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Abstract—The model-based control of building heating systems
for energy saving encounters severe physical, mathematical and
calibration difficulties in the numerous attempts that has been
published until now. This topic is addressed here via a new
model-free control setting, where the need of any mathematical
description disappears. Several convincing computer simulations
are presented. Comparisons with classic PI controllers and
flatness-based predictive control are provided.
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1. Introduction

The growing importance of energy saving explains the key
role of heating, ventilation and air conditioning (HVAC). It
raises many exciting questions (see, e.g., [28]). We concentrate
here on the building heating system. This topic, according to
[38], has not attracted enough investigation from the control
community. Let us mention here Boolean control, predictive
control, PIDs, optimal control, nonlinear control, partial differ-
ential equations, flatness-based control, fuzzy systems, neural
nets, ...(see, e.g., [2], [3], [4], [5], [6], [8], [10], [13], [14],
[17], [24], [25], [26], [29], [31], [33], [34], [35], [36], [37],
[38], [43], [45], [47], ...). The more “advanced” control ap-
proaches, which are listed above, are model-based. Here again,
like in most concrete situations, writing a “good” mathematical
model, where constraints and perturbations might be severe, is
quite beyond our reach especially if online calibration ought
to be performed. Those facts explain why in industrial practice
classic PIDs and Boolean control, which to a large extent
preclude any mathematical modeling, are most popular in spite
of some shortcomings: poor performances and delicate tuning.

The topic is addressed here via model-free control and their
corresponding intelligent controllers [18]. This setting,

o where the need of any precise mathematical descrip-
tion disappears,

e which is

— inherently robust, since the perturbations are
easily taken into account,

— easy to implement both from software and hard-
ware viewpoints,

has already been successfully applied all over the world.!
Some applications are patented. Let us cite here for obvious
reasons only [30] and [12].

Our communication is organized as follows. Section 2
provides a brief presentation of model-free control and of the
corresponding intelligent P controllers. Section 3 describes a
simple linear model for the purpose of computer simulations
which are analyzed in Section 4. Comparisons may be found
there with proportional-integral controllers and with flatness-
based control. Some concluding remarks are presented in
Section 5.

2. Model-free control and intelligent controllers’

2.1. The ultra-local model

Replace the unknown global description by the ultra-local
model:
y=F+oau (1)

where

o the control and output variables are u and y,

o the derivation order of y is 1 like in most concrete
situations,

e « € R is chosen by the practitioner such that au and
y are of the same magnitude.

The following explanations on F' might be useful:

e I is estimated via the measure of u and y,
e F subsumes not only the unknown system structure
but also any perturbation.

1. See, e.g., the references in [18], and [1], [12] and the references therein.
2. See [18] for more details.



2.2. Intelligent controllers

The loop is closed by an intelligent proportional controller,
or iP,
F —y*— Kpe
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where

e y* is the reference trajectory,
e e =1y —y* is the tracking error,
e Kp is the usual tuning gain.

Combining Equations (1) and (2) yields:
e = er

where F' does not appear anymore. The tuning of K p, in order

to insure local stability, becomes therefore quite straightfor-

ward. This is a major benefit when compared to the tuning of

classic PIDs.

Remark 2.1. An appropriate choice of y* is of utmost im-
portance. Let us emphasize that this step is almost always
knowledge-based.

2.3. Estimation of F

The calculations below stem from new estimation tech-
niques (see [22], [23], and [41]).

2.3.1. First approach. The term F' in Equation (1) may be
assumed to be “well” approximated by a piecewise constant
function Fiy. Rewrite then Equation (1) in the operational
domain (see, e.g., [16]):

d
sY = — 4+ aU + y(0)
s

where ® is a constant. We get rid of the initial condition y(0)
by multiplying both sides on the left by %:
v avy o au
T T TR T
Noise attenuation is achieved by multiplying both sides on the
left by s~2. It yields in the time domain the realtime estimate,
thanks to the equivalence between % and the multiplication
by —t,

Fu(t) = —g /ti (T —20)y(0o) + ao(T — o)u(o)] do

3)
2.3.2. Second approach. Close the loop with the iP (2):

1 t
Fey(t) = = [/t (9" — au — Kpe)do 4)

Remark 2.2. Note the following facts:

o integrals (3) and (4) are low pass filters,

e 7 >0 might be quite small,

« the integrals may of course be replaced in practice by
classic digital filters.

Remark 2.3. A hardware implementation of the above com-
putations is easy [27].

3. Modeling for computer simulations

Several authors (see, e.g., [46]) emphasized the necessity
to simplify a “full” mathematical description, which comprises
partial differential equations like, of course, the Fourier heat
equation. Many publications have been devoted to the deriva-
tion of a “simple” but “efficient” modeling (see, e.g., [4], [6],
[44], [48], and the references therein). Like in [5], a linear
model due to [15] is used:

{ T‘int: %7%(ﬂntf

Twall =

Twall) - ﬁ (T‘int -

Cq Tcxt )

(&)

% (T‘int - T’LU) - Kcezt (Twall - Text)

Tint, which has to be controlled via the the heat input @), (resp.
Text> Twanl) 1s the inside (resp. outside, wall) temperature. The
other coefficients are suitable physical quantities. Their nom-
inal values are borrowed from [11]: C, = 1400, C,, = 2200,
K.=14, Kf =0.004, K¢zt = 0.04.

Text should be viewed as a perturbation in the control-
theoretic meaning of this word, i.e., Tyt is not regulated.

4. Comparisons of computer simulations

4.1. iP

Set a = 0.5, Kp = —0.5 in Equation (2). It yields Figure

1 where the results are excellent with the the exception of two

large errors in the tracking: T,y becomes too large and the

control variable @) is non-negative. Figure 2 shows that those
errors disappear if cooling is allowed, i.e., if the sign of @ is
arbitrary.

Remark 4.1. Lack of space prevents us from showing the
excellent results obtained with values of the coefficients
in Equation (5) which are quite far from the nominal
ones. Moreover, the tuning of our iP does not need to be
modified. Parameter identification becomes thus irrelevant.

4.2. P1

Introduce the classic proportional-integral (PI) controller
(see, e.g., [7]):

szpe-l—ki/e (6)
where

e e =1y —y~ is the tracking error,
e kp,k; € R are tuning gains.

Set k, = —0.5, k; = —0.01. If, like too often in the industrial
world, we leave a step between two different setpoints, Figures
3 and 1 show a significant performance deterioration. When
this step is replaced by the same smooth reference trajectory
used in Section 4.1, Figures 4 and 1 become almost identical.

Remark 4.2. This result is not surprising. It is known [9], [18]
that iPs and PIs are equivalent in some sense.

Remark 4.3. In order to avoid steps we could have also
employed setpoint ramping (see, e.g., [32]).
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Figure 1. iP with heating
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Figure 2. iP with heating and cooling

4.3. Flatness-based predictive control

4.3.1. Generalities. Flatness-based control, which was intro-
duced more than 25 years ago [20], certainly is one of the
very few academic advances which have become popular in
the industrial world (see also, e.g., [7], [21], [39], [40], [49]).
It might be viewed as another way of doing predictive control,
but without any optimization techniques. From this standpoint,
the first Equation in (5) yields

* x K Kf *
Q" =Ca <Tint + (07: + CT) int)
where T}y, is the reference trajectory for the internal tem-
perature and Q* the corresponding open-loop control. The
closed-loop control reads @ = Q* + C(e), where C(e) is

some regulator.

4.3.2. P. C(e) is a static state-feedback, i.e., nothing else than
a trivial P controller. Determine it by imposing a pole equal
to 0.01. The results in Figure 5 are poor. The perturbation
represented by the external temperature cannot be rejected if
it is not measured.

Remark 4.4. Let us add however that such a perturbation might
be measured and therefore rejected via some appropriate
tools (see, e.g., [19]).3

4.3.3. PL C(e) is now a PI (6). The results in Figure 6, where
the gains are tuned such that there is a double pole equal to
—0.005, are rather good. Note however that the control input
fluctuates too quickly. With a double pole equal to —0.001, the

3. Such a control design is often called Active Disturbance Rejection
Control, or ADRC (see, e.g., [42] and the references therein).
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Figure 4. PI with a smooth reference trajectory

comparison of performances displayed in Figure 7 and Figure
1 show a poor robustness with respect to noises.

Remark 4.5. Section 4.3 confirms that a model-based stand-
point might be cumbersome and, therefore, inappropriate.

5. Conclusion

Satisfactory computer simulations were presented via
model-free control and with a great ease. They will soon be
tested in a real building and hopefully confirmed. The excel-
lent results which were recently obtained on an experimental
greenhouse [30] should make us optimistic.
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