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LINEAR BOLTZMANN EQUATION

AND FRACTIONAL DIFFUSION

CLAUDE BARDOS, FRANÇOIS GOLSE, AND IVAN MOYANO

Abstract. Consider the linear Boltzmann equation of radiative transfer in a
half-space, with constant scattering coefficient σ. Assume that, on the bound-
ary of the half-space, the radiation intensity satisfies the Lambert (i.e. diffuse)
reflection law with albedo coefficient α. Moreover, assume that there is a tem-
perature gradient on the boundary of the half-space, which radiates energy
in the half-space according to the Stefan-Boltzmann law. In the asymptotic
regime where σ → +∞ and 1−α ∼ C/σ, we prove that the radiation pressure
exerted on the boundary of the half-space is governed by a fractional diffusion
equation. This result provides an example of fractional diffusion asymptotic
limit of a kinetic model which is based on the harmonic extension definition of√
−∆. This fractional diffusion limit therefore differs from most of other such

limits for kinetic models reported in the literature, which are based on specific
properties of the equilibrium distributions (“heavy tails”) or of the scattering
coefficient as in [U. Frisch-H. Frisch: Mon. Not. R. Astr. Not. 181 (1977),
273–280].

1. Introduction

The diffusion approximation for the linear Boltzmann equation has been known
for a long time and in very different contexts, such as nuclear engineering (see
chapter IX in [23]), or radiative transfer (see chapter III.2 in [21]). There are sev-
eral proofs of the validity of the diffusion approximation, involving rather different
mathematical methods: stochastic processes [15, 20, 5], Hilbert expansion [17, 7],
or chapter XXI, §5 in [10], moment method [2, 3] . . .

However, there are several situations where the same type of scaling limits of the
linear Boltzmann equation lead to fractional (or more generally nonlocal) diffusion
equation. A first class of linear Boltzmann equations leading to a fractional diffusion
equation includes situations where the scattering rate is not uniformly large over
the whole energy range of the particle system considered. See [12] for an example
in radiative transfer.

A second class of linear Boltzmann equations leading to a fractional diffusion
equation includes the case of collision integrals whose equilibrium solutions have
infinite second order moments: see for instance [4, 18, 19, 1].

In the present work, we give an example of a completely different type of asymp-
totic limit of a linear Boltzmann equation leading to a fractional diffusion equation.

Before describing more precisely the physical problem considered in the present
paper, we recall the following well-known fact from classical analysis, which the
reader might find convenient to keep in mind.
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2 CLAUDE BARDOS, FRANÇOIS GOLSE, AND IVAN MOYANO

1.1. Fractional Diffusion and Harmonic Extensions. Let1 f ∈ Lp(Td), with
1 ≤ p <∞, and let 0 < γ < 2. Then

(−∆x)
γ/2f(x) = −∂yF (x, 0) ,

where F ≡ F (x, y) ∈ Cb([0,∞);Lp(Td)) is the unique solution to the boundary
value problem
{

−∆xF (x, y)− γ2cγ/2γ y2−2/γ∂2yF (x, y) = 0 , (x, y) ∈ Td × (0,+∞) ,

F (x, 0) = f(x) , x ∈ Td ,

where

cγ = 2−γ |Γ(−γ/2)|/Γ(γ/2)

(See for instance [16], Theorem 1.1 (j) for the analogous result, assuming that the
function f satisfies f ∈ Lp(Rd) instead of Lp(Td).))

1.2. The Model. We seek to describe radiative transfer in a homogeneous medium
filling the half-space

{z := (x, y) : y > 0 and x ∈ R2} .

We assume that true absorption and emission are negligible effects in this medium.
We assume that the only process of physical importance in the medium is scattering
(of Thomson type), which means that the elementary scattering process at the level
of particles is independent of, and does not modify the frequency of photons. The
scattering coefficient σ > 0 and scattering transition probability (also called “phase
function” in §3 of [8]) p ≡ p(ω, ω′) are assumed to be independent of the position
variable z.

Under these assumptions, the radiative intensity (integrated in the frequency
variable) at the position z and in the direction ω, henceforth denoted f ≡ f(z, ω),
satisfies the radiative transfer equation (see chapter I in [8]):

(1) ω · ∇zf(z, ω) = σ

∫

S2

p(ω, ω′)(f(z, ω′)− f(z, ω)) dω , y > 0 , |ω| = 1 .

On the plane of equation y = 0 (the boundary of the half-space), we assume that
the radiation field obeys the Lambert reflection law, with albedo α (see formula (81)
in §47 on p. 146 in [8]). On the other hand, we assume that the temperature at the
point x of the plane of equation y = 0 is T (x), so that the surface emits a radiative
intensity acT (x)4 in all directions at the point x, according to the Stefan-Boltzmann
law. The constant a is

a :=
8π5k4B
15c2~3

,

where kB is the Boltzmann constant, c is the speed of light in the vacuum, and ~

is the reduced Planck constant.
In other words, the radiative intensity f satisfies the boundary condition

(2) f(x, 0, ω) = aT (x)4 +
α

π

∫

S2

f(x, 0, ω′)(ω′
y)

− dω′ , ωy > 0 .

1We denote by T
d the d-dimensional torus T

d = R
d/Zd.
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1.3. Scaling and Other Assumptions. We are concerned with the following
limit of the radiative transfer equation (1) with the boundary condition (2):

(a) σ ≫ 1 (high scattering regime);
(b) 0 < 1− α ≪ 1 (high albedo surface).

We shall adopt the following mathematical setting. For any integer d ≥ 1, set
Z := Td × (0,+∞); points in Z are denoted by z = (x, y) with x ∈ Td and y > 0.
Accordingly, unit tangent vectors to Z are denoted by2 ω = (ωx, ωy) ∈ Sd, with
ωx ∈ Rd and ωy ∈ R. One has

∫

Sd

ω±
y dω =

∫ π/2

0

cos θ(sin θ)d−1 dθ =
1

d
|Sd−1| = |Bd| .

We shall henceforth use the following notation:

〈φ〉 :=
1

|Sd|

∫

Sd

φ(ω) dω , φ ∈ C(Sd) ,

and
〈〈

ψ
〉〉

±
:=

1

|Bd|

∫

Sd

ψ(ω)ω±
y dω , φ ∈ C(Sd) .

We assume that condition (b) is realized by taking the albedo coefficient α of
∂Z of the form

α :=
κσ

1 + κσ
where κ > 0 is a constant, and we set

S(x) := (1 + κσ)aT (x)4 .

Since β2 = π, the boundary condition (2) is recast as

(3) f(x, 0, ω) =
S(x)

1 + κσ
+

κσ

1 + κσ

〈〈

f(x, 0, ·)
〉〉

−
, ωy > 0 .

Observing that the right hand side of (3) is independent of ω, this boundary con-
dition implies that f(x, 0, ω) is independent of ω for ωy > 0, so that

f(x, 0, ω) =
f(x, 0, ω)

1 + κσ
+

κσ

1 + κσ

〈〈

f(x, 0, ·)
〉〉

+
.

Substituting this expression on the left hand side of (3), we arrive at the following
equivalent formulation of the boundary condition (3):

(4) f(x, 0, ω) = S(x)−
κσ

|Bd|

∫

Sd

f(x, 0, ω′)ω′
y dω

′ , ωy > 0 .

We further assume that p ≡ p(ω, ω′) is a measurable function defined a.e. on
Sd × Sd satisfying the following condition:
(5)

p(ω, ω′) = p(ω′, ω) > 0 a.e. on Sd × Sd ,

∫

Sd

p(ω, ω′) dω′ = 1 for a.e. ω ∈ Sd .

We shall denote by L the bounded linear operator defined on L∞(Sd) by the formula

Lφ(ω) =

∫

Sd

p(ω, ω′)(φ(ω) − φ(ω′)) dω′ = φ(ω)−

∫

Sd

p(ω, ω′)φ(ω′) dω′ .

2We denote by S
d the unit sphere in R

d+1, and by B
d the unit ball in R

d. We also denote by
|Sd| the d-dimensional area of Sd, and by |Bd| the d-dimensional Lebesgue measure of Bd. We
recall that d|Bd| = |Sd−1| for all d ≥ 1.
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With these elements of notation, the boundary value problem for the radiative
transfer equation (1) with boundary condition (2) takes the form

(6)



















ω · ∇zfσ(z, ω) + σ(Lfσ)(z, ·) = 0 , (z, ω) ∈ Z × Sd ,

fσ(x, 0, ω) =
S(x)

1 + κσ
+

κσ

1 + κσ

〈〈

fσ(x, 0, ·)
〉〉

−
, x ∈ Td , ωy > 0 ,

where

(Lfσ)(z, ω) := (Lfσ(z, ·))(ω) .

The purpose of the present work is to study the boundary value problem (6) in
the asymptotic regime σ → +∞.

2. Main Result

2.1. Heuristic approach. In order to gain some intuition on this problem, we
apply the Hilbert expansion method. This method is named after Hilbert on the
basis of [14], where it has been used for the first time on the Boltzmann equation in
the context of the kinetic theory of gases. Its application to the linear Boltzmann
equation is discussed in detail in [17, 7].

Thus, we seek fσ as the formal power series

(7) fσ(z, ω) =
∑

j≥0

σ−jfj(z, ω) , ∇m
z fj ∈ C(Z × Sd) for all integers j,m ≥ 0 .

Substituting this ansatz in the radiative transfer equation leads to the sequence of
integral equations:

Order O(σ):

Lf0(z, ω) = 0 ,

Order O(1):

Lf1(z, ω) = −ω · ∇zf0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Order O(σ−j):

Lfj+1(z, ω) = −ω · ∇zfj .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lemma 2.1. Under assumption (5), the linear operator L is bounded on L2(Sd;Cd)
and satisfies

‖L‖ ≤ 2 , and KerL = { constants } = C .

Proof. Because of the last equality in (5), one has R ⊂ KerL.
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For each φ ∈ L2(Sd), one has
(8)
∫

Sd

φ(ω)(Lψ)(ω) dω =

∫∫

Sd×Sd

φ(ω)p(ω, ω′)(ψ(ω)− ψ(ω′)) dω dω′

=

∫∫

Sd×Sd

φ(ω′)p(ω, ω′)(ψ(ω′)− ψ(ω)) dω dω′

=

∫∫

Sd×Sd

1
2p(ω, ω

′)(φ(ω) − φ(ω′))(ψ(ω)− ψ(ω′)) dω dω′ .

The second equality above follows from the symmetry of p in (5), while the third
equality is obtained by adding the right hand sides of the first and the second
equalities.

If φ ∈ KerL, then
∫∫

Sd×Sd

p(ω, ω′)(φ(ω)− φ(ω′))2 dω dω′ = 0

because of (8) with φ = ψ. Since p > 0 a.e. on Sd × Sd,

φ(ω)− φ(ω′) = 0 for a.e. (ω, ω′) ∈ Sd × Sd .

Averaging both sides of this equality in ω′ implies that

φ(ω) = 〈φ〉 for a.e. ω ∈ Sd .

Thus φ is a.e. a constant, and this proves that KerL = { constants }.
Finally

∫

Sd

|(Lφ)(ω)|2 dω =

∫

Sd

∣

∣

∣

∣

∫

Sd

p(ω, ω′)(φ(ω)− φ(ω′)) dω′

∣

∣

∣

∣

2

dω

≤

∫

Sd

(
∫

Sd

p(ω, ω′) dω′

)(
∫

Sd

p(ω, ω′)|φ(ω)− φ(ω′)|2 dω′

)

dω

=

∫∫

Sd

p(ω, ω′)|φ(ω)− φ(ω′)|2 dω dω′ = 2

∫

Sd

φ(ω)(Lφ)(ω) dω ,

where the inequality follows from the Cauchy-Schwarz inequality applied to the
inner integral, and the last equality from (8) with φ = ψ. Applying the Cauchy-
Schwarz inequality to the last right hand side, one obtains

∫

Sd

|(Lφ)(ω)|2 dω ≤ 2‖φ‖L2(Sd)‖Lφ‖L2(Sd) ,

which implies that ‖L‖ ≤ 2. �

We conclude from this lemma the solution to the equation at order O(σ):

Order O(σ):

f0(z, ω) = ρ0(z) , for a.e. (z, ω) ∈ Z × Sd .

Next we study the equation at order O(1) for f1. We shall need the following
additional assumption on p:

(9) p ∈ L2(Sd × Sd) .

Denoting by K the linear operator defined by

(10) (Kφ)(ω) :=

∫

Sd

p(ω, ω′)φ(ω′) dω′ , ω ∈ Sd ,
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one has
L = I−K .

Lemma 2.2. The operator L is bounded and of Fredholm type on L2(Sd;Cd), and
satisfies

L = L∗ , ImL = C⊥ =

{

ψ ∈ L2(Sd;Cd) s.t.

∫

Sd

ψ(ω) dω = 0

}

.

Proof. The operator K is a self-adjoint Hilbert-Schmidt operator on L2(Sd;Cd)
since its integral kernel p is a symmetric real-valued square-integrable function by
(5)-(9). In particular K is a compact operator on L2(Sd;Cd) (see section 6.4.2 and
Theorem 6.12 in [6]). This implies that L is a self-adjoint, bounded operator on
L2(Sd;Cd) of Fredholm type (see section 6.4.1 in [6]).

Fredholm’s alternative (Theorem 6.6 in [6]) states that

ImL = (KerL)⊥

and we conclude the proof with the characterization of KerL in Lemma 2.1. �

Since 〈ω〉 = 0, Fredholm’s alternative implies that there exists a unique function
Ω ≡ Ω(ω) ∈ L2(Sd) such that

(11) 〈Ω〉 = 0 and (LΩ)(ω) = ω , for a.e. ω ∈ Sd .

Combining Lemmas 2.1 and 2.2 leads to the following result for the solution of
the equation at order O(1):

Order O(1):

f1(z, ω) = ρ1(z)− Ω(ω) · ∇ρ0(z) , for a.e. (z, ω) ∈ Z × Sd .

Higher order terms in the expansion are found in the same way, by solving
successively for fj+1 the integral equations

Lfj+1 = −ω · ∇zfj

for j ≥ 1. We shall not pursue this line of investigation, since only f0 and f1 will
be used in the present section.

At this point, we introduce a last assumption on the scattering transition prob-
ability p, specifically, we require that p is rotationally invariant: for each Q in the
orthogonal group Od+1(R),

(12) p(Qω,Qω′) = p(ω, ω′) , for a.e. (ω, ω′) ∈ Sd × Sd .

Under this assumption, it has been proved in [7] that the diffusion matrix3

〈ω ⊗ Ω〉 is of the form 〈ω ⊗ Ω〉 =
〈ω · Ω〉

d+ 1
I .

Besides

〈ω · Ω〉 = 〈(LΩ) · Ω〉 = 1
2

∫∫

Sd×Sd

p(ω, ω′)|Ω(ω)− Ω(ω′)|2 dω dω′ > 0 .

Notice that this inequality is strict: otherwise, one would have

p(ω, ω′)(Ω(ω) − Ω(ω′)) = 0 for a.e. (ω, ω′) ∈ Sd × Sd .

3See formulas (40)-(44) on p. 624 in [7]. Actually, one can deduce from equation (42) in [7]
that Ω is of the form Ω(ω) = λω: see Lemma 3 in [11], or Lemma 8 in Appendix 1 of [13]. With

Ω of this form, one immediately concludes that 〈ω ⊗Ω〉 = λ
d+1

I.
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This would imply that

0 =

∫

Sd

p(ω, ω′)(Ω(ω)− Ω(ω′)) dω′ = (LΩ)(ω) = ω

which is obviously a contradiction.
From the equation at order O(σ), i.e.

Lf2 = −ω · ∇zf1 ,

we conclude that

divz〈ωf1〉 = 0 .

Otherwise, one would have ω · ∇zf1 /∈ ImL according to Lemma 2.2. With the
expression for f1 obtained above, this equality takes the form

divz

(

−
〈ω · Ω〉

d+ 1
∇zρ0

)

= 0 ,

or equivalently

(13) −∆ρ0(z) = 0 , z ∈ Z .

Moreover, if the Hilbert expansion (7) holds at the boundary, then we deduce
from the equivalent formulation (4) of the boundary condition in (6) that

(14)

ρ0(x, 0) =S(x)−
κσ

|Bd|

∫

Sd

(

ρ1(x, 0)−
1

σ
Ω(ω′) · ∇ρ0(x, 0)

)

ω′
y dω

′

=S(x) +
κ|Sd|

|Bd|
〈ωyΩ〉 · ∇ρ0(x, 0)

=S(x) +
κ|Sd|〈ω · Ω〉

|Bd|(d+ 1)
∂yρ0(x, 0) , x ∈ Td .

Returning to the original variables, and to the case of physical interest where
d = 2, we recall that the radiation pressure P(x) at the point x of ∂Z is defined by
the identity

1

c

∫

S2

ω ⊗ ωf(x, 0, ω) dω = P(x)I .

(See for instance formula (1.19) in [21]). Therefore, to leading order in 1/σ, one
has

P(x) ≃
4π

3c
ρ0(x, 0) .

Since 4π
3c ρ0 is an harmonic extension of P , applying the formula for the fractional

diffusion operator recalled in section 1.1 leads to the following equation for the
radiation pressure field on the boundary:

(15) 3
4 (1− α)P(x) + α〈ω · Ω〉

1

σ
(−∆x)

1/2P(x) =
aπT (x)4

c
, x ∈ T2 .

Assumption (12) is verified by most of the scattering transition probabilities p
used in practice, such as

p(ω, ω′) =
1

|Sd|
, (isotropic scattering)

p(ω, ω′) = 3
16π (1 + (ω · ω′)2) , (Rayleigh phase function for d = 2)
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(see formulas (30)-(31)-(33) in §3 or formula (192) in §16 of [8]). More generally,
all scattering transition probabilities of the form

(16) p(ω, ω′) = P ((ω · ω′)2) ,

under the normalizing condition
∫ 1

0

P (µ2)(1− µ2)
d
2
−1 dµ =

1

2|Sd−1|
,

satisfy (12). In that case
∫

Sd

P ((ω · ω′)2)ω′ dω′ = 0

(since the integral the right hand side of this last equality must be invariant under
the substitution ω′ 7→ −ω′), so that

Lω = ω , and therefore Ω(ω) = ω .

In that case
〈ω · Ω〉 = 1 ,

and the diffusion coefficient in the usual diffusion approximation of the linear Boltz-
mann equation is

〈ω · Ω〉

(d+ 1)σ
=

1

(d+ 1)σ
.

In particular, the equation (15) satisfied by the radiation pressure field on the
boundary ∂Z is, in this case,

3
4 (1− α)P(x) +

α

σ
(−∆x)

1/2P(x) =
aπT (x)4

c
, x ∈ T2 .

2.2. The Limit Theorem. The analysis based on Hilbert’s expansion presented
in the previous section is only formal. A rigorous analysis of the problem based on
the moment method for kinetic models leads to the following result.

Theorem 2.3. Assume that p ≡ p(ω, ω′) is a measurable function defined a.e. on
Sd×Sd, satisfying (5)-(9)-(12). Denote by Ω the unique element of L2(Sd) defined
by (11). Let S ∈ W 1,∞(Td).

(a) For each σ > 0, the boundary value problem (6) has a unique solution

fσ ∈ L∞(Td × (0,+∞)× Sd) ;

this solution satisfies

‖fσ‖L∞(Td×(0,+∞)×Sd) ≤ ‖S‖L∞(Td) ,

and
‖∂xjfσ‖L∞(Td×(0,+∞)×Sd) ≤ ‖∂xjS‖L∞(Td)

for all j = 1, . . . , d.
(b) In the limit as σ → +∞, one has

fσ → ρ ≡ ρ(z) in L∞(Td × (0,+∞)× Sd) weak− ∗

and
σ(fσ − 〈fσ〉) → −Ω · ∇ρ in L2(Td × (0,+∞)× Sd) weak ,

where ρ ≡ ρ(z) satisfies the properties

ρ ∈ L∞(Td × (0,+∞)) , ∇ρ ∈ L2(Td × (0,+∞)) ,
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and is the weak solution of the boundary value problem

(17)







−∆zρ(z) = 0 , z = (x, y) ∈ Td × (0,+∞) ,
(

ρ− κ〈ω · Ω〉 |B
d+1|

|Bd| ∂yρ
)

∣

∣

y=0
= S , x ∈ Td .

(c) In the limit as σ → +∞, one has

fσ
∣

∣

y=0
→ R in L2(Td × Sd; |ωy| dxdω) weak,

and
σ〈ωyfσ〉

∣

∣

y=0
→ − 〈ω·Ω〉

d+1 ∂yρ
∣

∣

y=0
in H−1/2(Td) weak,

where R ≡ R(x) is the solution to the fractional diffusion equation

(18) R(x) + κ〈ω · Ω〉 |B
d+1|

|Bd| (−∆x)
1/2R(x) = S(x) , x ∈ Td .

3. Proof of Theorem 2.3

3.1. Step 1. Consider the boundary value problem
{

λh+ ω · ∇zh+ σh = σQ(z, ω) ,

h(x, 0, ω) = H(x) , ωy > 0 ,

where Q ∈ L∞(Z × Sd) and H ∈ L∞(Td).
Its unique solution is given by the method of characteristics

h(z, ω) =H(x− y
ωy
ωx)e

−(λ+σ)y/ωy

+

∫ y/ωy

0

σe−(λ+σ)tQ(z − tω, ω) dt , ωy > 0 ,

h(z, ω) =

∫ ∞

0

σe−(λ+σ)tQ(z − tω, ω) dt , ωy < 0 .

Setting

θ := e−(λ+σ)y/ωy

we find that, for a.e. (z, ω) ∈ Z × Sd,

|h(z, ω)| ≤ max(θ‖H‖L∞ + σ
σ+λ (1− θ)‖Q‖L∞ , σ

σ+λ‖Q‖L∞)

= max( λθ
σ+λ‖H‖L∞ + σ

σ+λ ((1− θ)‖Q‖L∞ + θ‖H‖L∞), σ
σ+λ‖Q‖L∞)

≤ max( λ
σ+λ‖H‖L∞ + σ

σ+λ max(‖Q‖L∞ , ‖H‖L∞), σ
σ+λ‖Q‖L∞) .

This inequality implies, on the one hand, that, for each H ∈ L∞(Td), the map

Q 7→ Kh

is a contraction in L∞(Z × Sd) with Lipschitz constant ≤ σ
λ+σ . Indeed, denoting

by h1 and h2 corresponding to Q1 and Q2 respectively, one has

|(h1 − h2)(z, ω)| ≤
σ

σ+λ‖Q1 −Q2‖L∞ ,

as a consequence of the previous inequality. Indeed, by linearity h1−h2 is a solution
of the boundary value problem above with source term Q1−Q2 and boundary data
H = 0.

Using assumption (5), we see that the operator K defined in (10) is a bounded
operator on L∞(Sd), satisfying

‖K‖L(L∞(Sd)) ≤ 1 .
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Hence

‖Kh1 −Kh2‖L∞ ≤ ‖h1 − h2‖L∞ ≤ σ
σ+λ‖Q1 −Q2‖L∞ .

Therefore, the map Q 7→ Kh has a unique fixed point in L∞(Z × Sd).
In other words, there exists a unique solution g ∈ L∞(Z × Sd) to the boundary

value problem

(19)

{

λg + ω · ∇zg + σLg = 0 , (z, ω) ∈ Z × Sd ,

g(x, 0, ω) = H(x) , ωy > 0 ,

and this solution satisfies the bound

‖g‖L∞ ≤ max( λ
σ+λ‖H‖L∞ + σ

σ+λ max(‖Kg‖L∞ , ‖H‖L∞), σ
σ+λ‖Kg‖L∞) .

It is obviously impossible that

‖Kg‖L∞ > ‖H‖L∞ .

Indeed, since

‖Kg‖L∞ ≤ ‖g‖L∞ ,

the inequality above would imply that

‖Kg‖L∞ ≤ λ
σ+λ‖H‖L∞ + σ

σ+λ‖Kg‖L∞ ,

which would imply in turn

‖Kg‖L∞ ≤ ‖H‖L∞ ,

in contradiction with our assumption. Hence

‖Kg‖L∞ ≤ ‖H‖L∞ ,

and therefore

‖g‖L∞ ≤ max( λ
σ+λ‖H‖L∞ + σ

σ+λ max(‖Kg‖L∞ , ‖H‖L∞), σ
σ+λ‖Kg‖L∞)

= max( λ
σ+λ‖H‖L∞ + σ

σ+λ‖H‖L∞ , σ
σ+λ‖Kg‖L∞) = ‖H‖L∞ .

3.2. Step 2. With step 1, for each λ > 0 and σ > 0, we have constructed a linear
map

Tλ,σ : L∞(Td) 7→ L∞(Z × Sd)

defined by the formula

Tλ,σH = g ,

where g is the solution to the boundary value problem (19). We have also proved
that

‖Tλ,σH‖L∞ ≤ ‖H‖L∞ .

Now we seek to solve the boundary value problem

(20)







λf + ω · ∇zf + σLf = 0 , (z, ω) ∈ Z × Sd ,

f(x, 0, ω) =
1

1 + β
S(x) +

β

1 + β

〈〈

f(x, 0, ·)
〉〉

−
, ωy > 0 ,

Consider the map

Aλ,σ,β : L∞(Td) → L∞(Td)

defined by the formula

Aλ,σ,βF (x) := σ

〈〈
∫ ∞

0

e−(λ+σ)tK

(

Tλ,σ

(

S

1 + β
+

βF

1 + β

))

(x− tω, ω) dt

〉〉

−

.
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In terms of the operator K defined in (10), one has obviously

(Aλ,σ,βF1−Aλ,σ,βF2)(x) =
βσ

1 + β

〈〈
∫ ∞

0

e−(λ+σ)tK(Tλ,σ(F1−F2))(x−tω, ω) dt

〉〉

−

,

so that, for a.e. x ∈ Td,

|(Aλ,σ,βF1 −Aλ,σ,βF2)(x)| ≤
βσ

1 + β
‖Tλ,σ(F1 − F2)‖L∞

∫ ∞

0

e−(λ+σ)t dt

≤
βσ

1 + β
‖F1 − F2‖L∞

∫ ∞

0

e−(λ+σ)t dt

=
β

1 + β

σ

λ+ σ
‖F1 − F2‖L∞ .

In other words, Aλ,σ,β is a contraction in the Banach space L∞(Td) with Lipschitz

constant ≤ β
1+β

σ
λ+σ < 1.

By the fixed point theorem, there exists a unique F ∈ L∞(Td) such that

Aλ,σ,βF = F .

The solution to the boundary value problem (20) is given by the formula

f := Tλ,σ

(

S

1 + β
+

βF

1 + β

)

.

The fixed point F satisfies in particular the bound

‖F −Aλ,σ,β0‖L∞ ≤
β

1 + β

σ

λ+ σ
‖F‖L∞ .

Since

|Aλ,σ,β0(x)| = σ

〈〈
∫ ∞

0

e−(λ+σ)tK

(

Tλ,σ
S

1 + β

)

(x− tω, ω) dt

〉〉

−

,

one has

‖Aλ,σ,β0‖L∞ ≤
σ

1 + β
‖S‖L∞

∫ ∞

0

e−(λ+σ)t dt =
1

1 + β

σ

λ+ σ
‖S‖L∞ ,

so that

‖F‖L∞ ≤
1

1 + β

σ

λ+ σ
‖S‖L∞ +

β

1 + β

σ

λ+ σ
‖F‖L∞ .

Therefore

‖F‖L∞ ≤
σ

λ(1 + β) + σ
‖S‖L∞ ,

which implies in turn

‖f‖L∞ =

∥

∥

∥

∥

Tλ,σ

(

S

1 + β
+

βF

1 + β

)∥

∥

∥

∥

L∞

≤

(

1

1 + β
+

β

1 + β

σ

λ(1 + β) + σ

)

‖S‖L∞ ≤ ‖S‖L∞ .
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3.3. Step 3. Call fλ the unique solution of the boundary value problem (20) ob-
tained in step 2, for which we have obtained the bound

(21) ‖fλ‖L∞ ≤ ‖S‖L∞ , λ > 0 ,

which is uniform in λ > 0.
Now we consider the boundary value problem

(22)







ω · ∇zf + σLf = 0 , (z, ω) ∈ Z × Sd ,

f(x, 0, ω) =
1

1 + β
S(x) +

β

1 + β

〈〈

f(x, 0, ·)
〉〉

−
, ωy > 0 ,

of which we seek a solution by passing to the limit in fλ as λ→ 0.
On account of the uniform bound (21), the Banach-Alaoglu theorem implies the

existence of a sequence λn → 0 such that

fλn → f in L∞(Z × Sd) weak− ∗ .

One has obviously

λnfλn + ω · ∇zfλn + σLfλn → ω · ∇zf + σLf

in D′(Td × (0,+∞)× Sd), so that

ω · ∇zf + σLf = 0 dans D′(Td × (0,+∞)× Sd) .

For each φ ∈W 1,1(Td), one has

∂y

(

ωy

∫

Td

fλn(x, y, ω)φ(x) dx

)

=− λn

∫

Td

fλn(x, y, ω) dx

+

∫

Td

ωx · ∇φ(x)fλn(x, y, ω) dx

− σ

∫

Td

Lfλn(x, y, ω)φ(x) dx .

Therefore
∫

Td

fλn(x, y, ω)φ(x) dx et ∂y

(

ωy

∫

Td

fλn(x, y, ω)φ(x) dx

)

are bounded in L∞((0,+∞)× Sd). By Ascoli-Arzelà’s theorem,

ωyfλn(x, 0, ω) → ωyf(x, 0, ω) in L∞(Sd;W−1,∞(Td)) weak− ∗ ,

and
〈〈

fλn

〉〉

−
(·, 0) →

〈〈

f
〉〉

−
(·, 0) dans W−1,∞(Td) weak− ∗ .

By passing to the limit in the boundary condition

fλn(x, 0, ω) =
1

1 + β
S(x) +

β

1 + β

〈〈

fλn(x, 0, ·)
〉〉

−
, ωy > 0 , x ∈ Td ,

we conclude that

ω+
y f
∣

∣

y=0
=

ω+
y S

1 + β
+

βω+
y

1 + β

〈〈

f
〉〉

−

∣

∣

y=0
in L∞(Sd;W−1,∞(Td)) .

In particular

f(·, 0, ω) =
S

1 + β
+

β

1 + β

〈〈

f
〉〉

−
(·, 0) in W−1,∞(Td))

for a.e. ω ∈ Sd such that ωy > 0.
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The uniform bound (21) obviously implies that the solution to the boundary
value problem (22) satisfies the bound

‖f‖L∞ ≤ ‖S‖L∞ .

3.4. Step 4. In this step, we check that, for each S ∈ L∞(Td), there exists at most
one weak solution f of the boundary value problem







ω · ∇zf + σLf = 0 , (z, ω) ∈ Z × Sd ,

f(x, 0, ω) =
1

1 + β
S(x) +

β

1 + β

〈〈

f(x, 0, ·)
〉〉

−
, ωy > 0 ,

in the space L∞(Td × (0,+∞)× Sd).
By linearity, it is enough to show that, if g ∈ L∞(Td×(0,+∞)×Sd) is a solution

to the boundary value problem






ω · ∇zg + σLg = 0 , (z, ω) ∈ Z × Sd ,

g(x, 0, ω) =
β

1 + β

〈〈

g(x, 0, ·)
〉〉

−
, ωy > 0 ,

then g = 0, a.e..
Denote the sequence of Fourier coefficients of g in the y variable by

ĝ(k, y, ω) =

∫

Td

e−2πik·xg(x, y, ω) dx , k ∈ Zd .

Then, for each k ∈ Zd, on a






ωy∂y ĝ(k, y, ω) + i2πk · ωxĝ(k, y, ω) + σLg(k, y, ω) = 0 , y > 0 , |ω| = 1 ,

ĝ(k, 0, ω) =
β

1 + β

〈〈

g
〉〉

−
(k, 0) , ωy > 0 .

For each k and for a.e. ω ∈ Sd, the function y 7→ g(k, y, ω) belongs therefore to
W 1,∞(0,+∞).

Multiplying both sides of the differential equation above by ĝ(k, y, ω) leads to
the identity

(ĝωy∂y ĝ)(k, y, ω) + i2πk · ωx|ĝ(k, y, ω)|
2 + σĝ(k, y, ω)Lĝ(k, y, ω) = 0 .

Taking the real part of the right hand side of the equality above, we arrive at the
identty

ωy∂y|ĝ(k, y, ω)|
2 + 2σ|ĝ(k, y, ω)− 〈ĝ〉(k, y)|2

= −2σℜ
(

ĝ(k, y, ω)Lĝ(k, y, ω)
)

.

Now we average both sides of this equality in ω: for each k ∈ Zd,

∂y〈ωy|ĝ|
2〉(k, y) + 2σℜ〈ĝ(k, y, ·)Lĝ(k, y, ·)〉 = 0 , y > 0 .

At this point, we recall the following property of L.

Lemma 3.1. Under assumptions (5)-(9) on the function p, the operator L satisfies
the following properties. For each φ ∈ L2(Sd;C), one has

〈φLφ〉 = 1
2|Sd|

∫∫

Sd×Sd

p(ω, ω′)|φ(ω)− φ(ω′)|2 dω dω′ .

Moreover, there exists µ > 0 such that

〈φLφ〉 ≥ µ‖φ− 〈φ〉‖2L2(Sd) .
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The proof of this lemma is deferred until the end of the present step.

Thus, for each k ∈ Zd, the function

y 7→ 〈ωy|ĝ|
2〉(k, y)

is bounded and nonincreasing on (0,+∞), and applying Lemma 3.1 shows that

2σµ

∫ ∞

0

〈

|ĝ − 〈ĝ〉|
2

〉

(k, y) dy ≤ lim
Y→+∞

[

〈ωy|ĝ|
2〉(k, ·)

]y=0

y=Y
< +∞ .

Next observe that

(23) 〈ωy|ĝ|
2〉(k, y) = 〈ωy|ĝ − 〈ĝ〉|2〉(k, y) + 2ℜ

(

〈ωy(ĝ − 〈ĝ〉)〉(k, y)〈ĝ〉(k, y)
)

.

In view of the previous estimate, the first term on the right hand side of this
equality belongs to L1(0,+∞) since |ωy| ≤ 1, while the second term is bounded by
the Cauchy-Schwarz inequality:

2ℜ
(

〈ωy(ĝ − 〈ĝ〉)〉(k, y)〈ĝ〉(k, y)
)

≤ ‖g‖L∞〈ω2
y〉

1/2〈|g − 〈g〉|2〉(k, y)1/2 .

Hence the second term on the right hand side of (23) belongs to L2(0,+∞), and
since the first term is also bounded in L∞(0,+∞) because g is assumed to belong
to L∞(Z × Sd), we conclude that

y 7→ 〈ωy|ĝ|
2〉(k, y) belongs to L2(0,+∞)

for each k ∈ Zd. Since this function is moreover nonincreasing, we conclude that

0 = lim
Y→+∞

〈ωy|ĝ|
2〉(k, Y ) ≤ 〈ωy|ĝ|

2〉(k, y) for all y > 0 and all k ∈ Zd .

Thus, for each Y > 0, one has










〈ωy|ĝ|
2〉(k, Y ) + 2σµ

∫ Y

0

〈

|ĝ − 〈ĝ〉|
2

〉

(k, y) dy ≤ 〈ωy|ĝ|
2〉(k, 0) ,

〈ωy|ĝ|
2〉(k, Y ) ≥ 0 .

Moreover, the right hand side of this inequality satisfies

〈ωy|ĝ|
2〉(k, 0) = |Bd|

|Sd|

(

〈〈

|ĝ|2
〉〉

+
(k, 0)−

〈〈

|ĝ|2
〉〉

−
(k, 0)

)

= |Bd|
|Sd|

(

(

β
1+β

)2

|
〈〈

g
〉〉

−
(k, 0)|2

〈〈

1
〉〉

+
−
〈〈

|ĝ|2
〉〉

−
(k, 0)

)

= |Bd|
|Sd|

(

(

β
1+β

)2

|
〈〈

g
〉〉

−
(k, 0)|2 −

〈〈

|ĝ|2
〉〉

−
(k, 0)

)

≤ |Bd|
|Sd|

(

(

β
1+β

)2

− 1

)

〈〈

|ĝ|2
〉〉

−
(k, 0)

by the Cauchy-Schwarz inequality.
Summarizing, we have proved that, for all k ∈ Zd and all Y > 0

0 = 〈ωy|ĝ|
2〉(k, Y ) =

∫ Y

0

〈

|ĝ − 〈ĝ〉|
2

〉

(k, y) dy =
〈〈

|ĝ|2
〉〉

−
(k, 0) .

In particular, since L1 = 0, one has

Lĝ = L(ĝ − 〈ĝ〉) = 0 ,
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so that






ωy∂y ĝ(k, y, ω) + i2πk · ωxĝ(k, y, ω) = g(k, y, ω)− 〈ĝ〉(k, y) = 0 ,

ĝ(k, 0, ω) =
β

1 + β

〈〈

g
〉〉

−
(k, 0) = 0 , ωy > 0 .

The second equality above implies that, for a.e. (k, y) ∈ Zd × (0,+∞), the
function ω 7→ ĝ(k, y, ω) is a.e. constant on Sd. Hence

ωy∂y ĝ(k, y) + i2πk · ωxĝ(k, y) = 0 , for all ω ∈ Sd , and a.e. (k, y) ∈ Z× (0,+∞) .

Setting ωx = k/|k| and ωy = 0 shows that

k 6= 0 ⇒ ĝ(k, y) = 0 for a.e. y ≥ 0 .

On the other hand

∂y ĝ(0, y) = 0

by choosing ωx = 0 and ωy = 1, so that

ĝ(0, y) = ĝ(0, 0) .

Finally, the boundary condition implies that

ĝ(0, y) = ĝ(0, 0) = 0 , y > 0 .

Therefore, we have proved that ĝ(k, y, ω) = 0 for a.e. (y, ω) ∈ (0,+∞)× Sd, for
all k ∈ Zd. Since the Fourier transform is one-to-one, this implies that g = 0 in
L∞(Z × Sd).

The discussion above shows the existence and uniqueness of the solution fσ ∈
L∞(Z × Sd) to the boundary value problem (6) in the case where β = κσ; besides
we have seen at the end of Step 3 that

(24) ‖fσ‖L∞ ≤ ‖S‖L∞ .

If moreover S ∈ W 1,∞(Td), we may apply the results of Steps 1-4 to ∂xjS; this
shows that

fσ ∈ L∞((0,+∞)× Sd;W 1,∞(Td)) ,

and satisfies the bound

(25) ‖∇xfσ‖L∞ ≤ ‖∇xS‖L∞ , σ > 0 .

Notice that this bound is uniform in σ > 0. In other words, statement (a) in
Theorem 2.3 is implied by steps 1-4 with β = κσ.

Proof of Lemma 3.1. The formula for 〈φ̄Lφ〉 is (8) where φ is replaced with φ̄ and
ψ with φ.

On the other hand, we already know from Lemma 2.2 that L is self-adjoint
and of Fredholm type on L2(Sd;Cd). The Fredholm alternative implies that the
continuous, one-to-one linear map

L
∣

∣

(KerL)⊥
: (KerL)⊥ → (KerL)⊥

is onto. By Banach’s open mapping theorem (see Theorem 2.6 and Corollary 2.7 in
[6]), this map is bicontinuous, which implies the existence of the positive constant
µ. �
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3.5. Step 5. Set

Fσ(x) :=
S(x)

1 + σν
+

κσ

1 + κσ

〈〈

fσ
〉〉

−
(x, 0) ;

arguing as at the end of step 2, we find that

‖Fσ‖L∞ ≤
‖S‖L∞

1 + κσ
+

κσ

1 + κσ
lim

λ→0+
‖Aλ,σ,κσFσ‖L∞ ,

and then

‖Aλ,σ,κσFσ‖L∞ ≤ ‖Aλ,σ,κσFσ −Aλ,σ,κσ0‖L∞ + ‖Aλ,σ,κσ0‖L∞ ≤
κσ

1 + κσ
‖Fσ‖L∞ ,

while

‖Aλ,σ,κσ0‖L∞ ≤
‖S‖L∞

1 + κσ
.

Therefore

‖Fσ‖L∞ ≤
‖S‖L∞

1 + κσ
+

κσ

1 + κσ

(

κσ

1 + κσ
‖Fσ‖L∞ +

‖S‖L∞

1 + κσ

)

and hence
(

1−

(

κσ

1 + κσ

)2
)

‖Fσ‖L∞ ≤

(

1 +
κσ

1 + κσ

)

‖S‖L∞

1 + κσ
.

Since
(

1−

(

κσ

1 + κσ

)2
)

=

(

1 +
κσ

1 + κσ

)(

1−
κσ

1 + κσ

)

=

(

1 +
κσ

1 + κσ

)

1

1 + κσ

the inequality above implies that

‖Fσ‖L∞ ≤ ‖S‖L∞ .

By the same token

‖∂xjFσ‖L∞ ≤ ‖∂xjS‖L∞ , j = 1, . . . , d .

Let χ(y) := (1− y)2+, so that χ ∈ C1([0,∞)) has its support equal to [0, 1], and
set

gσ(x, y) := Fσ(x)χ(y) ;

define further the function

hσ(x, y, ω) := fσ(x, y, ω)− gσ(x, y) .

It is easily seen that hσ is a solution to the boundary value problem

(26)

{

ω · ∇zhσ + σLhσ = −ω · ∇gσ(z) ,

hσ(x, 0, ω) = 0 , ωy > 0 .

Notice that hσ ∈ L∞((0,+∞)× Sd;W 1,∞(Td)).
Because of the regularity of hσ in x, we deduce from the equation that the

function z 7→ hσ(z, ω) belongs to W 1,∞(Td × (0,+∞)). Thus, we can multiply
both sides of the first equation in (26) by 2σhσ and integrate in ω, to obtain

σ divz〈ωh
2
σ〉+ 2σ2〈hσLhσ〉 = −2σ〈ωhσ〉 · ∇gσ(z) = −2σ〈ω(hσ − 〈hσ〉)〉 · ∇gσ(z) .



LINEAR BOLTZMANN FRACTIONAL DIFFUSION 17

After integrating in x ∈ Td both sides of this equality, we see that

σ∂y

∫

Td

〈ωyh
2
σ〉(x, y) dx + 2σ2

∫

Td

〈hσLhσ〉(x, y) dx

= −2σ

∫

Td

〈ω(hσ − 〈hσ〉)〉 · ∇gσ(x, y) dx .

By construction

fσ(x, y, ω) = hσ(x, y, ω) whenever y > 1 ,

so that

〈ωyh
2
σ〉(x, y) = 〈ωyf

2
σ〉(x, y) and gσ(x, y) = 0 , for all y > 1 .

On the other hand, Parseval’s theorem implies that
∫

Td

〈ωyf
2
σ〉(x, y) dx =

〈

ωy

∫

Td

f2
σ(x, y, ·) dx

〉

=
∑

k∈Zd

〈ωy|f̂σ|
2〉(k, y) .

Proceeding as in step 4 and applying Lemma 3.1, we see that

∂y〈ωy|f̂σ|
2〉(k, y) + 2σµ

〈

∣

∣

∣
f̂σ − 〈f̂σ〉

∣

∣

∣

2
〉

(k, y) ≤ 0 , y > 1 , k ∈ Zd .

For all k ∈ Zd, the function

y 7→ 〈ωy|f̂σ|
2〉(k, y)

is bounded and Lipschitz continuous on (0,+∞), and nonincreasing on (1,+∞).
Hence

∫ ∞

1

〈

∣

∣

∣
f̂σ − 〈f̂σ〉

∣

∣

∣

2
〉

(k, y) dy ≤
1

2σµ

[

〈ωy|f̂σ|
2〉(k, y)

]y=1

y→∞
<∞ .

With the decomposition

〈ωy|f̂σ|
2〉(k, y) = 〈ωy|f̂σ − 〈f̂σ〉|

2〉(k, y) + 2ℜ
(

〈ωy(f̂σ − 〈f̂σ〉)〉(k, y)〈f̂σ〉(k, y)
)

,

we conclude that

y 7→ 〈ωy|f̂σ|
2〉(k, y) belongs to L2(0,+∞)

for all k ∈ Zd. (Notice that we do not seek a uniform in σ estimate in L2 for

f̂σ − 〈f̂σ〉 at this stage in the argument, although this is our ultimate goal.) Since
this function is nonincreasing on (1,+∞) for all k ∈ Zd, we find that

0 = lim
Y→+∞

〈ωy|f̂σ|
2〉(k, Y ) ≤ 〈ωy|f̂σ|

2〉(k, y) for all y > 1 and all k ∈ Zd .

Thus, for each Y > 1, one has

σ

∫

Td

〈ωyf
2
σ〉(x, Y ) dx+ 2σ2µ

∫ Y

0

∫

Td

〈

(hσ − 〈hσ〉)
2

〉

(x, y) dxdy

= −2σ

∫ 1

0

∫

Td

〈ω(hσ − 〈hσ〉)〉 · ∇gσ(x, y) dxdy + σ

∫

Td

〈ωyh
2
σ〉(x, 0) dx ,
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so that

(27)

2σ2µ

∫ Y

0

∫

Td

〈

(hσ − 〈hσ〉)
2

〉

(x, y) dxdy

≤ −2σ

∫ 1

0

∫

Td

〈ω(hσ − 〈hσ〉)〉 · ∇gσ(x, y) dxdy .

Indeed

〈ωyh
2
σ〉(x, 0) = − |Bd|

|Sd|

〈〈

h2σ
〉〉

−
(x, 0) ≤ 0 ,

since hσ(x, 0, ω) = 0 for ωy > 0 by construction, and on the other hand, as explained
above,

∫

Td

〈ωyf
2
σ〉(x, Y ) dx ≥ 0 for all Y > 1 .

Notice that the first integral on the right hand side of (27) involves only y ∈ [0, 1]
since g(x, y) = 0 for all y > 1 by construction.

By the Cauchy-Schwarz inequality, for all Y > 1, one has

σ2µ

∫ Y

0

∫

Td

〈

(hσ − 〈hσ〉)
2

〉

(x, y) dxdy

≤

(

σ2

∫ 1

0

∫

Td

|〈ω(hσ − 〈hσ〉)〉|
2 (x, y) dxdy

)1/2(∫ 1

0

∫

Td

|∇gσ(x, y)|
2 dxdy

)1/2

≤

(

σ2

∫ Y

0

∫

Td

〈

(hσ − 〈hσ〉)
2

〉

(x, y) dxdy

)1/2
(
∫ 1

0

∫

Td

|∇gσ(x, y)|
2 dxdy

)1/2

,

so that

σ2

∫ Y

0

∫

Td

〈

(hσ − 〈hσ〉)
2

〉

(x, y) dxdy ≤

∫ 1

0

∫

Td

|∇gσ(x, y)|
2 dxdy .

Observe that

hσ − 〈hσ〉 = fσ − 〈fσ〉

since gσ = fσ − hσ is independent of ω by construction. Hence

σ2µ

∫ Y

0

∫

Td

〈

(hσ − 〈hσ〉)
2

〉

(x, y) dxdy ≤

∫ 1

0

∫

Td

|∇gσ(x, y)|
2 dxdy ,

and since this inequality holds for all Y > 0, we conclude that

σ2µ

∫ ∞

0

∫

Td

〈

(hσ − 〈hσ〉)
2

〉

(x, y) dxdy ≤

∫ 1

0

∫

Td

|∇gσ(x, y)|
2 dxdy .

3.6. Step 6. Summarizing, for each S ∈ W 1,∞(Td), the boundary value problem
(6) has a unique (by Step 4) solution fσ ∈ L∞(Z × Sd), and this solution satisfies

‖fσ‖L∞ ≤ ‖S‖L∞ ,

according to Step 3, and

‖σ(fσ − 〈fσ〉)‖
2
L2(Z×Sd) ≤

2
µ |S

d|
(

‖∇S‖2L∞(Td) +
4
3‖S‖

2
L∞(Td)

)

,

by Step 5.

Therefore, there exists a sequence σn → +∞ such that

fσn → f in L∞(Z × Sd) weak− ∗ ,
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and

Jn := σn(fσn − 〈fσn〉) → J in L2(Z × Sd) weak .

In particular, the fact that Jn is bounded in L2(Z × Sd) implies that

(28) f(z, ω) = ρ(z) for a.e. (z, ω) ∈ Z × Sd .

In order to compute J , observe that, since L1 = 0,

LJn = σnLfσn = −ω · ∇zfσn .

Since the linear operator L is continuous on L2(Sd), one has

LJn → LJ in L2(Z × Sd) weak,

and since

ω · ∇zfσn → ω · ∇ρ in D′(Z × Sd) ,

we conclude that

LJ(z, ω) = ω · ∇ρ(z) for a.e. (z, ω) ∈ Z × Sd .

Beside, since Jn(z, ·) ∈ (KerL)⊥ for all n and a.e. z ∈ Z, one has also

J(z, ·) ∈ (KerL)⊥ , for a.e. z ∈ Z .

Applying the Fredholm alternative to L, we conclude that

(29) J(z, ω) = −Ω(ω) · ∇ρ(z) , for a.e. (z, ω) ∈ Z × Sd .

Notice that the formula above for J and the L2 bound on Jn imply that

∇ρ ∈ L2(Z) .

Let now φ ∈ C∞
c (Td × (0,+∞)). Multiplying both sides of the equation for fσn

in (6) by

σnφ(z) + Ω(ω) · ∇φ(z)

and integrating both sides in (z, ω), we obtain

(30)

∫ ∞

0

∫

Td

(φ(z) divz(σn〈ωfσn〉) +∇φ(z) · 〈Ω(ω · ∇zfσn)〉) dxdy

+

∫ ∞

0

∫

Td

σ2
nφ(z)〈Lfσn〉dxdy +

∫ ∞

0

∫

Td

∇φ(z) · 〈σnΩLfσn〉dxdy = 0 .

Since L is self-adjoint on L2(Sd) (see Lemma 2.2), one has

〈Lfσn〉 = 〈fσnL
∗1〉 = 0 ,

and

〈σnΩLfσn〉 = 〈σnfσnLΩ〉 = 〈σnωfσn〉 .

Hence the third term on the left hand side of (30) is 0, while the first and last terms
on the left hand side of (30) combine to give

∫ ∞

0

∫

Td

(divz(σn〈ωfσn〉φ(z)) +∇φ(z) · 〈Ω(ω · ∇zfσn)〉) dxdy = 0 .

The first integral on the left hand side is simplified by using Green’s formula:
∫ ∞

0

∫

Td

divz(σn〈ωfσn〉φ(z)) dxdy = −

∫

Td

σn〈ωfσn〉φ(x, 0) dx .
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Next we use the boundary condition verified by fσn , i.e.

fσn(x, 0, ω) =
S(x)

1 + κσn
+

κσn
1 + κσn

〈〈

fσn

〉〉

−
(x) , ωy > 0 ,

or equivalently

fσn(x, 0, ω) = S(x)− κσn
|Sd|
|Bd|

〈ωfσn〉(x, 0) , ωy > 0 .

Since the right hand side of this identity is independent of ω, one has also

(31)
〈〈

fσn

〉〉

+
(x, 0) = S(x)− κσn

|Sd|
|Bd| 〈ωfσn〉(x, 0) , x ∈ Td .

Thus
∫ ∞

0

∫

Td

divz(σn〈ωfσn〉φ(z)) dxdy = −

∫

Td

σn〈ωfσn〉φ(x, 0) dx

= |Bd|
κ|Sd|

∫

Td

(S(x)−
〈〈

fσn

〉〉

+
(x, 0))φ(x, 0) dx .

In other words
|Bd|
κ|Sd|

∫

Td

(S(x)−
〈〈

fσn

〉〉

+
(x, 0))φ(x, 0) dx

=

∫ ∞

0

∫

Td

∇φ(z) · 〈Ω(ω · ∇zfσn)〉dxdy

for all φ ∈ C∞
c (Td × (0,+∞)).

As n→ ∞, the integral on the right hand side satisfies
∫ ∞

0

∫

Td

∇φ(z) · 〈Ω(ω · ∇zfσn)〉dxdy = −

∫ ∞

0

∫

Td

∇φ(z) · 〈ΩLJn〉dxdy

→ −

∫ ∞

0

∫

Td

∇φ(z) · 〈ΩLJ〉dxdy = −

∫ ∞

0

∫

Td

∇φ(z) · 〈(L∗Ω)J〉dxdy

= −

∫ ∞

0

∫

Td

∇φ(z) · 〈ωJ〉dxdy =

∫ ∞

0

∫

Td

〈ω ⊗ Ω〉 : ∇φ(z)⊗∇zρ(z)〉dxdy

=
〈ω · Ω〉

d+ 1

∫ ∞

0

∫

Td

∇φ(z) · ∇zρ(z)〉dxdy .

On the other hand, arguing as in Step 3 shows that

|Bd|
|Sd|

∂y

∫

Td

〈〈

fσn

〉〉

+
(x, y)ψ(x) dx = ∂y

∫

Td

〈ω+
y fσn〉(x, y)ψ(x) dx

=

∫

Td

〈1ωy>0ωxfσn〉(x, y)ψ
′(x) dx −

∫

Td

〈1ωy>0LJn〉(x, y)ψ(x) dx

= O(1) in L2 + L∞(0,+∞) .

By Ascoli-Arzelà theorem, we conclude that
∫

Td

〈〈

fσn

〉〉

+
(x, 0)φ(x, 0) dx →

∫

Td

ρ(x, 0)φ(x, 0) dx .

Summarizing, we have proved that

ρ ∈ L∞(Z) , ∇ρ ∈ L2(Z)

|Bd|
κ|Sd|

∫

Td

(S(x)− ρ(x, 0))φ(x, 0) dx =
〈ω · Ω〉

d+ 1

∫ ∞

0

∫

Td

∇φ(z) · ∇zρ(z)〉dxdy
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for all φ ∈ C∞
c (Td × (0,+∞)). One easily checks that this is the variational

formulation of the boundary value problem (17).

This proves statement (b) of Theorem 2.3.

3.7. Step 7. Set Y = Td × (0, 1). The results obtained in Step 6 imply that

fσn

∣

∣

Y ×Sd → ρ and ω · ∇zfσn

∣

∣

Y ×Sd → ω · ∇zρ

weakly in L2(Y × Sd).
By applying Cessenat’s trace theorem (Theorem 1 in [9]), we find that

(32) fσn(x, 0, ω) → R(x) weakly in L2(Td × Sd;ω+
y dω dx) ,

where

R = ρ
∣

∣

y=0
.

This last point requires additional explanations. At this point, we use Cessenat’s
notation in [9]. Observe that, for all x ∈ Td, the exit time from Y , starting from y
in the direction ω, is

τ(x,0),ω = 1/|ωy| ≥ 1 , since |ω| = 1 .

Choosing the arbitrary parameter K = 1 in the definition of the measure dξ on p.
832 in [9], viz.

dξ
∣

∣

Td×{0}×Sd = |ωy|min(1, τ(x,0),ω) dxdω ,

has its restriction to Td × {0} given by

dξ
∣

∣

Td×{0}×Sd = |ωy| dxdω .

This observation justifies that the convergence holds as stated in (32).
Since

ρ ∈ L∞(0,+∞;L2(Td)) and ∇ρ ∈ L2(Z) ,

one has in particular ρ
∣

∣

Y
∈ H1(Y ), so that

R = ρ
∣

∣

y=0
∈ H1/2(Td) .

Since

∇ρ ∈ L2(Z) and div(∇ρ) = 0 ,

we deduce from the trace theorem of J.-L. Lions for the space H(Y, div) of vector
fields in L2(Y ;Rd+1) with divergence in L2(Y ) (see Lemma 20.2 in [22]) that

∂yρ
∣

∣

y=0
∈ H−1/2(Td) .

On the other hand

σn〈ωfσn〉
∣

∣

Y
= σ〈ωJn〉

∣

∣

Y
is bounded in L∞(0, 1;L2(Td)) ⊂ L2(Y ) ,

and

divz(σn〈ωfσn〉) = 0 .

Applying again the Lions trace theorem in H(Y, div), we conclude that

σn〈ωyfσn〉
∣

∣

y=0
→ −

〈ω · Ω〉

d+ 1
∂yρ
∣

∣

y=0
in H−1/2(Td) weak.

Since ∇ρ ∈ L2(Z), we find that

∂yρ ∈ L2(Td × (0,∞)) ,
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so that
∫

Td

|ρ(x, y2)− ρ(x, y1)|
2 dx =

∫

Td

(
∫ y2

y1

∂yρ(x, z) dz

)2

dx

≤ |y2 − y1|

∫

Td

∫ y2

y1

|∂yρ(x, z)|
2 dz dx ≤ |y2 − y1|‖∇ρ‖L2(Z) .

Hence

ρ ∈ Cb(0,+∞;L2(Td)) .

Since ρ is a harmonic extension of R = ρ
∣

∣

y=0
, we deduce from Kwasnicki’s Theorem

1.1 (j) that

∂yρ
∣

∣

y=0
= −(−∆x)

1/2R .

This concludes the proof of statement (c) of Theorem 2.3.

4. Open Problems

The result obtained in the present paper suggests various questions, still open
at the time of this writing.

(a) Can one extend Theorem 2.3 to other kinetic models — for instance, to the
linearized Boltzmann equation, or even to the linearized BGK model? For instance,
one could consider the Boltzmann equation for a vapor in a half-space over its liquid,
condensed phase, with a linear combination of diffuse reflection and condensation
or evaporation at the boundary, assuming that the Knudsen number in the vapor is
small, and that the accomodation coefficient is close to one. At present, the proof of
Theorem 2.3 is based on the maximum principle, which the linearized Boltzmann
equation does not satisfy. Before treating the case of the linearized Boltzmann
equation, it would be necessary to have a proof of Theorem 2.3 based on an L2

energy estimate.

(b) Can one obtain in this way powers of the Laplacian other than (−∆)1/2? The
harmonic extension result recalled in section 1.1 suggests that one should seek a
linearized Boltzmann equation leading to the diffusion operator

y
2
γ −2∆x + γ2cγ/2γ ∂2y .

The scattering operator of such a linearized Boltzmann equation must be strongly
anisotropic; besides, the scattering coefficient should vanish either as y → +∞ or
as y → 0 depending on whether γ ∈ (0, 1) or γ ∈ (1, 2).

(c) Can one extend the result in Theorem 2.3 to other domains than half-spaces?
Assuming that one can derive from the linearized Boltzmann equation in a bounded
(spatial) domain Ω with smooth boundary the diffusion problem











∆ρ(x) = 0 , x ∈ Ω ,
(

ρ+ κ
∂ρ

∂n

)

∣

∣

∣

∣

∣

∂Ω

= S ,

the trace ρ
∣

∣

∂Ω
must satisfy the equation

ρ
∣

∣

∂Ω
+ κΛρ

∣

∣

∂Ω
= S ,

where Λ is the Dirichlet-to-Neumann operator, defined as follows.
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For u ∈ H1/2(∂Ω), we set

Λu :=
∂U

∂n

∣

∣

∣

∣

∣

∂Ω

where U ∈ H1(Ω) is the unique solution of

−∆U = 0 in Ω , U
∣

∣

∂Ω
= u .

We recall that the linear map u 7→ U is continuous from H1/2(∂Ω) to H1(Ω). By
Green’s formula

〈

∂U

∂n
, φ

〉

:=

∫

Ω

∇U(x) · ∇φ(x) dx ,

so that, for all φ ∈ H1(Ω)
∣

∣

∣

∣

〈

∂U

∂n
, φ

〉
∣

∣

∣

∣

≤ ‖∇U‖L2(Ω)‖∇φ‖L2(Ω) ≤ C‖u‖H1/2(∂Ω)∇φ‖L2(Ω) .

This defines ∂U/∂n
∣

∣

∂Ω
as an element of H−1/2(∂Ω), and shows that the linear map

Λ is continuous from H1/2(∂Ω) to H−1/2(∂Ω). Observe that Λ is self-adjoint since

〈Lu, φ〉 =

∫

Ω

∇u(x) · ∇φ(x) dx = 〈Lφ, u〉 .

Besides, Λ ≥ 0 and KerL = R = { constants }, since

〈Lu, u〉 = ‖∇u‖2L2(Ω) .

Call ∆∂Ω the Laplace-Beltrami operator4 for the restriction of the Euclidean
metric to ∂Ω. Both Λ and (−∆∂Ω)1/2 are unbounded self-adjoint operators on
L2(∂Ω), mapping H1/2(∂Ω) to H−1/2(∂Ω).

However, Λ and (−∆∂Ω)1/2 are different in general, as shown by the following
example.

Example. Let Ω be the open unit ball of Rd+1, so that ∂Ω = Sd is the d-
dimensional unit sphere. Using spherical coordinates, i.e. setting r = |z| and
ω := z/|z| for z 6= 0, one has

∆zf(z) = r−d∂r(r
d∂rf(rω)) + r−2∆S

d

ω f(rω) .

Denote by 0 = λ0 < λ1 ≤ λ2 . . . the sequence of eigenvalues of ∆S
d

counted with
multiplicities, and let (en)n≥0 be a orthonormal and complete system in L2(∂Ω),

with −∆S
d

en = λnen. For each f ≡ f(r, ω) ∈ L2(∂Ω), set

fn(r) := (en|f(r, ·))L2(∂Ω) , n ∈ N , r > 0 .

Then ∆zf = 0 on Ω if and only if

r2−d∂r(r
d∂rfn(r)) − λnfn(r) = 0 , n ∈ N , r > 0 ,

or equivalently

r2f ′′
n (r) + drf ′

n(r) − λnfn(r) = 0 , n ∈ N , r > 0 .

This differential equation has a two-dimensional space of solutions over the half-line
(0,+∞), viz.

{C+r
α+(n) + C−r

α−(n) , C± ∈ R}

4At variance with the definition commonly used in geometry, we normalize this operator so
that ∆∂Ω ≤ 0.
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where

α±(n) := − d−1
2 ±

√

(d−1)2

4 + λn , n ≥ 0 .

Observe that α− ≤ 1−d for all n ∈ N, since λn ≥ 0. Hence 2(α−−1)+d ≤ −d ≤ 1,
so that

∫ 1

0

|rα−−1|2rd dr = +∞ .

Hence all harmonic functions in H1(Ω) in the unit ball Ω are of the form

f(rω) =
∑

n∈N

cnr
α+(n)en(ω) ,

and
∂rf(rω)

∣

∣

r=1
=
∑

n∈N

cnα−(n)en(ω) while f(ω) =
∑

n∈N

cnen(ω) .

The formula for α+(n) indicates that, in this case

Λ = − d−1
2 +

√

(d−1)2

4 −∆Sd .

In particular

Λ 6= (−∆S
d

)1/2 , unless d = 1 .
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