a very low probability, and we find that it converges to a
limit when the accident probability goes to zero. This limit depends on the
usual determinants of insurance demand: the insurance pricing rule and the
individuals’ wealth and degree of risk aversion.

In a second stage we consider the risk of an industrial accident, such
as nuclear catastrophes, that may affect the entire population of a country.
Should an accident occur, the firm has to indemnify the victims according
to liability law, and it purchases insurance to prevent any insolvency. We
characterize the indemnification rule that should be implemented by a utili-
tarian regulator. We show that, when the accident probability goes to zero,
it converges toward a straight deductible indemnity schedule, capped by an
upper limit. In particular, the optimal coverage crucially depends on the cost
of capital that has to be levied to sustain the indemnification mechanism.

Finally, as an application of these theoretical principles, we consider the
case of nuclear risk. Using studies conducted by experts in safety for a nuclear
reactor in France, we calibrate a model of collective insurance choice and char-
acterize the optimal level of coverage for the victims of a large scale nuclear
accident. In particular, we use data from the catastrophe bond (henceforth
cat bond) market to infer the premium that would be required by investors to
set up an insurance deal for nuclear accidents. Our simulations suggest that
the French nuclear liability law could be more ambitious than it currently is,
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even after the 2004 revision of the international Paris Convention.
Our model establishes a bridge between the classical literature on opti-

mal insurance coverage initiated by Mossin (1968), Arrow (1974) and Raviv
(1979), the more recent works on cat bond pricing such as Braun (2015) and
Perez and Carayannopoulos (2015) and the studies on risk coverage through
cat bonds following Froot (2001).1

The particular role played by the index of absolute risk aversion in the
worst case scenario also echoes the discussion of Weitzman’s (2009) VSL-like
(Value of a Statistical Life) parameter, that determines how tail risk affects
the valuation of risk mitigating measures. Weitzman (2009) and Ikefuji et al.
(2015) show, from a theoretical perspective, that the calibration of this VSL-
like parameter can play a crucial role in determining the social cost of a heavy
tail risk. Under given combinations of assumptions on the loss distribution
and utility functions, extreme results are to be expected. For example, with
a CRRA utility function, the marginal utility may be arbitrarily large in the
worst state. This may prevent convergence of the stochastic discount factor
if the probability distribution function places enough mass on the realization
of the catastrophic events. As a result, arbitrarily large levels of risk mitiga-
tion can be rationalized under traditional methods of cost-benefit analysis.
This result, known as the dismal theorem, warns against the sensitivity of
cost-benefit analysis to the joint calibration of the utility function and the
probability density function. Our work identifies and explores the area lo-
cated between the dismal theorem world and the risk neutral world. We
highlight the conditions under which even the most remote risks represent a
sufficient threat for agents to undertake costly mitigating actions.

Even though our goal is not to explain asset prices, our work can also be
related to the disaster equity premium literature initiated by Rietz (1988)
and pursued by Barro (2006, 2009) and Gabaix (2009). Our contribution
to this literature is to highlight the conditions under which a risk remains
significant despite its low probability, and is therefore susceptible to yield
significant aggregate effects on the risk premium.

The paper is organized as follows. Section 2 analyzes the risk premium
and the insurance demand for a low-probability high-severity accident from
the perspective of a risk averse individual. Section 3 characterizes the optimal
corporate liability insurance when a large scale industrial accident may affect

1Borensztein et al. (2017) also study the welfare gains induced by using cat bonds
against natural disasters in developping countries, and Härdle and Cabrera (2010) calibrate
cat bonds to cover earthquake risk in Mexico. An interesting parallel can also be drawn
with Coval et al. (2009), who characterize senior structured fixed income securities as
“economic catastrophe bonds”, given that these assets only default under very adverse
economic conditions.
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the whole population of a country. Section 4 illustrates these general results
through a calibrated model of nuclear catastrophe coverage where insurance
risk is transferred to financial markets through catastrophe bonds. Section
5 concludes, Section 6 is an appendix that contains proofs and tables.

2 Risk premium and insurance demand for

catastrophic risks

2.1 The risk premium of low-probability and high-severity
risks

Consider an expected utility risk-averse individual with a von Neumann-
Morgenstern utility function u(x) such that u′ > 0 and u′′ < 0, where x is
the individual’s wealth. Let A(x) = −u′′(x)/u′(x) and T (x) = 1/A(x) be her
indices of absolute risk aversion and of risk tolerance, respectively. She holds
an initial wealth w, and she is facing the risk of a loss L < w with probability
p. Thus m(p, L) = pL and σ2(p, L) = p(1 − p)L2 are the expected loss and
the variance of the loss, respectively. The certainty equivalent C(p, L) of this
lottery is defined by

u(w − C) = (1− p)u(w) + pu(w − L).

We also denote
θ(p, L) ≡ C(p, L)−m(p, L)

σ2(p, L) ,

the normalized risk premium, that is the risk premium per unit of variance
of the risk. Straightforward calculations give

C ′p(p, L) = u(w)− u(w − L)
u′(w − C) > 0,

C ′′p2(p, L) = −C ′p(p, L)2A(w − C) < 0.

Thus, C(p, L) is increasing and concave with respect to p, and of course we
have C(0, L) = 0.

Put informally, the risk (p, L) may be considered catastrophic for the
individual if C(p, L) is non-negligible, for instance as a proportion of her
initial wealth w, although p is small or even very small. Obviously, this may
occur if C ′p(0, L) is large. We have

C ′p(0, L) = u(w)− u(w − L)
u′(w) . (1)
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Using l’Hôpital’s Rule gives

θ(0, L) ≡ lim
p−→0

θ(p, L) =
C ′p(0, L)− L

L2 . (2)

Thus, for L given, the larger C ′p(0, L), the larger the normalized risk premium
when p goes to zero. In other words, analyzing the determinants of θ(0, L)
is an intermediate step to understanding why C ′p(0, L) may be large.

We know from the Arrow-Pratt approximation that the risk premium of
low-severity risks per unit of variance is proportional to the index of absolute
risk aversion. Indeed, we have

lim
L−→0

θ(p, L) = A(w)
2 for all p ∈ (0, 1),

which of course also holds when p goes to 0, that is

lim
L−→0

θ(0, L) = A(w)
2 .

When L is large, it is intuitive that the size of the risk premium depends on
function A(x) not only in the neighborhood of x = w, but over the whole
interval [w − L,L]. Proposition 1 and its corollaries confirm this intuition.
Proposition 1 provides an exact formula for θ(0, L) which is a weighted av-
erage of A(x) exp{

∫ w
x A(t)dt}/2 when x is in [w−L,w]. Corollary 1 directly

deduces a lower bound for θ(0, L), and Corollary 2 considers the case where
L = w and the index of relative risk aversion R(x) is larger or equal to one.2
In this case, the lower bound of θ(0, L) is the (non-weighted) average of A(x)
when x ∈ [0, w].

Proposition 1 For all L > 0, we have

θ(0, L) = 1
2

∫ w

w−L
[k(x)A(x) exp{

∫ w

x
A(t)dt}]dx

where k(x) = 2[x− (w − L)]/L2 and∫ w

w−L
k(x)dx = 1.

2Most empirical studies usually lead to values of R(x) that are larger (and sometimes
much larger) than one, and thus the assumption made in Corollary 2 does not seem to be,
in practice, very restrictive.
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Corollary 1 For all L > 0, we have

θ(0, L) > 1
2

∫ w

w−L
k(x)A(x)dx.

Corollary 2 If L = w, R(x) ≡ xA(x) ≥ 1 for all x and u(0) ∈ R then

θ(0, L) > 1
2w

∫ w

0
A(x)dx.

With the DARA case in mind, Proposition 1 and its corollaries suggest
that θ(0, L) may be large if A(x) is large when x goes to w − L. A simple
example, illustrated in Figure 1, is as follows. Assume L = w and

u(x) =
{

1− exp(−ax) if x ≤ x̂
b+ cx if x > x̂

where b = 1 − w exp(−ax̂)/(w − x̂) and c = exp(−ax̂)/(w − x̂), and x̂ is a
fixed parameter such that 0 < x̂ < w. Thus u(0) = 0, u(w) = 1 and A(x) = a
if x ≤ x̂ and A(x) = 0 if x > x̂.3 When a is increasing (with a given value of
x̂), the individual becomes more risk averse in the neighborhood of the bad
outcome x = 0, with unchanged normalization u(0) = 0, u(w) = 1. We then
have C ′p(0, L) = 1/c = (w − x̂) exp(ax̂) and thus C ′p(0, L) is increasing with
a and goes to infinity when a goes to infinity. Since x̂ is arbitrarily small, we
learn from this example that C ′p(0, L) may be large if the individual is highly
risk averse in the neighborhood of the loss state x = w − L, or equivalently
if her risk tolerance is very small around this state.

Symmetrically, Proposition 2 shows that, under non-increasing absolute
risk aversion, the normalized risk premium θ(p, L) may be large when p is
close to zero only if A(w−L) is very large, that is, only when the individual’s
risk tolerance is very small in the accident state.

Proposition 2 Assume R(x) ≡ xA(x) ≤ γ for all x ∈ [w − L,w]. Then,
under non-increasing absolute risk aversion, we have

θ(0, L) < (γ + 1)A(w − L)
2 ,

and
C(p, L) < pL

[
1 + (γ + 1)A(w − L)

2 L

]
.

3u(x) is not strictly concave since u′′(x) = 0 if x > x̂, but this is for simplicity.
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Figure 1: x̂ = 30, w = 100

Proposition 2 provides upper bounds for the normalized risk premium
θ(0, L) and for the certainty equivalent C(p, L) when the individual displays
non-increasing risk aversion. γ is an upper bound for the index of relative
risk aversion R(x) when x is in the interval [w − L,w]. The upper bound
of θ(0, L) is proportional to A(w − L), which is the index of absolute risk
aversion in the loss state. Consequently, C(p, L) may be non-negligible when
p is very small, say as a proportion of loss L, only if A(w−L) is large. On the
contrary, assume A(w − L) = A(w), i.e., the index of absolute risk aversion
remains constant in [w − L,w]. In that case, we would have R(x) < R(w)
for all x < w, and thus γ = R(w), which implies

C(p, L) < pL

[
1 + R(w)

2 + R(w)2

2

]
.

Assuming R(w) = 2 or 3 would give C(p, L) < 4pL or C(p, L) < 7pL,
respectively. Thus, if p is very small, then C(p, L)/L is very small.4

4For the sake of numerical illustration, consider the case of a large scale nuclear disaster
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Thus, under non-increasing absolute risk aversion, we may conclude that
the risk premium of low-probability high-severity accidents may be non-
negligible (and thus that the coverage of such a risk is a relevant issue)
if and only if the risk tolerance is very low in such catastrophic cases.

CRRA preferences are an instance of such a case with T (x) = γx, where γ
is the index of relative risk aversion. We then have T (x) −→ 0 and A(x) −→
∞ when x −→ 0. However, CRRA preferences are not very satisfactory
from a theoretical standpoint, since the utility is not defined when wealth is
nil. This corresponds to discontinuous preferences in which any lottery with
zero probability for the zero wealth state is preferred to any lottery with a
positive probability for this state. If preferences are of the HARA type, then
risk tolerance is a linear function of wealth, and we may write T (x) = a+ bx,
with a > 0 and 0 < b < 1. In such a case, we have A′(x) < 0, A(0) = 1/a
and R(x) > 1. In particular, the individual’s absolute risk aversion index is
decreasing but upper bounded. A straightforward calculation then gives

1
2w

∫ w

0
A(x)dx = 1

2bw ln
(

1 + bw

a

)
,

and thus, Corollary 2 shows that for all M > 0, we have θ(0, L) > M if

a <
bw

exp(2bwM)− 1 .

The right-hand side of the previous inequality is positive and decreasing in b
and M . Thus, θ(0, L) is arbitrarily large if a = T (0) is small enough and/or
if b = T ′(x) is small enough. In words, the risk tolerance should be low in
the neighborhood of the catastrophic state x = 0 for the normalized risk
premium θ(0, L) to be large.

Proposition 3 establishes a sufficient condition under which θ(0, L) is (ar-
bitrarily) large when the individual is sufficiently risk averse (or, equivalently,
when her risk tolerance is sufficiently low) in the catastrophic loss state.

Proposition 3 Assume T (x) ≡ t(x, ε), with ε > 0, t(w − L, 0) = t′x(w −
L, 0) = t′′xx(w−L, 0) = 0 and t′x(x) > 0 for x > w−L. Then for all M > 0,
θ(0, L) > M if ε is small enough.

that may occur with probability p = 10−5, with total losses of $100b evenly spread among
1 million inhabitants (think of people living in the neighborhood of the nuclear plant). In
the case of an accident, each inhabitant would suffer a loss L = $100, 000, with expected
loss pL equal to $1, and risk premium equal to $4 or $7, which would be negligible, say
as a proportion of their annual electricity expenses. Postulating larger but still realistic
values of the index of relative risk aversion would not substantially affect this conclusion.
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In Proposition 3, it is assumed that the risk tolerance increases slowly (less
than degree-two polynomials) when wealth increases in the neighbourhood
of w−L. In such a setting, the normalized risk premium may be arbitrarily
large if the risk tolerance in the loss state is small enough.

2.2 Insurance demand for catastrophic risks
We now assume that the individual can purchase insurance for a low-probability
high-severity risk (p, L). Insurance contracts specify the indemnity I in the
case of an accident, i.e., when the individual suffers a loss L, and the pre-
mium P to be paid to the insurer, with P = (1 + λ)pI, where λ > 0 is the
loading factor such that p(1+λ) < 1. The policyholder then faces the lottery
(w1, w2), with corresponding probabilities 1− p and p, where w1 and w2 de-
note respectively the wealth in the no-loss and loss states, with w1 = w − P
and w2 = w − P − L + I. A straightforward calculation shows that feasible
lotteries are defined by

[1− p(1 + λ)]w1 + (1 + λ)pw2 = w − (1 + λ)pL, (3)

with
w2 − w1 + L ≥ 0, (4)

for the sign condition I ≥ 0 to be satisfied. The optimal lottery maximizes
the individual’s expected utility

(1− p)u(w1) + pu(w2),

in the set of feasible lotteries. It is such that the marginal rate of substitution
−dw2/dw1|Eu=ct. = (1 − p)u′(w1)/pu′(w2) is equal to the slope (in absolute
value) of the feasible lotteries lines, that is

(1− p)(1 + λ)u′(w1) = [1− (1 + λ)p]u′(w2). (5)

Figure 2 shows the locus of optimal lotteries in the (w1, w2) plane when
p changes. Point A represents the situation with no insurance, and point B
represents the optimal lottery when p goes to zero.

Let w1(p, L), w2(p, L) denote the optimal state-contingent wealth levels
when I > 0, that is, when λ is not too large. Let us also denote

w∗1(L) ≡ lim
p−→0

w1(p, L) = w,

w∗2(L) ≡ lim
p−→0

w2(p, L),
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Figure 2: w = 10000, L = 5000, u(x) = −x−3

3

with
u′(w∗2(L)) = (1 + λ)u′(w), (6)

which implies w∗2(L) < w = w∗1(L). Thus, when p goes to 0, the optimal
insurance contract (P, I) goes to a limit (P ∗, I∗), with P ∗ = 0 and I∗ =
w∗2(L) + L − w∗1(L) < L. When p is positive but close to 0, we still have
I < L and P = (1 + λ)pI ' (1 + λ)pI∗. Since w∗2(L) = w− L+ I∗, (6) gives

u′(w − L+ I∗) = (1 + λ)u′(w),

or
I∗ = u′−1((1 + λ)u′(w))− w + L,

and thus I∗ is decreasing with λ. The previous reasoning is valid only if
I∗ > 0, which holds if

u′(w − L) > (1 + λ)u′(w),

that is, if the loading factor λ is not too large or L is sufficiently large.
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Lemma 1 λ ≤ θ(0, L)L is a sufficient condition for I∗ > 0.

Hence, the agent will be willing to buy a positive (and potentially large)
amount of coverage if the normalized risk premium θ(0, L) is larger than the
ratio of the loading factor λ divided by the size of the loss L.

We may characterize the effect of a change in L and/or w on optimal
insurance coverage. An increase dL > 0 for w given induces an equivalent
increase dI∗ = dL. A simultaneous increase dw = dL > 0 induces an increase
dI∗ > 0 in coverage, while an increase in wealth with unchanged loss dw >
0, dL = 0 entails a decrease in optimal coverage dI∗ < 0 under DARA
references, i.e. when A′ < 0. Of course, there is nothing astonishing here.
These are standard comparative statics results, which are extended to the
asymptotic characterization of catastrophic risk optimal insurance. They are
summarized in Proposition 4.

Proposition 4 When p goes to 0, the optimal insurance coverage I goes to
a limit I∗, and when p is close to 0, coverage I and premium P are close to
I∗ and (1 + λ)pI∗, respectively. I∗ is lower than L, and is decreasing with λ.
A simultaneous uniform increase in L and w induces an increase in I and
P . Under DARA, an increase in w with L unchanged induces a decrease in
I and P .

3 Optimal catastrophic risk coverage for a
population

3.1 Optimal contract
With the case of nuclear accident risk in mind, we now consider a population
of individuals who face the risk of a catastrophic event (called "the accident")
caused by a firm. Such an accident may affect the individuals differently,
according to their risk exposure and also to their good or bad luck. The
population has unit mass, and is composed of n groups or types indexed by
i = 1, ..., n, and a proportion αi of the population belongs to group i, with
α1 + α2 + ... + αn = 1. In the case of a nuclear accident caused by a given
reactor, the groups correspond to various locations that may be more or less
distant from the nuclear power plant. The accident occurs with probability
π. In the case of an accident, a proportion qi ∈ [0, 1] of type i individuals
suffers damage, with financial damage x̃i for each individual in this subgroup
of victims. x̃i is a random variable, whose realization is denoted xi, and
which is distributed over the interval [0, xi] with c.d.f. Fi(xi) and density
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fi(xi) = F ′i (xi). The random variables x̃i are independently distributed
among type i individuals. Thus, we assume that in group i the victims are
randomly drawn with probability qi, and the law of large numbers guarantees
that the proportion of affected individuals is equal to qi, while their damage
is independently distributed. The total cost of an accident is equal to

n∑
i=1

αiqi

[∫ xi

0
xif(xi)dxi

]
=

n∑
i=1

αiqiEx̃i.

Under our assumptions, this total cost is given, but the distribution of loss
between members of each group is random.

Each type i individual is covered by an insurance contract that specifies
an indemnity Ii(xi) ≥ 0 for all xi in [0, xi]. This insurance coverage is taken
out by the firm at price P . Once again, with the nuclear liability law in mind,
we assume that the firm has to indemnify the victims according to the legal
rule Ii(xi) and also - in order to prevent any bankruptcy risk - that it has to
purchase insurance to cover its liability. Thus, Ii(xi) is at the same time the
payment by the firm to type i individuals and the transfer from the insurer
to the firm. The firm pays a premium P per individual, and this premium
is passed on to the prices of the firm’s product (say, on to the consumers’
electricity bills). We assume that all consumers purchase the same quantity
of the firm’s products, and thus it is as if the insurance premium were paid
by the individuals themselves.

Assume that the insurer allocates an amount of capital per individual K
in order to pay indemnities, should an accident occur. The usual mutualiza-
tion mechanism cannot be effective in the case of a small probability - large
severity risk, and some alternative risk transfer is required. A simple ap-
proach (at least from a conceptual standpoint) consists in the insurer issuing
a cat bond with par value K. The cat bond will pay some return (a spread
above the risk-free rate of return), and will be reimbursed to investors only
if no accident occurs. Otherwise, the cat bond will default, and its proceeds
will be used to cover the claims for victims’ compensation.5

We know from the law of large numbers that the average indemnity paid
5In practice, a Special Purpose Vehicle (SPV) is created by the sponsor (here, the firm)

as a legal entity able to host the cat bond. This SPV acts as an insurer or reinsurer with
respect to the sponsor. It issues the bond, delivered to the investors in exchange for the
principal payment, which entitles them to a regular coupon. Upon the occurrence of a
contractually defined event, called the trigger, the bond defaults and the sponsor gets
to keep the principal. Cat bonds are used by insurers and reinsurers to hedge against
large losses among their portfolios of insured people, and by large corporations to cover
catastrophic events.
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to type i victims in the case of an accident is∫ xi

0
Ii(xi)fi(xi)dxi,

and thus the total indemnity payment can be financed if

K = (1 + λ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)fi(xi)dxi,

where λ is a loading factor that represents the claim handling costs that the
insurer faces beyond the indemnification costs. This cost of capital is covered
by the premiums raised by the insurer, so we have

P = c(π,K)

with capital cost c(π,K) twice continuously differentiable, c′K > 0, c→ c∗0 ≥
0 and c′K → 0 when π → 0, c′π > 0, c′′K2 ≥ 0 and c′′πK ≥ 1.6

Let w1 and w2i(xi) be the wealth of a type i individual if she is not affected
by an accident (which occurs with probability 1− πqi), and if she is affected
with loss xi (which occurs with probability πqi and conditional loss density
fi(xi)), respectively. We have

w1 = w − P,
w2i(xi) = w − P − xi + Ii(xi).

All individuals have the same initial wealth w and the same risk preferences
represented by utility function u, with u′ > 0, u′′ < 0.

Let Ci be the certainty equivalent loss of type i individuals. The set of
feasible allocations {w1, w21(x1), ..., w2n(xn), C1, ..., Cn, K} is defined by

u(w − Ci) = (1− πqi)u(w1) + πqi

∫ x̄i

0
u(w2i(xi))fi(xi)dxi, (7)

w2i(xi)− w1 + xi ≥ 0 for all i = 1, ..., n, (8)

K = (1 + λ)
n∑
i=1

αiqi

∫ xi

0
Ii(xi)f(xi)dxi, (9)

6If capital were levied through a cat bond, then c(K,π)/K would be the spread over
LIBOR, i.e. the compensation per euro required by investors for running the risk of losing
their capital with probability π. Under a zero risk-free interest rate, a risk neutral investor
would require c(π,K) = πK to accept this risk. Note that we may have c(0,K) > 0 if
levying capital K induces fixed costs. See Section 4 for further developments.
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w1 = w − c(π,K). (10)
Equation (7) defines Ci and equation (8) is a sign constraint for the

insurance coverage. (9) defines the capital required to pay indemnities, and
(10) follows from w1 = w − P and P = c(π,K).

We consider a utilitarian regulator that designs the risk coverage mecha-
nism in order to minimize the social cost of an accident, which is the weighted
sum of certainty equivalent to individuals’ losses. The corresponding opti-
mization program is also a way of characterizing the Pareto optimal allo-
cations when ex-ante transfers between groups are possible.7 This may be
written as minimizing

n∑
i=1

αiCi,

with respect to {w1, w21(x1), ..., w2n(xn);C1, C2, ..., Cn, K}, subject to condi-
tions (7),(8), (9) and (10). Proposition 5 characterizes the optimal solution
of this problem when π goes to 0 and K > 0.

Proposition 5 When π goes to zero with K > 0, all the optimal indem-
nity schedules Ii(xi) converge toward a common straight deductible indemnity
schedule I∗(xi) = max (xi − d∗, 0) and K converges toward K∗ defined by

u′(w − d∗) = (1 + λ)u′(w − c∗0)c′′πK(0, K∗),

K∗ = (1 + λ)
n∑
i=1

αiqi

[∫ xi

d∗
(xi − d∗)fi(xi)dxi

]
,

where c∗0 = c(0, K∗).

Proposition 5 shows that the optimal indemnity schedule for small π
involves full coverage of the victims above a straight deductible d∗ (the same
for all individuals whatever their type).8 This amounts to saying that the
victims should be ranked in order of priority on the basis of their losses: the
victims with loss xi should receive an indemnity only if the victims with loss
x′i larger than xi receive at least x′i − xi. This simple characterization of
optimal indemnification will be used in the simulation conducted in Section

7See Proposition 6 in the appendix for details.
8The fact that the deductible does not depend on type i is true only asymptotically

when π −→ 0. Otherwise, the optimal indemnity schedule involves type-dependent de-
ductibles di, with Ii(xi) = max{xi− di, 0}. This is because lower deductibles would allow
the regulator to transfer wealth from more to less risky types (say from the groups with qi
high to the groups with qi low if the conditional distribution of losses Fi(xi) is the same
for all groups). This compensatory effect vanishes when π goes to 0.
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4. As in the simple model of Section 2.1, we may derive comparative statics
properties for the asymptotic deductible d∗. In particular, it is increasing in
λ and, under DARA preferences, it is increasing in wealth.

More importantly, Proposition 5 shows how d∗ and K∗ are affected by the
cost of capital. If the investors were risk neutral, we would have c(π,K) =
πK, i.e. the cost of capital would just be equal to the risk premium that com-
pensates for the expected loss due to the default. We would have c′′πK(π,K) =
1 and, in such a case, the cost of capital would not affect the optimal indem-
nity schedule.

However, as we will see in more detail in Section 4 with the example
of the cat bond market for low-probability triggers, because of the aversion
of investors towards risk, or for other reasons, it is much more realistic to
keep the cost of capital in a more general form c(π,K). In that case the
cost of capital does affect the optimal indemnity schedule as highlighted in
Proposition 5.9

4 The nuclear corporate liability case

4.1 The cost of capital
Financial innovations, including catastrophe bonds, have been developed dur-
ing the two last decades in order to transfer large scale catastrophic risks to
financial markets.10 Alternative Risk Transfer markets include several cate-
gories of securities, including catastrophe bonds, designed to transfer catas-
trophic risks to dedicated financial investors. Focusing attention on the cat
bond market, we may write c(π,K) = s(π,K)K, where s(π,K) denotes the
spread over LIBOR for a cat bond.

The empirical literature has developed a number of cat bond pricing mod-
9Note that c′′π,K(0,K∗) = limπ→0 (1− π)c′K(π,K∗)/π from L’hôpital’s rule. Then,

Proposition 5 yields, for π small enough

πu′(w − d∗)
(1− π)u′(w − c∗0) ≈ (1 + λ)c′K(π,K∗).

The left-hand side of this equality is the individual’s marginal rate of substitution between
the states where he receives an indemnity after an accident and where no accident occurs,
respectively. The right-hand side is the marginal cost of capital needed to sustain the in-
surance coverage, inflated by the loading factor λ. Hence, the first condition in Proposition
5 may be interpreted as the equality between marginal willingness to pay and marginal
cost of coverage. The second equation is just a rewriting of equation (9) for the straight
indemnity schedule I∗(xi).

10See Barrieu and Cummins (2013).
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els, of which we present four examples in Appendix 6.7. However, these
models suffer from a lack of theoretical foundations and they predict unre-
alistically high spreads for cat bonds with very low probability triggers.11

We therefore develop in Appendix 6.2 a simple one factor cat bond pricing
model with the following features. The representative investor is assumed
to be risk averse. In addition to the compensation for his expected loss, he
therefore demands a premium for the systemic component of the risk that
is correlated with his own wealth. He also requires a compensation for the
underwriting and verification costs induced by the cat bond transaction. Our
predictions for low probability cat bonds will therefore lie between two ex-
tremes. Spreads will be lower than those predicted by the existing models,
presented in Appendix 6.7, but higher than those predicted in a model with
risk neutral investors and no fixed cost. Our pricing equation is as follows

s = π(1 + µ)E(x̃) + ηκ(1 + µ)π[E(x̃2)− π(Ex̃)2]K + D

K
, (11)

where x̃ is the fraction of the cat bond’s capital lost by investors when the cat
bond defaults, and η and κ respectively reflect the representative investor’s
degree of risk aversion and the exposure of his own wealth to the catastrophe.
Finally, µ is a loading that covers the verification costs that the investor
incurs when the cat bond defaults. While the first term of equation (11) is
the spread that would be required by a risk neutral investor, the second term
reflects a risk premium. Finally, D is a fixed underwriting cost independent
of the size K or probability π of a capital loss.

Based on this model, we estimate the following regression

si = β0πiE(x̃i) + β1πi[E(x̃i2)− π(Ex̃i)2]Ki + β2(1 +∑
i γiXi)

Ki

+ εi, (12)

by using information from the Artemis database on cat bond transactions.12

si denotes the spread over LIBOR of cat bond i = 1, ..., n. If €Ki is issued
through cat bond i, the corresponding cost of capital incurred by the issuer
is ci = siKi. The spread of cat bonds is explained by the expected loss per
€, πi, conditional expected loss E(x̃i), conditional expected loss squared,13

capital issued Ki, and a vector of observable controls Xi, such as year of
11In these models, either s(0,K) > 0 or c′′(0,K) = +∞, which makes risk coverage

unattractive when π is very small.
12http://www.artemis.bm/
13We only possess information on the expected value of the random variable x̃. We

therefore compute E(x̃i2) by making the assumption that x̃i is uniformly distributed over
an interval [ai, 1]. We then calibrate ai to match the expected value of the uniform
distribution with its empirical counterpart E(x̃i).
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issuance and zone of peril covered that may affect the fixed underwriting
cost.

The Artemis database contains more than two-hundred issues, some of
which are divided into several tranches, characterized by different levels of
risk, and therefore by different spreads. We have complete information for
185 of the most recent tranches, spanning an interval of six years (2011-2017),
including the nature of perils, types of trigger, probability of a capital loss,
expected loss,14 spreads, and identity of sponsors. Relevant controls also
include the year of issuance, the area of the peril covered, and the type of
trigger.

Table 1 gives the main OLS estimates of this regression.15 All parameters

Estimates
β0 1.4599∗∗∗

(10.1094)
β1 0.0028∗∗

(2.1819)
β2 0.7490∗

(1.6634)
R2 0.7860

Table 1: OLS estimates

are positive and consistent with theory. The first parameter β0 is estimated to
be 1.4599, which indicates the presence of a loading µ around forty-five per-
cent. The second parameter β1, that identifies the representative investor’s
risk aversion, is statistically significant at a 5% level.16 The second term of
the regression will play an important role, due to the large values taken by
K, the cat bond’s capital. Finally, the third parameter β2, that captures the
cat bond’s fixed cost D, is estimated at 0.7490, which implies a fixed cost of
€749,000. In the model of section 3, we have assumed x̃ = 1, which, for our
cat bond,17 gives

c(π,K) = β0πK + β1π(1− π)K2 + β2, (13)
14The probability of a capital loss and the distribution of losses are evaluated by mod-

eling companies independent from the sponsor and the investor.
15The full table, along with alternative specifications is reported in Appendix 6.6.
16The t-statistics, robust to heterogeneity, are reported in parenthesis below the esti-

mates. ∗∗∗ (respectively ∗∗) : significant at 1% (respectively 5%) level.
17For simplicity, we have designed a simple cat bond that defaults entirely in case of

a catastrophe. In addition, the cat bond we are interested in belongs by design to the
reference group of our econometrics specification, which is why the dummy controls do
not appear in equation (13).
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and in particular
c′′Kπ(0, K) = β0 + 2β1K,

which is an ingredient of the formula provided in Proposition 5.

4.2 Individual lotteries
The probability distribution of losses due to a nuclear accident is difficult
to assess because data is scarce, and we can only rely on the analysis de-
veloped by nuclear safety specialists. In particular, the Probabilistic Safety
Assessment (PSA) studies seek to understand the odds and the stakes of a
major accident along several dimensions: sanitary, environmental, economic,
etc. Designed to improve prevention and the ex-post management of a crisis
situation, they deliver, as a by-product, useful information about the proba-
bilities of different scenarios, analyzed in detail in Dreicer et al. (1995) and
Markandya (1995). Additional studies from international agencies, such as
the French Institute for Radioprotection and Nuclear Safety (IRSN, 2013)
and the Nuclear Energy Agency (NEA, 2000), also develop the methodol-
ogy for estimating the costs associated with the various accident scenarios
predicted by PSA studies.

As in Eeckhoudt et al. (2000), we make use of the aggregate information
on costs and probabilities drawn from PSA studies to construct individual
lotteries. We consider the risk associated with one major accident on the
French territory.18 The 58 French nuclear reactors are gathered into 19 power
plants. Based on Eeckhoudt et al. (2000), we assume that 2 million people
live around each power plant. Therefore 38 million people are located near a
power plant (less than 100km) and 28 million people live further away. We
index these two groups by i = 1, 2, with shares in the population α1 = 38/66
and α2 = 28/66, respectively. We let π denote the probability that a major
nuclear accident affects the territory. Most PSA studies provide very low
estimates ranging from 10−4 to 10−9 per year and per reactor. We will use in
our computation π = 58∗10−5,19 but since we approximate the optimal level
of capital by its limit value, this calibration does not affect our results about
the optimal coverage and deductible K∗, d∗, but it does affect the premium
P .

For any individual, the potential direct consequences of a nuclear accident
may include financial losses, severe disease and death, and it is these losses

18We use ST21 as a benchmark for the number of direct victims in our baseline scenario.
The PSA studies referenced above provide the technical background on which ST21 relies.

19We neglect the possibility that accidents may occur simultaneously in several power
plants.
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that may be subject to compensation under corporate liability law. Other
losses are supposed to be evenly spread over the whole population. When
an accident occurs, an individual of group 1 has a probability 1/19 of living
nearby the damaged power plant (< 100 km),20 in which case she can die,
suffer a severe disease or a financial loss if she lives in the plume of radioac-
tivity. With probability 18/19, she lives away from the damaged power plant
(≥ 100 km), similar to a person from group 2, and can die or suffer a severe
disease. The direct financial losses are incurred only by people in group 1,
and may result from the impossibility to stay in a contaminated area.

We use figures similar to Eeckhoudt et al. (2000) to calibrate our baseline
scenario. The number of direct victims in the baseline scenario (scenario 1)
is summarized in Table 2.

Distance Population Financial loss Death Severe disease
< 100 km 2 million 10,000 500 1,000
≥ 100 km 64 million 0 3,000 6,000

Table 2: Population affected by direct losses in scenario 1

We assume that each person in the most exposed group (i.e., individuals
from group 1, living within 100 km of a power plant) can potentially be in
6 distinct states (3 health states × 2 financial states) s1 = 1, ..., 6. Other
individuals never incur the direct financial loss, so they can only be in three
different health states s2 = 1, ..., 3. The lotteries associated with the baseline
scenario are summarized in Tables 3 and 4. The initial wealth w is calibrated
in euros, as the sum of the asset value currently held, plus the expected
discounted future wealth of the average French citizen, which yields w =
875, 310 euros.21

People from group 1 die in states s1 = 1 and 2. They also suffer a fi-
nancial losse in state s1 = 1 (and not in state s1 = 2). The worst possible
case is monetized as a loss of a fraction 1 − θ of total wealth, where θ can
be interpreted as a bequest parameter. We choose the parameter θ so as
to match the value of a statistical life (VSL) recommended for cost-benefit
analysis with a HARA utility function.22 In particular, our baseline cali-
bration with θ = 10% implies Values of a Statistical Life between 3 and 4
million euros, consistent with the estimates provided in Viscusi and Aldi’s

20For simplicity, we assume that the 19 power plants have the same number of reactors.
This approximation has very little impact on our results.

21The details of this calibration are presented in Appendix 6.4.
22The HARA utility function does not display a divergent index of absolute risk aversion

when θ goes to zero, except in the limit CRRA case. See equation 14 below.
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(2003) meta-analysis and with Quinet (2013), which sets the standard for
cost-benefit analysis in France. Finally Appendix 6.8 shows the robustness
of our analysis to realistic changes in the parameter θ.

People in state s1 = 3 do not die but they face the combined consequences
of a severe disease and financial losses. In states s1 = 4 and s1 = 5, they
suffer either the severe disease or the financial shock, respectively, while in
state s1 = 6 they do not incur direct losses. Table 3 presents these loss levels
and the corresponding probability conditional on the occurrence of a nuclear
accident.23

Concerning group 2, individuals die in state s2 = 1, suffer a severe disease
in state s2 = 2 and face no direct loss in state s2 = 3.

State Description of direct losses Direct loss Total loss Probability
s1 = 1 Death + financial loss 787,780 787,780 7.8947e-08
s1 = 2 Death 717,780 719,220 5.7513e-05
s1 = 3 Disease + financial loss 330,000 331,440 1.3158e-07
s1 = 4 Disease 260,000 261,440 1.1500e-04
s1 = 5 Financial loss 70,000 71,440 2.6297e-04
s1 = 6 No direct loss 0 1,440 9.996e-01

Table 3: lotteries for type i = 1

To these direct consequences, subject to compensation under corporate
liability law, one must add more diffuse economic costs that are qualified as
indirect costs in Schneider (1998) and subsequent studies. They are difficult
to quantify and attribute to a given individual. Examples of such costs are:
the loss of attractiveness of an impacted territory, loss in terms of image for
the industrial sector, etc.24 For simplicity, we assume that these costs are
evenly shared by all individuals in the economy25 and we keep the total cost
of the accident fixed at 100 billion euros. In group i = 1, agents in state
s1 = 6 only face the indirect loss from the accident. Total losses are obtained
by adding direct and indirect losses.

23The state probabilities in Tables 3 and 4 are also conditional on belonging to group 1
and 2, respectively.

24Here we do not discuss the effect of the catastrophe on growth, as the literature has
not reached a consensus on the growth effect of disasters. For example, Gignoux and
Menéndez (2016) find a positive effect for the case of an earthquake in India, while Strobl
(2012) finds a negative effect for the case of hurricanes in the Caribbean.

25We could also treat these indirect costs as uninsurable background risks. Under the
risk vulnerability assumption, these background risks would increase the degree of risk
aversion to insurable risks.
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Alternative scenarios (scenario 2,3,4 and 5) are generated by multiplying
the number of direct victims considered in Table 2 by 2,3,4 and 5, respectively,
while reducing the value of indirect losses so as to keep the total cost fixed at
100 billion euros. Total direct losses range from 5 billion euros in scenario 1
to approximately 25 billion euros in scenario 5. Total indirect losses therefore
vary between 75 and 95 billion euros. Because we assume that indirect losses
are mutualized, they only marginally affect the optimal coverage level. Hence,
as far as corporate liability is concerned, the assumption that total cost is
100 billion euros is innocuous.26

State Description of direct losses Direct loss Total loss Probability
s2 = 1 Death 717,780 719,220 4.6875e-05
s2 = 2 Disease 260,000 261,440 9.3750e-05
s2 = 3 No direct loss 0 1,440 9.999e-01

Table 4: lotteries for type i = 2

4.3 Optimal coverage
We postulate a harmonic absolute risk aversion (HARA) utility function

u(x) = ζ
(
η + x

γ

)1−γ
,

whose domain is such that η+(x/γ) > 0, and with the condition ζ(1−γ)/γ >
0, that guarantees that u(x) is increasing and concave. With affine risk
tolerance T (x) = 1/A(x) = η + x/γ, the coefficient of relative risk aversion
is written

R(x) = x
(
η + x

γ

)−1
. (14)

The HARA class nests the constant relative risk aversion (CRRA) case when
η = 0, and the constant absolute risk aversion (CARA) case when γ →
+∞. Except for the CARA and CRRA limit cases, HARA functions satisfy
decreasing absolute risk aversion and increasing relative risk aversion. Studies
on individual data, such as Levy (1994) and Szpiro (1986), have isolated a
plausible range between 1 and 5 for the index of relative risk aversion. We
therefore perform simulations over this plausible range of values.

The optimal values of the deductible and capital are deduced from Propo-
sition 5 and Section (4.1). They are reported in Table 5 for a level of relative

26In particular, assuming a total cost of 50 or 200 billion euros would not significantly
modify our results.
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R 1 2
Scenario Cover Welfare Cover Welfare

1 0.6873 0.0556 0.7529 0.0786
2 0.9646 0.0814 1.1021 0.1202
3 1.1454 0.0957 1.3495 0.1456
4 1.2775 0.1038 1.5429 0.1617
5 1.3801 0.1083 1.7016 0.1719
R 1 2

Scenario Premium Deductible Premium Deductible
1 2.1024 5.6828 2.3125 5.5385
2 3.0858 6.1324 3.6661 5.9813
3 3.8618 6.3530 4.8666 6.2034
4 4.4968 6.4899 5.9440 6.3441
5 5.0291 6.5850 6.9196 6.4437

Table 5: Optimal cover (in ebillion), Welfare gain, Annual premium (in
emillions), Deductible (in ehundreds of thousands), R = 2

risk aversion R := R(w) = 2, which is our baseline assumption.27 Since the
relative risk aversion has two degrees of freedom in the HARA case, we let
R := R(w − L(s1)), where L(s1) is the loss incurred in state s1 by group
1 individuals, vary across columns.28 The scenario considered varies across
lines.

Optimal levels of coverage (in billion euros) and their associated welfare
gains are read from the top panel of Table 5. Annual premiums (in mil-
lions of euros) and deductibles (in hundreds of thousands of euros) are read
from the bottom panel. If we consider a baseline set of assumptions with
scenario 1, R = 2 and R = 2 (i.e. the CRRA case), we find an optimal
level of coverage K∗ equal to e752.900 million, an associated welfare gain
of 7.86%, a deductible of e553, 850 per inhabitant, and an annual premium
of e2.3125 million (just below 3.5 cents per person). This yields a spread
s = 2.3125/752.900 = 0.31% that is one order of magnitude above the spread
that a risk neutral investor would require in the absence of underwriting costs.
In principle, these fixed underwriting costs can be an issue for the insura-
bility of low probability events, but in our setting they are divided among a
large number of agents and therefore have a small impact on each agent.

27A wider set of assumptions, with an index of relative risk aversion R varying from 1
to 5, is considered in Appendix 6.8.

28In other words, R and R denote the index of relative risk aversion, in the no accident
state and in the worst case state, respectively.
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Table 5 highlights the dependence of the coverage and annual premium on
the catastrophe scenario. When R = 1 and R = 2, multiplying the number
of people in each category of loss by 5 (i.e. comparing scenario 1 and 5)
induces an increase in cover by a factor 2 and 2.26, respectively. The fact
that coverage increases at a slower pace than direct losses is an intuitive
result that is due to the increasing marginal cost of capital.

The deductible varies between e553, 850 and e658, 500 in Table 5. This
represents more than half of the individual’s wealth, which implies that only
people in the worst states (s1 = 1, 2 for group 1 and s2 = 1 for group 2)
are indemnified. Tables 5 also confirms the intuition that deductibles should
decrease with risk aversion, but the effect is quantitatively limited. Finally,
the deductible increases with the severity of the loss scenario, which reflects
our previous remark on the effect of increasing marginal cost of capital on
optimal coverage. As more capital is needed to compensate the victims with
the largest losses, it is optimal to increase the deductible in order to avoid a
sharp increase in premiums.

The welfare gain is computed as the reduction in the loss certainty equiv-
alent induced by the cover in comparison with the case without any com-
pensation.29 The welfare gain is therefore estimated at least at 5.56% under
scenario 1 with R = 2 and R = 1. This means that the average monetary
equivalent cost of the nuclear risk is lowered by 5.56% thanks to the indem-
nity schedule when K∗ = e687.300 million. Of course, welfare gains for
group 2, taken separately, would be higher. Higher values for the coefficients
of relative risk aversion, or a more pessimistic loss scenario would lead to
much higher values of K∗ and substantially higher welfare gains.

Note finally that in scenario 1, K∗ is close to the lower bound of nu-
clear operator’s liability adopted in 2004 through the revision of the Paris
convention, which is e700 million for each plant. Under the most severe sce-
narios 2, ..., 5, this lower bound would be inferior to the socially optimal level.
The fact that several other European countries30 have set nuclear corporate
liability at higher levels is coherent with such scenarios.

29Since group 1 and group 2 do not face the same risk exposure, this reduction differs
from one group to the other. The figure presented in Table 5 is an average of these two
gains weighted by group size.

30Countries have their own legislation, in line with international conventions. For in-
stance, in Germany, the nuclear corporate liability is set at e2.5 billion for each plant.
This could be rationalized in our model with scenarios more severe than our scenario 5,
or with higher levels of risk aversion, such as the ones considered in Appendix 6.8. Note
that the Paris convention also specifies tranches of liability born by governments, so that
total liability toward the victims are at least e1.5 billion.
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5 Conclusion
The structural changes experienced in modern economies, whether associ-
ated with technological, environmental or financial transformations, have
highlighted how contemporary societies are more and more subject to large
scale uncertainties, including catastrophic risks. The purpose of this paper
was to analyze the insurability of low probability-high severity events, simul-
taneously from the individual’s standpoint and a public policy perspective.

We have shown that the risk premium of such catastrophic events can
remain large when the accident probability is close to zero, if the index of
absolute risk aversion is sufficiently large (or equivalently if risk tolerance is
sufficiently low) in the accident state. In addition, the optimal indemnity
converges to a positive limit that reflects both the individual’s attitude to-
ward risk and the cost of insurance. In the case of an industrial catastrophe
that may affect the whole population of a country the insurability issue is
linked to the corporate liability of the firm that may cause the accident.
The asymptotic indemnity schedule is characterized by a straight deductible,
common to all individuals.

Based on these results, we have analyzed the features of an optimal in-
surance scheme that covers the nuclear accident risk in which the risk is
transferred to financial markets through cat bonds. Using recent cat bond
data and safety studies on nuclear reactors allows us to compute the optimal
level of coverage. Our results, calibrated with French data, suggest that the
nuclear liability law could be more ambitious than it currently is, unlike in
other countries, such as Germany, where this liability has been extended far
beyond the requirements of international conventions.

Our analysis presents a certain number of limits that we shall now discuss.
First, we implicitly assume that market insurance is the only tool available
to deal with catastrophic risk. In practice, individuals and societies have
other means at their disposal. The effect of self-insurance -a reduction in
the size of the loss- and self-protection -a reduction in the loss probability-
were studied in a seminal paper by Ehrlich and Becker (1972). In a two state
model, they showed that if market insurance and self-insurance are substi-
tutes, self-protection and market insurance can be complements. Most of our
theoretical results, being of a qualitative nature, would be unaffected by in-
troducing self-insurance and self-protection, but we leave for future research
the analysis of the interaction between self-insurance, or self-protection, and
market insurance for disaster risks.

Another strategy to deal with risk is inter-temporal smoothing. In a dy-
namic model with uninsurable risk, prudent agents save to constitute a buffer
used in case of loss. If market insurance is sold at actuarially fair prices, ex-
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pected utility maximizing agents should purchase full insurance and make
no precautionary savings. However, insurance being a costly activity, pos-
itive loadings may lower the demand for market insurance, substituted for
by precautionary savings. Gollier (2003) showed, with a calibrated example,
that the demand for market insurance may become quite low whenever as-
sets enable agents to transfer wealth across periods. However, his example
only discusses the case of small losses. The strategy of substituting mar-
ket insurance with precautionary savings would not be feasible at the levels
of individual agents who risk up to their lives. It could more realistically
be set up at the level of the nation. We could imagine, for example, that
the government constitutes a fund dedicated to the indemnification of large
catastrophes, or simply borrows money when a catastrophe occurs. This
strategy raises difficult concerns of inter-generational risk sharing very much
like those debated in the literature on the social cost of environmental dam-
age. Borensztein et al. (2017) highlight an interesting feature of cat bonds:
even in a framework where they can be substituted for with a precaution-
ary fund, cat bonds may yields substantial gains. The purchase of insurance
cover against catastrophes may indeed lower the risk of default and thereby
improve the terms of credit for the financing of the government’s normal
activities.

A last limitation of our analysis is the fact that we considered a single
aggregate loss scenario for our quantitative assessment of the optimal level
of coverage against the risk of nuclear accident. While this was dictated by
the format of the PSA studies used to calibrate our loss model, an extension
to several scenarios is an interesting avenue for further research.
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6 Appendix

6.1 Complement to section 3.1
Let us assume that the government can redistribute wealth between groups
through ex ante lump sum transfers. We denote ti the net transfer paid to
each individual of group i, the government budget constraint being written
as

n∑
i=1

αiti = 0.

Now we have

w1 = w − P + ti,

w2i(xi) = w − P − xi + Ii(xi) + ti.

and the certainty equivalent loss incurred by type i individuals is still denoted
by Ci, with

u(w − Ci + ti) = (1− πqi)u(w1 + ti)

+πqi
∫ xi

0
u(w2i(xi) + ti)f(xi)dxi. (15)

An allocation is written asA ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K},
and A is feasible if (8), (9),(10) and (15) are satisfied.

Definition 2 A is Pareto-optimal if it is feasible and if there does not exist
another feasible allocation Â={ŵ1, ŵ21(x1), ..., ŵ2n(xn), Ĉ1, ..., Ĉn, t̂1, ..., t̂n, K̂}
such that Ĉi− t̂i ≤ Ci− ti for all i = 1, ..., n, with Ĉi0 − t̂i0 < Ci0 − ti0 for at
least one group i0.

Proposition 6 A ={w1, w21(x1), ..., w2n(xn), C1, ..., Cn, t1, ..., tn, K} is a Pareto-
optimal allocation if and only if it minimizes ∑n

i=1 αiCi in the set of feasible
allocations.

6.2 A cat bond pricing model
This section presents the cat bond pricing model. The cat bond is issued at
t = 0. Part of its capital is used at time t = 0 to pay the underwriting costs
and the remainder constitutes the principal. At time t = 1 the principal
K is returned to the investor if the accident did not occur. In the opposite
case, the cat bond defaults and the sponsor uses a fraction x̃ of the capital
to indemnify the victims. The remaining portion of capital is returned to
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the investors. From the standpoint of the investor, the cat bond ’s payoff is
therefore

q̃ =
{
RK + [1− (1 + µ)x̃]K with probability π,

(1 +R)K with probability 1− π.

In compensation for the option to default on the principal, the investors
require a coupon of rate R = r + s, where r denotes the risk free rate and s
denotes the spread. We let D/(1 + r) be the value of the underwriting costs
(i.e. D is the corresponding value at time t = 1), and µ is a loading that
covers the verification costs.

Let CE be the certainty equivalent of the cat bond payoff q̃ to investors
at time t = 1. Following the Consumption Capital Asset Pricing Model, we
write

CE = Eq̃ − ηcov(z̃, q̃),
where z̃ denotes the wealth of the representative investor at t = 1, and η
reflects his risk aversion. There are two states: with probability π, the acci-
dent occurs, the cat bond defaults and investors suffer a loss (1+µ)x̃K; with
probability 1− π, the accident does not occur and the principal is returned
to the investor. In both cases, the coupon RK is paid to the investor.31 We
assume that the representative investor bears a fraction κ of the underlying
loss.32 We therefore write

z̃ =
{
w − κKx̃ with probability π,

w with probability 1− π.

Thus

Eq̃ = [R + 1− π(1 + µ)E(x̃)]K,
cov(z̃, q̃) = (1 + µ)κπ[E(x̃2)− π(Ex̃)2]K2.

and

CE = [R + 1− π(1 + µ)E(x̃)]K − η(1 + µ)κπ[E(x̃2)− π(Ex̃)2]K2.

31Hence we assume that default affects the repayment of the capital to the investor first.
The coupon payment is affected only when the loss x̃ is very large and 1−(1+µ)x̃ becomes
negative. This assumption is made for simplicity, but of course other definitions of cat
bonds are possible.

32We do not restrict κ and will estimate it from the data. From a theoretical perspec-
tive, the precise value of κ depends on the identity of the representative investor. If the
representative investor is not exposed to the underlying risk transferred by the cat bond,
we should have κ ≡ 0.
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Purchasing the cat bond is analogous to making an investment K with
additional cost D/(1 + r) at t = 0 and random payoff q̃, with certainty
equivalent CE, at t = 1. Thus, in the absence of arbitrage, we have

K + D

1 + r
= CE

1 + r
,

which may be rewritten as

K(1 + r) = [R+ 1− π(1 + µ)E(x̃)]K − η(1 + µ)κπ[E(x̃2)− π(Ex̃)2]K2 −D.

Let s = R− r be the spread over the risk-free rate. We obtain

s = π(1 + µ)E(x̃) + ηκ(1 + µ)π[E(x̃2)− π(Ex̃)2]K + D

K
. (16)

In order to estimate this equation on our data set, we assume each x̃i is
uniformly distributed in an interval [ai, 1]. This enables us to find E(x̃i2)
which, in turn, leads to the regression performed in section 4.1.33 We only
have one loss scenario in our numerical analysis. Hence, the cat bond must
completely default in case of accident, which implies that E(x̃) = 1 for our
cat bond. The cost of capital c(π,K) ≡ s(π,K)K is therefore

c(π,K) = π(1 + µ)K + ηκ(1 + µ)π(1− π)K2 +D,

which is coherent with the assumptions used to derive Proposition 5.

6.3 Proofs

Proof of Proposition 1

From equation (1), we have

C ′p(0, L) = u(w)− u(w − L)
u′(w) =

∫ w

w−L

u′(x)
u′(w)dx.

Since
u′(x) = u′(w)−

∫ w

x
u′′(t)dt,

for all x ∈ [w − L,w], we may write

C ′p(0, L) = L−
∫ w

w−L

[∫ w

x

u′′(t)
u′(w)dt

]
dx

= L+
∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx,

33The Artemis data base provides πi and Ex̃i for each cat bond i in the sample. We
deduce E(x̃i)2.
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and thus

θ(0, L) = 1
L2

∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx.

Integrating by parts gives

θ(0, L) = 1
2

∫ w

w−L
k(x)A(x) u

′(x)
u′(w)dx, (17)

where k(x) = 2[x− (w − L)]/L2, with∫ w

w−L
k(x)dx = 1.

In addition, we have

u′(x) = u′(w) exp{
∫ w

x
A(x)dx},

which completes the proof.

Proof of Corollary 2

When L = w, we have

θ(0, L) > 1
w

∫ w

0

xu′(x)
wu′(w)A(x)dx,

from Proposition 1. Furthermore, we have

d[xu′(x)]
dx

= xu′′(x) + u′(x)

= −u′(x)[R(x)− 1],

and thus
d[xu′(x)]

dx
≤ 0 if R(x) ≥ 1.

We deduce
θ(0, L) > 1

w

∫ w

0
A(x)dx if R(x) ≥ 1.

Proof of Proposition 2

Using A′ ≤ 0 in equation (17) allows us to write

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
[x− (w − L)]u′(x)dx
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Using R(x) ≤ γ and u′′(x) < 0 yields
d

dx
[(x− (w − L))u′(x)] = u′(x)

[
1−R(x)− u′′(x)

u′(x) (w − L)
]

≥ u′(x)[1−R(x)]
≥ u′(x)(1− γ)
≥ u′(w)(1− γ),

for all x ∈ [w − L,w]. Hence, we have[
x− (w − L)

]
u′(x) + (w − x)u′(w)(1− γ) ≤ [w − (w − L)]u′(w)[

x− (w − L)
]
u′(x) ≤ Lu′(w) + (w − x)u′(w)(γ − 1)

= u′(w)[L+ (w − x)(γ − 1)],

for all x ∈ [w − L,w]. Consequently,

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
{u′(w)[L+ (w − x)(γ − 1)]} dx

= A(w − L)
L2

[
L2(γ + 1)

2

]

= A(w − L)(γ + 1)
2 .

Using C ′′p < 0 and C(0, L) = 0 allows us to write

C(p, L) < C ′(0, L)p
= pL+ θ(0, L)pL2

≤ pL

[
1 + A(w − L)(γ + 1)L

2

]
.

Proof of Proposition 3

Tε(x) ≡ t(x, ε), with ε > 0, t(w−L, 0) = t′x(w−L, 0) = t′′xx(w−L, 0) = 0
and t′x(x, 0) > 0 for x > w − L. Let M > 0. Then, for small enough ε, there
exist x0(M, ε) and x1(M, ε) such that

w − L < x0(M, ε) < x1(M, ε),
Tε(x0(M, ε)) = [x0(M, ε)− (w − L)]2/L2M ,

Tε(x1(M, ε)) ≤ [x1(M, ε)− (w − L)]2/L2M,

Tε(x) < [x− (w − L)]2/L2M if x0(M, ε) < x < x1(M, ε),
x0(M, ε) −→ w − L when ε −→ 0,
x1(M, ε) −→ x∗1(M) > 0 when ε −→ 0.
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Thus, we have

Tε(x) ≤ [x1(M, ε)− (w − L)][x− (w − L)]
L2M

,

or equivalently

Aε(x) > L2M

[x1(M, ε)− (w − L)][x− (w − L)] ,

if x0(M, ε) < x < x1(M, ε). Hence, we may write

θ(0, L) >
1
2

∫ w

w−L
k(x)A(x)dx

>
1
2

∫ x1(M,ε)

x0(M,ε)

(
2[x− (w − L)]

L2 × L2M

[x1(M, ε)− (w − L)][x− (w − L)]

)
dx

>
∫ x1(M,ε)

x0(M,ε)

M

x1(M, ε)− (w − L)dx

= M × x1(M, ε)− x0(M, ε)
x1(M, ε)− (w − L) .

Since x0(M, ε) −→ w − L and x1(M, ε) −→ x∗1(M) when ε −→ 0, the right-
hand side of the previous inequality goes to M when ε −→ 0, and we deduce
that θ(0, L) is larger than M for small enough ε.

Proof of Lemma 1

We have I∗ > 0 iff

λ <
u′(w − L)− u′(w)

u′(w)

= − 1
u′(w)

∫ L

w−L
u′′(x)dx

=
∫ L

w−L
A(x) u

′(x)
u′(w)dx.

Using Lk(x)/2 < 1 for all x ∈ (w − L,w] gives∫ L

w−L
A(x) u

′(x)
u′(w)dx >

L

2

∫ L

w−L
k(x)A(x) u

′(x)
u′(w)dx = Lθ(0, L),

and thus Lθ(0, L) ≥ λ is a sufficient condition for I∗ > 0.

Proof of Proposition 5
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The planner’s program is to minimize ∑i αiCi under constraints (7), (8),
(9) and (10). The Kuhn-Tucker multipliers associated with each set of con-
straints are respectively γi, φi(xi), η and ρ. The optimality conditions are

αi − γiu′(w − Ci) = 0 (18)
γiπqiu

′(w2i(xi))fi(xi)− η(1 + λ)αiqifi(xi) + φi(xi) = 0, (19)

u′(w1)
n∑
i=1

(1− πqi)γi −
n∑
i=1

∫ x̄i

0
φi(xi)dxi − ρ+ η(1 + λ)

n∑
i=1

αiqi = 0, (20)

−η + ρc′K(π,K) = 0, (21)
φi(xi) ≥ 0 and φi(xi) = 0 if w2i(xi)− w1 + xi > 0 ∀i. (22)

Let xi be such that w2i(xi)− w1 + xi > 0. Thus, we have φi(xi) = 0 from
(22), and (19) gives

πγiu
′(w2i(xi)) = η(1 + λ)αi. (23)

(18) and (23) yield

u′(w2i(xi)) = η

π
(1 + λ)u′(w − Ci). (24)

Hence, if there exist x0
i , x

1
i ∈ [0, x̄i] such that w2i(x0

i ) − w1 + x0
i > 0 and

w2i(x1
i )− w1 + x1

i > 0, then we must have

u′(w2i(x0
i )) = u′(w2i(x1

i )),

which implies
w2i(x0

i ) = w2i(x1
i ).

Consequently, w2i(xi) is constant over the set of xi for which w2i(xi)− w1 +
xi > 0, and we can write

w2i(xi) = w1 − di,

with di < xi for all xi in this set, and from 24 we have

u′(w1 − di) = η

π
(1 + λ)u′(w − Ci). (25)

Now let xi be such that w2i(xi)− w1 + xi = 0. Using (18), (19) and (22)
allows us to write

u′(w2i(xi)) = u′(w1 − xi) ≤
η

π
(1 + λ)u′(w − Ci).
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Using (24), and u′′ < 0 we deduce xi ≤ di. Thus, we have established that
there exists di such that

w2i(xi) = w1 − di if xi > di, (26)
w2i(xi) = w1 − xi if xi ≤ di. (27)

Let K → K∗ when π → 0 and c∗0 ≡ limπ→0 c(π,K∗). When π → 0, we have
w1 −→ w − c∗0 and Ci −→ c∗0 from (10) and (7) respectively. (25) then gives
di −→ d∗ ∀i with

u′(w − d∗) = (1 + λ)u′(w − c∗0) lim
π→0

η

π
. (28)

Using (18), (20), (21) and ∑n
i=1 αi = 1 imply

lim
π→0

[1− η

c′K(π,K∗) + η(1 + λ)
n∑
i=1

αiqi −
n∑
i=1

∫ x̄i
0
φi(xi)dxi] = 0.

(29)
Suppose that η does not go to zero when π does. In such a case, we would

have η/c′K(π,K∗) −→ +∞ when π −→ 0 since c′K(π,K∗) −→ 0, and thus

lim
π→0

[η[ 1
c′K(π,K∗) − (1 + λ)

n∑
i=1

αiqi]] = +∞.

Since φi(xi) ≥ 0 ∀i, this is in contradiction with (29). Thus, we have

lim
π−→0

[
1− η

c′K(π,K∗) −
n∑
i=1

∫ x̄i

0
φi(xi)dxi

]
= 0. (30)

If di ≤ 0, we have w2i(xi)− w1 + xi > 0 and φi(xi) = 0 ∀xi > 0. Hence∫ x̄i

0
φi(xi) = 0.

If di > 0, we have φi(xi) = 0 for xi > di, and thus (18), (19) and (27) give∫ x̄i

0
φi(xi)dxi =

∫ di

0
φi(xi)dxi (31)

= −παiqi
∫ di

0
[ u
′(w − xi)
u′(w − Ci)

− η

π
(1 + λ)]fi(xi)dxi. (32)

Using the fact that η −→ 0 when π −→ 0 gives

lim
π→0

∫ x̄i

0
φi(xi)dxi = 0,
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and from (30) we derive

lim
π→0

η

c′K(π,K∗) = 1.

Using (28) together with L’hôpital’s rule, we finally deduce

u′(w − d∗) = (1 + λ)u′(w − c∗0)c′′πK(0, K∗)
> u′(w),

where the last inequality derives from λ > 0 and c
′′
πK(0, K∗) ≥ 1. Using

u′′ < 0 gives d∗ > 0. Since Ii(xi) = w2i(xi) + xi − w1, we deduce that
Ii(xi) −→ I∗(xi) = max (xi − d∗, 0) when π −→ 0.

Proof of Proposition 6

Assume that A minimizes ∑n
i=1 αiCi in the set of feasible allocations, and

suppose that it is not Pareto-optimal, then there exists a feasible allocation
Â and a group i0 such that Ĉi− t̂i ≤ Ci− ti for all i and Ĉi0 − t̂i0 < Ci0 − ti0 .
Consequently,

n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (33)

Since A and Â are feasible, we have
n∑
i=1

αiti =
n∑
i=1

αit̂i = 0, (34)

and thus (33) and (34) give
n∑
i=1

αiĈi <
n∑
i=1

αiCi,

which contradicts the fact that A minimizes ∑n
i=1 αiCi in the set of feasible

allocations.
Conversely, assume that A is a Pareto-optimal allocation, and suppose

that it does not minimize ∑n
i=1 αiCi in the set of feasible allocations. Thus

there exists a feasible allocation Â such that ∑n
i=1 αiĈi <

∑n
i=1 αiCi, and

thus
n∑
i=1

αi(Ĉi − t̂i) <
n∑
i=1

αi(Ci − ti). (35)

Let us choose t̂i such that

t̂i = Ĉi + ti − Ci
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for all i 6= ii0 , which does not contradict the feasibility of Â if we choose

t̂i0 = −
∑

i 6=i0
t̂i. (36)

We have
Ĉi − t̂i = Ci − ti for all i 6= i0. (37)

Furthermore, (35),(36) and (37) give

Ĉi0 − t̂i0 < Ci0 − ti0 . (38)

(37) and (38) contradict the fact that A is Pareto-optimal.
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6.4 Calibration of initial wealth and losses
INSEE, the French national statistical agency, provides an average estimated
Gross National Product per capita of 32,227 euros34 and an average age of
39.2 year old35. The French National Institute on Demographics (INED)
provides an estimated life expectancy of 73.2 for the average 39.236 years old
citizen. Lifetime wealth is obtained as the annual GDP per capita discounted
at a 2% rate on a 34 year horizon. This yields an expected discounted fu-
ture wealth of 805,310 euros. INSEE also provides an estimated average of
70,000 euros of current assets, which will be the financial loss that victims
may incur. We therefore consider that initial wealth is 875,310 euros.

6.4.1 Group 1

The worst case scenario is a fatal outcome that occurs in states s1 = 1 and
2. As in Eeckhoudt et al. (2000) we assume that when this worst state
materializes, the individual (in practice, her heir) is only able to retain a
fraction, equal to θ = 10% of her initial wealth, that can be interpreted as
a bequest parameter. In state s1 = 2, the agent dies but does not suffer the
financial loss. Direct losses in these catastrophic states are therefore equal
to 875, 310(1− θ) = 787, 780 in state s1 = 1 and 875, 310(1− θ)− 70, 000 =
717, 780 in state s1 = 2. In state s1 = 3, the agent suffers a severe health
loss due to exposure to radioactivity, as well as a direct financial loss of all
her financial assets. The cost of health treatment and the health induced
reduction in future income is estimated in Eeckhoudt et al.(2000) at 260,000
euros. The direct loss in this state is therefore equal to 330,000 euros. In
state s1 = 4, the agent faces the 260, 000 euros health loss and in state s1 = 5,
she faces the 70,000 euros financial loss.

Total losses are obtained by adding to the direct losses the indirect cost of
the accident, assumed to be mutualized between all the agents who did not
die. In the baseline scenario, the indirect loss is 1,440 euros per inhabitant.

6.4.2 Group 2

Agents in group 2 die in state s2 = 1, face a severe disease in state s2 = 2 and
a financial loss in state s2 = 3. Their direct losses are therefore calibrated at
717,780 and 260,000 euros.

34http://www.bdm.insee.fr
35http://www.insee.fr/
36http://www.ined.fr/
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Variable Mean Median S.D. Max Min
Spread 0.0638 0.0525 0.0392 0.2000 0.0175
Expected loss 0.0235 0.0160 0.0232 0.1306 0.0001
Size (€million) 134.86 108.8984 113.6927 1128.8 17.9453

Table 6: Descriptive statistics for the 185 cat bonds

6.5 Descriptive statistics
Table 6 provides the summary statistics for the main variables. At 6.38%,
the average spread is lower than in Braun (2015) who finds an average of
8.18% for the period 1997-2012. Average expected loss is very close to Braun
(2015) (2.35% versus 2.08%) and the average value of capital issued (size) is
higher in our data set (134.86 €million versus 97.34 €million), perhaps due
to our inability to observe small private transactions.

6.6 OLS Estimates
Tables 7, 8, 9 and 10 provide the estimates of regression 12 for our fully
specified model, by excluding the fixed cost and/or the risk premium among
the explanatory variables. Expected loss, Risk premium and Fixed cost,
respectively represent the terms πiE(x̃)i, πi[E(x̃i2) − π(Ex̃i)2]Ki, and K−1

i .
2017, Europe and Indemnity are the reference groups for the times dum-
mies, the geographical area covered, and the trigger types, respectively. The
coefficient estimates of Expected loss and Risk premium are positive and sig-
nificant across the four specifications. Concerning the control variables, 2012
was a period of high prices, followed by a decline from 2013 to 2016. The
geographical dummies point at the fact that cat bonds covering perils in the
US are more expansive than in other countries. This is in accordance with
Braun (2015). Finally, parametric triggers have a lower spread than indem-
nity triggers, which may be explained by the lower moral hazard entailed by
parametric triggers.

The four regressions highlight the important role played by the risk pre-
mium term. We report, in the penultimate line of each table, the optimal
level of coverage under scenario 1 and assumption R = R = 2. Without the
risk premium term, the marginal cost of capital would be constant, hence the
higher levels of coverage found under the specifications reported in Tables 9
and 10. On the other hand, the fixed cost term does not play a quantitatively
important role. It is indeed divided among a large number of people, and
therefore represents only a few cents per person. The last lines of each table
report the premium paid under the same set of assumptions.
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coeff t statistic sign
Expected loss 1.4599 10.1094 ∗ ∗ ∗
Risk premium 0.0028 2.1819 ∗∗
Fixed cost 0.7490 1.6634 ∗
Fixed cost×2011 3.3432 3.0260 ∗ ∗ ∗
Fixed cost×2012 2.9848 7.5592 ∗ ∗ ∗
Fixed cost×2013 1.1006 2.5057 ∗∗
Fixed cost×2014 0.0040 0.0094
Fixed costt× 2015 0.0384 0.0877
Fixed cost×2016 −0.5876 −1.6232 ∗
Fixed cost×Japan 0.0926 0.3997
Fixed cost×US 0.5149 1.8290 ∗
Fixed cost×Other −0.0510 −0.1077
Fixed cost×Index −0.2880 −0.7308
Fixed cost×Param −1.1225 −3.3015 ∗ ∗ ∗
R2 0.7860
adjustedR2 0.7698
K (billions) 0.7529
P (millions) 2.3125

Table 7: Full specification
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coeff t statistic sign
Expected loss 1.4698 10.2101 ∗ ∗ ∗
Risk premium 0.0028 2.1814 ∗∗
Fixed cost×2011 3.8580 3.5784 ∗ ∗ ∗
Fixed cost×2012 3.4995 8.7510 ∗ ∗ ∗
Fixed cost×2013 1.6547 4.5594 ∗ ∗ ∗
Fixed cost×2014 0.6724 5.8811 ∗ ∗ ∗
Fixed costt× 2015 0.5820 1.4407
Fixed cost×2016 −0.0396 −0.1135
Fixed cost×Japan 0.1879 0.8498
Fixed cost×US 0.6912 2.9144 ∗ ∗ ∗
Fixed cost×Other 0.2640 0.6896
Fixed cost×Index −0.2384 −0.5998
Fixed cost×Param −1.1137 −3.2829 ∗ ∗ ∗
R2 0.7845
adjustedR2 0.7694
K (billions) 0.7554
P (millions) 1.5666

Table 8: No fixed cost

coeff t statistic sign
Expected loss 1.7862 14.7812 ∗ ∗ ∗
Fixed cost 0.4423 0.8028
Fixed cost×2011 3.6242 3.0851 ∗ ∗ ∗
Fixed cost×2012 3.1972 6.8988 ∗ ∗ ∗
Fixed cost×2013 1.3691 2.6737 ∗∗
Fixed cost×2014 0.1394 0.2574
Fixed costt× 2015 0.2671 0.4961
Fixed cost×2016 −0.6864 −1.4555
Fixed cost×Japan 0.2828 1.1127
Fixed cost×US 0.5116 1.4984
Fixed cost×Other −0.0606 −0.1136
Fixed cost×Index −0.3867 −0.8408
Fixed cost×Param −1.2987 −3.5668 ∗ ∗ ∗
R2 0.7223
adjustedR2 0.7029
K (billions) 1.9044
P (millions) 2.415

Table 9: No risk premium
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coeff t statistic sign
Expected loss 1.7901 14.8286 ∗ ∗ ∗
Fixed cost×2011 3.9278 3.5102 ∗ ∗ ∗
Fixed cost×2012 3.5011 8.3361 ∗ ∗ ∗
Fixed cost×2013 1.6960 4.2504 ∗ ∗ ∗
Fixed cost×2014 0.5349 4.1758 ∗ ∗ ∗
Fixed costt× 2015 0.5881 1.1696
Fixed cost×2016 −0.3608 −0.8465
Fixed cost×Japan 0.3382 1.3638
Fixed cost×US 0.6162 2.1877 ∗∗
Fixed cost×Other 0.1263 0.2949
Fixed cost×Index −0.3567 −0.7610
Fixed cost×Param −1.2924 −3.5505 ∗ ∗ ∗
R2 0.7217
adjustedR2 0.7040
K (billions) 1.9015
P (millions) 1.9743

Table 10: No risk premium/No fixed cost

6.7 Comparison with alternative models of cat bond
pricing

This section compares our data set with Braun (2015)’s. In order to do so, we
contrast the four cat bond pricing models estimated in Braun (2015), on a sample
of 466 cat bond tranches covering a period from 1997 to 2012 (Table 11), with
the same models estimated on our data set (Table 12). For comparison purposes,
spreads are converted into basis points and expected losses are expressed in per-
centage points. Tables 11 and 12 display very similar estimates. All variables are
significant, except γ̂ estimated in Lane’s (2000) model, both with our own and
Braun’s (2015) data sets. The first model specifies spreads as a linear function of
expected loss

si = α̂+ β̂πiE(x̃)i.
The second model has spread as a polynomial of the natural logarithm of the
expected loss

si = α̂+ β̂ ln πiE(x̃)i + γ̂[ln πiE(x̃)i]2.
The third model is from Lane (2000) and specifies

si = πiE(x̃)i + α̂πβ̂i E(x̃)γ̂i .

Finally, Major and Kreps’ (2002) model posits

si = α̂(πiE(x̃)i)β̂.
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6.8 Robustness analysis
The following tables summarize the robustness analysis of our numerical results in
section 4. Each table presents either optimal coverage or welfare gain for a given
set of hypotheses. The cost of handling claims is set to λ = 0.3, which is viewed as
a reasonable estimate in the literature. However, changes in this parameter have
a very limited impact on the simulation results. The scenarios that are considered
vary across lines. All results are expressed in euros. Within each table, we fix
R and let R vary through the columns. From left to right, we therefore increase
the agent’s risk aversion. For each level of R we provide two tables. The first
delivers our estimates for the optimal level of coverage and the second computes
the welfare gain relative to the no-coverage situation.

The most sensitive parameter is usually the subsistence level θ. Our results
indicate that, while the optimal coverage is robust to changes in θ, the estimated
welfare gains are quite sensitive. As expected, optimal coverage increases with the
severity of the scenario under consideration and with the degree of risk aversion.
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6.8.1 Optimal coverage and welfare gains with θ = 0.90

R 1
Scenario Cover Welfare

1 0.2865 0.0101
2 0.3538 0.0128
3 0.3883 0.0141
4 0.4097 0.0147
5 0.4244 0.0150

Table 13: Coverage, R = 1

R 1 2
Scenario Cover Welfare Cover Welfare

1 0.6873 0.0556 0.7529 0.0786
2 0.9646 0.0814 1.1021 0.1202
3 1.1454 0.0957 1.3495 0.1456
4 1.2775 0.1038 1.5429 0.1617
5 1.3801 0.1083 1.7016 0.1719

Table 14: Coverage, R = 2

R 1 2 3
Scenario Cover Welfare Cover Welfare Cover Welfare

1 1.0194 0.1474 1.1010 0.2313 1.1287 0.2816
2 1.5468 0.2197 1.7361 0.3405 1.8022 0.4063
3 1.9337 0.2592 2.2349 0.4001 2.3422 0.4725
4 2.2427 0.2813 2.6557 0.4348 2.8054 0.5107
5 2.5006 0.2933 3.0238 0.4553 3.2164 0.5337

Table 15: Coverage, R = 3
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6.8.2 Optimal coverage and welfare gains with θ = 0.975

R 1
Scenario Cover Welfare

1 0.40609 0.0201
2 0.53913 0.0283
3 0.62009 0.0330
4 0.67669 0.0358
5 0.71916 0.0376

Table 18: Coverage, R = 1

R 1 2
Scenario Cover Welfare Cover Welfare
Scenario 1 0.9161 0.1430 0.9353 0.1655
Scenario 2 1.3933 0.2190 1.4368 0.2532
Scenario 3 1.7550 0.2649 1.8237 0.3062
Scenario 4 2.0530 0.2939 2.1472 0.3402
Scenario 5 2.3090 0.3125 2.4284 0.3624

Table 19: Coverage, R = 2

R 1 2 3
Scenario Cover Welfare Cover Welfare Cover Welfare

1 1.3123 0.4423 1.3345 0.5298 1.3419 0.5664
2 2.1385 0.5830 2.1928 0.6681 2.2110 0.7016
3 2.8201 0.6468 2.9099 0.7273 2.9401 0.7584
4 3.4178 0.6804 3.5449 0.7579 3.5878 0.7879
5 3.9577 0.6993 4.1235 0.7753 4.1795 0.8048

Table 20: Coverage, R = 3
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