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Abstract 

The response of idealised cermets comprising approximately 60% by volume steel 

spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric 

compressive stress states. Digital volume correlation (DVC) analysis of X-ray micro-

computed tomography scans (μ-CT), and the measured macroscopic stress-strain 

curves of the specimens revealed two deformation mechanisms. At low triaxialities 

the deformation is granular in nature, with dilation occurring within shear bands. 

Under higher imposed hydrostatic pressures, the deformation mechanism transitions 

to a more homogeneous incompressible mode. However, DVC analyses revealed that 

under all triaxialities there are regions with local dilatory and compaction responses, 

with the magnitude of dilation and the number of zones wherein dilation occurs 

decreasing with increasing triaxiality. Two numerical models are presented in order to 

clarify these mechanisms: (i) a periodic unit cell model comprising nearly rigid 

spherical particles in a porous metal matrix and (ii) a discrete element model 

comprising a large random aggregate of spheres connected by non-linear normal and 

tangential “springs”. The periodic unit cell model captured the measured stress-strain 

response with reasonable accuracy but under-predicted the observed dilation at the 

lower triaxialities, because the kinematic constraints imposed by the skeleton of rigid 

particles were not accurately accounted for in this model. By contrast, the discrete 

element model captured the kinematics and predicted both the overall levels of 

dilation and the simultaneous presence of both local compaction and dilatory regions 

with the specimens. However, the levels of dilation in this model are dependent on the 

assumed contact law between the spheres. Moreover, since the matrix is not explicitly 

included in the analysis, this model cannot be used to predict the stress-strain 

responses. These analyses have revealed that the complete constitutive response of 

cermets depends both on the kinematic constraints imposed by the particle aggregate 

skeleton, and the constraints imposed by the metal matrix filling the interstitial spaces 

in that skeleton.  

 

Keywords: cermets, porous plasticity, kinematic constraints, discrete element, digital 

volume correlation, micro-computed tomography.  
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1. Introduction 

Cermets are particulate composites comprising a high volume fraction of ceramic 

particles (typically carbides, nitrides, and oxides, in the range of 50-95% by volume) 

within a ductile metal binder phase (e.g. Mo, Ni, Co, Al) (ASTM Committee C-21, 

1955; Tinklepaugh and Crandall, 1960). They offer a good compromise between the 

hardness of ceramics and toughness of metals, e.g. typical values for WC/Co 

composites are in the range of 500-2000 HV and 8-20 MPa m
1/2

, respectively (Fang, 

2005). This combination of mechanical properties has led to their extensive use in 

small volume applications such as tips of cutting tools. Recent advances in 

manufacturing methods have provided the ability to produce cermets in large volumes 

at low cost. This has resulted in cermets being considered as materials for lightweight 

ballistic armour applications, where the high hardness is required to erode the 

projectile (Shockey et al., 1990; Walley, 2010), and the improved toughness increases 

the ability of the armour to sustain multiple impacts (Blumenthal et al., 1994; 

Compton and Zok, 2013).  

 

The prediction of the strength of cermets has received considerable attention. Current 

models typically fall into two categories: (i) empirical e.g. the models for hardness by 

Lee and Gurland (1978) and Engqvist et al. (2002), and (ii) microstructurally 

motivated models based on either homogenisation schemes (Arsenault and Taya, 

1987; Bao et al., 1991; Christman et al., 1989) or dislocation models (Gustafson et al., 

1997; Lee et al., 1998; Taya et al., 1991).  The predictive microstructurally motivated 

models are primarily based on extending approaches developed for composites such 

as the so-called self-consistent models (Budiansky, 1965; Hershey, 1954; Hill, 1965) 

and models that provide bounds on the response of particulate composites (Hashin 

and Shtrikman, 1962). These models have the advantage that they do not make a 

priori assumptions on the microstructure but rather describe the microstructure 

through statistical information such as volume fraction and particle position 

correlation functions. However, this statistical information is typically only valid in 

the low particle volume fraction limit (< 20% by volume particles) when particle-

particle contacts are negligible.  By contrast, most commercial cermets with ~80% 

particle volume fractions are well above the percolation threshold and a large number 

of the ceramic particles in these cermets are parts of percolated chains of ceramic 

particles. 

 

The percolated chains, known as force chains in the granular materials literature (Liu 

et al., 1995; Travers et al., 1987) have a very significant effect on the properties of the 

cermets. In fact, cermets with high volume fractions of hard ceramic inclusions are 

more akin to a granular medium with a high cohesive strength rather than a typical 

particle-reinforced composite. For example, recent studies (Pickering et al., 2016; 

Tarantino et al., 2016) have demonstrated that the multi-axial yield response of 

cermets is not solely governed by the von-Mises stress. Rather, similar to granular 

materials, cermets dilate under compression and thus their strength is also dependent 

on the imposed hydrostatic pressure. Moreover, Bele and Deshpande (2015) have 

demonstrated that composite models based on periodic unit cells significantly under-

predict the strength of cermets as they do not include the effects of force chains. 

Similar effects are also observed in other high volume particulate composites such as 

asphalt (Deshpande and Cebon, 1999) and polymer-bonded explosives (Bardenhagen 

and Brackbill, 1998). Discrete element models (Cundall and Strack, 1979), wherein 

the particles are modelled as discrete bodies interacting via contact relations are likely 



 3 

to be more appropriate for modelling the deformation of cermets. These approaches 

have been successfully used to predict the yielding and dilation of soils during 

confined compression (McDowell and Harireche, 2002; Powrie et al., 2005) as well as 

the uniaxial deformation of asphalt (Cai et al., 2013; Collop et al., 2007; Wu et al., 

2011). However, there have been no reported attempts of discrete element models for 

cermets. 

 

The experimental characterisation of the deformation of cermets has primarily been 

based on macroscopic strain measurements. While such measurements give some 

information on the deformation, they provide little insight into the microscopic 

deformation processes including the particle kinematics. By contrast, digital image 

correlation (DIC) techniques have been extensively deployed to quantify the 

deformation of soils. For example DIC techniques to observe deformation 

mechanisms in two-dimensional (2D) uniaxial compression (Desrues et al., 1996, 

1985; Finno et al., 1997) have demonstrated the existence of force chains under plane 

strain loading in granular materials. Moreover, with the increased spatial resolution of 

X-ray micro-tomographic techniques, it has now become possible to quantify the 

three-dimensional (3D) deformation of granular materials using the so-called digital 

volume correlation (DVC) technique. Using this technique, Lenoir et al. (2007) have 

reported full-field incremental strain measurements during confined compression of 

argillaceous rock and Hu et al. (2015) studied deformation mechanisms in uniaxially 

compressed polymer bonded sugar (PBS) specimens. Such DVC measurements are 

typically not reported for triaxial compression due to the complexity of taking X-ray 

scans of specimens within high-pressure triaxial cells.  
 

1.1 Scope of this study 

Commercial cermets typically have very high yield strengths (in the range 5-10 GPa), 

which makes testing of these materials difficult. Thus, most strength measurements 

rely on hardness measurements that are typically difficult to interpret. The aim of this 

study is to develop an understanding of the deformation mechanisms of cermets under 

multi-axial loading. We therefore use the so-called idealised cermets developed by 

Bele and Deshpande (2015). These materials comprise hard steel spheres in soft metal 

matrix and have a significantly lower yield strength compared to commercial cermets. 

However, a similar contrast in the properties of the phases of the idealised and 

commercial cermets makes the idealised cermets suitable model materials to study the 

deformation mechanisms in commercial cermets. 

 

The outline of the paper is as follows. Firstly, to clarify the deformation mechanisms 

under a range of stress triaxialities, μ-CT imaging was combined with ex-situ triaxial 

compression tests and the results were analysed by means of DVC. Next, two 

modelling approaches are reported in an attempt to gain insight into these 

measurements: (i) a periodic unit cell model comprising nearly rigid spheres in a 

porous plastic matrix and (ii) a discrete element model comprising a large number of 

randomly packed spheres interacting via a contact law. The features and drawbacks of 

these models are discussed and used to reveal the key deformation mechanisms that 

govern the mechanical response of the idealised cermets. 
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2. Experimental protocol 

The overall aim of the experimental program is to determine the deformation modes 

of the idealised cermets as a function of stress triaxiality. To achieve this aim, we 

conducted axisymmetric triaxial compression tests, interrupted at known macroscopic 

strains     to acquire X-ray micro-computed tomograms (μ-CT). The resulting μ-CT 

volumes derived after each loading step were then used to perform a DVC analyses to 

reveal the deformation modes. Here we briefly describe the main aspects of the 

experimental methods. 

 

2.1 Manufacture of specimens 

Idealised cermets comprising a volume fraction         of 2 mm diameter AISI 

52100 steel spheres (referred to subsequently as particles) in a Sn/Pb solder matrix 

(Sn 60, Pb 38, Ag 2 wt.%), were investigated in this study. The cermet specimens 

were circular cylinders of diameter 18.5 mm and height 40 mm and were 

manufactured using the procedure described in Bele and Deshpande (2015) and 

Pickering et al. (2016). Briefly, the steel spheres were cleaned via ultrasonic vibration 

in an acetone bath and then packed into a cylindrical crucible of the diameter 

~18.5 mm. The crucible was vibrated under a low applied axial compressive stress of 

≈ 0.1 MPa to maximise the packing density. High temperature magnets were then 

placed around the periphery of the crucible to preserve the skeleton structure of the 

steel spheres, and solder powder (of average particle size 25-38   ) was infiltrated 

into the interstitial sites between the particles. A small amount of ZnCl flux was added 

to improve interfacial adhesion, and the assembly was pressure-cast at a temperature 

of 200°C for 1 hr. An optical image of the as-cast specimen is included in Fig. 1a, and 

a X-ray computed tomogram through the centre of the specimen along the 

longitudinal axis is shown in Fig. 1b. μ-CT imaging revealed that the void volume 

fraction was in the range 1.5% to 5%. The Young’s modulus and yield strength of the 

AISI 52100 steel was 210 GPa and 2.1 GPa, respectively while the Sn/Pb solder had 

modulus and yield strength values of 32 GPa and ~30-40 MPa, respectively. 

 

 
Figure 1: (a) Photograph of the as-cast idealised cermet specimen and (b) a computed 

tomogram through the centre of the specimen along the longitudinal axis. 

 

2.2 Interrupted triaxial tests 

A high-pressure apparatus (see Pickering et al. (2016) for details of the triaxial cell) 

was used to subject the specimens to axisymmetric triaxial compression tests 

(Fig. 2a). It consists of a pressure cell with a maximum capacity of 100 MPa, and a 

piston for the application of axial force. Hydraulic fluid was used as the pressurising 

medium, and axial load is applied by displacing the piston via a screw-driven test 
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machine. A submerged load cell provided readings of the axial load independent of 

the pressure of the surrounding fluid. Two linear variable differential transformer 

(LVDT) transducers were attached to the specimen in order to measure the axial 

displacement imposed on the specimen. A third LVDT was attached to the mid-height 

of the specimen to measure the change in specimen diameter over a 3 mm central 

portion of the cylindrical specimen. 

 

 
Figure 2: (a) Sketch of the triaxial apparatus used to apply the axisymmetric stress states. The 

inset shows a magnified view of the specimen with the axial and radial LVDTs used to 

measure strain. (b) Sketch of the axisymmetric stress state and the three-pin localisation 

system used to ensure specimen alignment between successive CT scans. 

  

The applied stresses/forces on a cylindrical specimen of initial height    and radius 

   are sketched in Fig. 2b. The hydraulic fluid exerts a pressure   (taken to be 

positive in compression) on the specimen and the axial force measured by the 

submerged load cell is    (this is a force in excess of that exerted by the fluid 

pressure, and is taken to be positive in compression). The radial Cauchy stress is –  , 

and the axial stress can be inferred from    as follows. The current specimen height   

and radius   give the axial and radial stretches as         and        , 

respectively. The nominal axial and radial stresses then follow as          

    
      

   and     –     , respectively. We can then define a nominal mean 

stress as 

     
    
 

 
 

 
    

   
 
  (2.1) 

where      denotes the nominal stress tensor. Similarly, an invariant of the trace-less 

nominal stress (analogous to the von-Mises stress) is given by 

      
 

 
    
     

              (2.2) 
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where     
             , with     denoting the Kronecker delta.  

 

Tests were conducted along proportional stress paths with the direction of the stress 

path defined by the relation          . The triaxiality parameter   can take values 

over the range       (uniaxial compression) to      (hydrostatic compression). 

In the proportional loading tests of this study,   was kept constant throughout the 

experiments by a feedback process whereby the fluid pressure   and the axial stress 

    were increased while keeping the triaxiality   fixed. 

 

In the remainder of this study we discuss distributions of the Green-Lagrange strains 

as measured by the DVC analysis, and thus here we express the measured 

macroscopic strains in terms of the Green-Lagrange strains. The radial and axial 

Green-Lagrange strains follow from the stretches via the relations 

 
 

    
 

 
   

      (2.3) 

and 

     
 

 
   

      (2.4) 

respectively. Then with      denoting the Green-Lagrange strain tensor, we define a 

mean strain given by         , a trace-less strain tensor     
                and an 

invariant of this trace-less strain,               
     

 , analogous to the von-Mises 

effective strain. For axisymmetric loading these reduce to 

 
 

              (2.4) 

and 

     
 

 
           (2.6) 

We emphasise that in general     is not equal to the volumetric strain, i.e.     
     , where    and    are the change in volume and original volume respectively. 

Thus,     
  is not a deviatoric strain in the sense of representing a deviation from the 

volumetric strain. However, as discussed in Appendix A, for the relatively small 

strains considered in this study           and it suffices to use the strain measures 

    and     to illustrate volumetric and shear deformations. Given that we present 

results in terms of the Green-Lagrange strains, it is appropriate to use the 2
nd

 Piola-

Kirchhoff stress measure. The work-conjugate 2
nd

 Piola-Kirchhoff stresses to     and 

    are            and           , respectively. Then, analogous to Eqs. (2.1) and 

(2.2), we define the mean and effective stress as            and               
     

 , 

respectively where      is the 2
nd

 Piola-Kirchhoff stress tensor and     
              

the corresponding trace-less stress.  

 

All experiments reported here were conducted for an applied loading rate    
  

           and prior to the start of each test the specimen was consolidated within 
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the triaxial cell by applying a pure hydrostatic pressure          . This 

consolidation step was found to improve the repeatability of the measurements. The 

DVC analysis was conducted using three specimens loaded along proportional stress 

paths of            and 1.0. The images for the DVC were acquired via X-ray 

micro-tomography (μ-CT) at four strain levels: an initial reference state scan at 

      (representing the state of the specimen after consolidation to          ), 

and three scans acquired by interrupting the triaxial test and unloading to accumulated 

strain levels                and 0.055. After each scan, the specimen was 

reinserted into the triaxial cell and loaded to the next strain level. Since the DVC 

analysis requires fixed reference points, the specimens were attached to a small, non-

symmetric platen via three tool steel pins; see Fig. 2b. This enabled us to maintain the 

orientation of the specimen between each μ-CT scan and loading within the triaxial 

cell.  

 

2.3 X-ray micro-computed tomography and digital volume correlation 

The μ-CT scans for the DVC analyses were acquired using a custom Nikon/Metris 

scanner consisting of a 450 kVp power source coupled with a cesium-iodide detector 

(1621 Perkinelmer). The specimens were positioned 116.5 mm from the source, 

resulting in a pixel resolution of 28.3  . Each tomogram comprised 1601 angular 

projections collected at an angular step of         over a      rotation of the 

sample. The projection data was were reconstructed using Nikon's CTPro and 

CTAgent reconstruction software, which uses a filtered back projection algorithm.  

 

Similar to digital image correlation, DVC involves dividing the 3D scan volume into 

smaller sub-volumes, which can then be tracked between load steps using the internal 

microstructure of the material (Bay et al., 1999). The new position of the sub-volume 

centroid is taken to be at a location where the correlation coefficient between the 

original and displaced sub-volume is best. Here we performed the DVC analysis using 

DaVis software (LaVision, DaVis v.8.2.3 Software, Goettingen, Germany) by 

comparing the three strained states back to the reference scan at      . The strain 

fields are then determined from the spatial gradients of displacement vector fields of 

the sub-volumes over a gauge length equal to 50% of the sub-volume size, as 

described in Gillard et al. (2014). A noise study was performed using sub-volume 

sizes between 24 to 192 voxels (based on the resolution of the μ-CT scan each voxel 

represents a cube of side length         ) (Gillard et al., 2014). A 150 voxel sub-

volume size with 50% overlap gave the best compromise between noise and an 

adequate spatial resolution for strain in these specimens. Thus, the DVC was 

performed with cubes of volume           and the overlap employed implied that 

approximately 8 sub-volume cubes were present in the analysis across the diameter of 

the specimens. 

 

 

3. Summary of experimental results 

We proceed to describe the key findings of the experimental study on the triaxial 

responses of idealised cermets, and the associated deformation modes/strain 

distributions as determined from the DVC analysis. 

 

3.1 Mechanical responses 

A detailed study of the triaxial response of the idealised cermets is presented in 

Pickering et al. (2016). Here we summarise some key findings in order to explain the 
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context of the DVC strain distribution measurements. The measured equivalent stress 

versus strain responses (         ) responses for triaxiality values in the range 

      (uniaxial compression) to       are plotted in Fig. 3a, and the 

corresponding variations of the mean strain     with the effective strain     are 

included in Fig. 3b. The stress-strain curves of Fig. 3a show that both the initial 

elastic response and the yield stress (defined at the 0.2% strain offset) are largely 

independent of  . However, the subsequent plastic hardening response is strongly 

affected by the triaxiality: while the uniaxial response is approximately perfectly 

plastic, the plastic hardening rate increases up to    . Intriguingly, the          

curves become virtually identical for    . Some insight into this triaxiality 

dependent response is given by the corresponding         curves included in 

Fig. 3b. In the low triaxiality limit (           , two distinct regimes are seen: 

(i) an initial compaction regime where            , and (ii) a dilation regime with 

             , wherein the volume of the specimen increases even though the 

hydrostatic pressure is compressive. While dilation commences very early under 

uniaxial compression (at approximately the yield strain of         ), the dilatory 

regime is delayed at higher triaxialities, e.g. starting at          in the tests with 

      . We argue that similar to granular media, the work done against the 

hydrostatic pressure by the dilatory response of the cermet results in the plastic 

hardening rate increasing with  , as seen in Fig. 3a. With further increases in 

triaxiality, the dilatory part of the response is further delayed: over the strain levels 

tested here no dilation occurred in the regime    , and the         curves are very 

similar (Fig. 3b). Since the plastic response is now nearly volumetrically 

incompressible, the stress-strain curves are uniquely described by the effective stress 

    with no sensitivity to   as seen in Fig. 3a. 

Figure 3: (a) The measured stress     versus effective strain     response for proportional 

loading of the idealised cermet specimens at selected values of the triaxiality  ; (b) the 

volumetric strain    versus     responses corresponding to the curves in (a). 

The initial yield surface of these idealised cermets and the evolution of this surface 

with plastic strain is summarised in Fig. 4. The initial yield strength is obtained by the 

0.2% strain offset in the          curves. A plot of the stress pair           
corresponding to this definition of the yield point at all the values of   tested here 

marks the locus of the initial yield surface. Loci of            at three selected values 

of applied effective strain    , and fits to the data using the yield criterion suggested in 

Pickering et al. (2016) are also included. Superimposed on these loci is the direction 

of the plastic strain rate vector         
 
 ) at selected loading points, with the      and      
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axes co-incident with the     and     axes respectively. These measurements suggest 

that two distinct deformation mechanisms/regimes exist: 

(i) At low triaxiality, the yield surface has a Drucker and Prager (1952) characteristic 

with the yield strength being pressure dependent and the response dilatant even under 

compressive hydrostatic stresses, similar to granular materials. 

(ii) At high triaxialities, the yield surface asymptotes to a von-Mises surface with the 

yield strength independent of pressure and the overall deformation nearly 

incompressible. 

 

 
Figure 4: The measured yield surfaces of the idealised cermets. The initial yield surface and 

the evolution of the surface for 3 additional values of the effective strain     are included. The 

plastic strain rate vectors are included for selected loading points with the      and      axes co-

incident with the     and     axes, respectively. 

 

3.2 Strain distributions 

While the strain measurements in Fig. 3b give the overall deformation state, it is 

unlikely that a “granular” medium like this idealised cermet will undergo 

homogenous deformation. We therefore report DVC measurements of the strain 

distribution. The Green-Lagrange strain tensor is denoted as     and, analogous to 

definitions used for the macroscopic average strains in Section 2, we define a mean 

strain as        and a trace-less strain    
              , where     is the 

Kronecker delta. The effective strain is then defined as  

 
 

    
 

 
   
    

   (3.1) 

 

Distributions of    and    on a longitudinal cross-section through the specimen are 

included in Figs. 5 and 6 respectively for three proportional stressing paths (     , 

0.75 and 1.0) at applied macroscopic strains         , 0.035 and 0.055. First 

consider the uniaxial compression (       case. Early in the deformation (    
    ), the strain distributions are reasonably uniform though it is clear that nearly the 

entire specimen is undergoing dilation (Fig. 5a). With increasing    , the deformation 

becomes more localised and both the    and    distributions show an inclined band 

near the top of the specimen within which the strains significantly exceed those in the 

remainder of the specimen. To illustrate that this band exists through the specimen we 

include in Fig. 7 contours of    for           on four longitudinal cross-sections 

through the specimen at orientations  : this orientation is defined in the inset of Fig. 7 
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(     is an arbitrarily chosen section through the specimen). The band of localised 

deformation is seen on all orientations confirming that this band persists through the 

specimen. With increasing triaxiality (i.e.        and 1.0) two main changes occur: 

(i) the deformation is seen to become more homogenous and (ii) the level of dilation 

decreases. Regions of both compaction and dilation are seen at           in the 

specimens loaded with        and 1.0, however the values of positive    remain 

small in relation to the       case. 

 

 
Figure 5: Digital volume correlation (DVC) measurements of the spatial distribution of the 

volumetric strain    on a longitudinal section of the idealised cermet specimen at three 

applied macroscopic strains    . Results are shown for three stress paths (a)      , (b) 

       and (c)      . 
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Figure 6: Digital volume correlation (DVC) measurements of the spatial distribution of the 

effective strain    on a longitudinal section of the idealised cermet specimen at three applied 

macroscopic strains    . Results are shown for three stress paths (a)      , (b)        

and (c)      . 

 

To further emphasise these differences, we define an average volumetric strain        
as the average value of    on the plane      where the co-ordinate system    is 

defined in the inset in Fig. 7 and      is the bottom face of the cylindrical 

specimen. The variations of     with the normalised co-ordinate     , where    
      is the initial height of specimen, are included in Figs. 8a, 8b and 8c for 

     , 0.75 and 1.0, respectively. In each case, we include the variations at 

        , 0.035 and 0.055. The overall conclusions from the distributions in Fig. 5 
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are further confirmed here, viz.: (i) the level of volumetric straining decreases with 

increasing   and (ii) the deformation is more localised at the lower values of   (a 

band with high deformation for the specimen loaded with       is marked and 

labelled as a “localised band” in Fig. 8a). 

 

 
Figure 7: Digital volume correlation (DVC) measurements of the spatial distribution of the 

volumetric strain    on four longitudinal sections through the idealised cermet specimen 

subjected to a macroscopic strain           under uniaxial compression (     ). The 

orientation   of the sections is defined in the inset on a 3D plot of the    distributions from 

the DVC analysis along with the co-ordinate system used to describe the specimen. 

 

 

 

 
Figure 8: Digital volume correlation (DVC) measurements of the average volumetric strain 

    as a function of the normalised axial co-ordinate     . Measurements are shown for the 

specimen deformed under stress paths (a)      , (b)        and (c)       for overall 

strain levels         , 0.035 and 0.055 in each case. 

 

These measurements confirm our qualitative understanding that a transition in the 

deformation mechanism from granular (dilatory response within a shear band) to 

metal-like (uniform, incompressible deformation) occurs with increasing stress 

triaxiality. Importantly, they show that deformation is heterogeneous with local 

dilatory and compaction regions. The magnitude of dilation and the number of 

dilating zones decreases with increasing  , giving rise to the observed changes in the 

macroscopic strain states. However, several aspects remain unclear. These include: (i) 

the microscopic mechanisms by which the transition from dilatory to incompressible 

behaviour occurs; and (ii) the roles of the matrix and the particle skeleton in dictating 

the kinematic response of the cermets. We proceed to develop two types of numerical 

models in an attempt to address these questions. 
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4.         Analysis of periodic particulate composites  

Here we model the idealised cermet as a periodic composite comprising spherical 

elastic particles in a voided elastic-plastic matrix. Such periodic models have been 

used extensively to analyse metal matrix composites (MMCs) following the initial 

work of Bao et al. (1991). Cermets differ from MMCs by the fact that they comprise a 

significantly higher volume fraction of particles/inclusions compared to MMCs, and 

here we aim to investigate whether such a model is capable of capturing their 

response. 

 

4.1 Brief description of model 

We consider a three-dimensional unit cell with the spherical particles arranged in a 

face-centred-cubic (FCC) lattice as shown in Fig. 9. This is done in order to be able to 

reach higher local strains in the matrix while minimising mesh distortion. The 

particles are assumed to be isotropic elastic with shear modulus    and Poisson’s ratio 

   while the matrix is modelled as a porous elastic-plastic solid. The porous solid is 

modelled using a simplified version of the modified variational model (MVAR) 

presented in Danas and Aravas (2012) based on the nonlinear homogenisation 

approach of Ponte Castañeda (1991). Thus, unlike the particles, the voids (shown in 

the inset of Fig. 9) are not discretely modelled but rather smeared-out in the matrix. 

This approximation is acceptable given the large separation of length scales between 

the particle and void sizes. The general MVAR model considers a single family of 

ellipsoidal voids with arbitrary orientation, leading to an overall anisotropic response. 

Our aim here is to qualitatively investigate the fidelity of such a modelling approach 

for analysing cermets and thus we consider a simplified version wherein we restrict 

attention to spherical voids whose shape remains unchanged with deformation
†
 The 

resulting model thus remains isotropic at finite strains and reduces to the Gurson 

(1977) model in the hydrostatic loading limit but is more compliant for non-zero 

deviatoric stresses. For the sake of completeness we briefly describe the key 

constitutive equations of the matrix phase.  

 

 
Figure 9: Sketch of the 3D periodic unit cell comprising nearly rigid spherical particles in a 

face-centred-cubic arrangement with the interstitial spaces filled with a porous plastic matrix. 

The inset shows the microstructure of the homogenised porous matrix. The co-ordinate 

system used to describe the stress-state is also indicated. 

 

The matrix is modelled as an isotropic elastic plastic solid with shear modulus    and 

Poisson’s ratio   . The elastic properties are assumed to be fixed and do not change 

                                                      
†
 At high triaxialities, voids remain reasonably spherical. Thus, in this limit a model with 

evolving voids shapes (full model) and the simpler model used here give very similar 

predictions. Calculations with the full model were performed for the high volume fraction 

composites analysed here. The predictions of the two models were very similar since regions 

of high triaxiality dominate the responses of these composites.. 
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with evolving porosity  . The plastic response is described by a yield surface given in 

terms of the von-Mises effective Cauchy stress    and the hydrostatic Cauchy stress 

         as 

 
 

     
 

 
    

  
 

 
 
   

   
 
 

  
          

     (4.1) 

where      
   is the uniaxial yield strength of the plastic matrix material with zero 

porosity. The strain hardening response of the parent matrix material is assumed to be 

of the form 

 
 

        
  
 

  
 

   

  (4.2) 

where   is the hardening exponent,                   is the yield strain, and 

  
 
 the von-Mises effective plastic strain in the parent solid material. Plastic normality 

is assumed with the matrix plastic strain rate given in terms of the plastic multiplier    
as 

 
    

    
  

    
  (4.3) 

with the total strain rate taken as the sum of the elastic and plastic strain rates. The 

effective plastic strain rate in the matrix follows from a work balance (Gurson, 1977) 

as 

 
 

   
  

      
 

       
  (4.4) 

which is integrated to give   
 
. It now remains to specify the evolution relation for the 

porosity  . Following Aravas and Ponte Castañeda (2004) we assume that the pore 

volume fraction is only affected by plastic deformation. Then recalling that the matrix 

absent of voids is plastically incompressible, the evolution rate of the pore volume 

fraction   is given as 

 
 

           
   (4.5) 

which can be integrated knowing the plastic straining history and the initial porosity 

   to obtain the current  . 

 

We analyse the cubic periodic unit cell sketched in Fig. 9. It is subjected to periodic 

boundary conditions, such that the stress triaxiality           ‡ and Lode angle   

defined as 

 
 

      
  

 

         
  

   
   (4.6) 

where     
                , are held fixed throughout the finite deformation loading. 

Here the overbar denotes the macroscopic stress quantities corresponding to the 

                                                      
‡
 We note that   is the stress triaxiality in terms of the Cauchy stress while   is the triaxiality 

in terms of the nominal stress. These two are approximately equal for the small macroscopic 

strains considered here but we denote them by different symbols to clarify this distinction. 
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volume averages over the unit cell of the corresponding local quantities. 

Corresponding to the axisymmetric compression tests reported in Section 3.1, we fix 

      and apply volumetric average stresses        and             such that 

the stress state is axisymmetric about the     axis (see Fig. 9 for definition of the co-

ordinate system). This is achieved using the procedure described in Mbiakop et al. 

(2015) to keep   and   fixed.  

 

Simulations are reported for          . The material properties used in the 

simulations are as follows. The particles are modelled as essentially rigid compared to 

the matrix, consistent with the contrast between the matrix and particle phases in the 

idealised cermet. This is achieved by choosing a ratio           and       

   . The matrix, absent of voids, is assumed to have a yield strain         and a 

hardening exponent     . Moreover, unless otherwise stated, all calculations are 

presented for an initial porosity        (recall that the idealised cermets have an 

overall porosity in the range 1-5%, which corresponds to a matrix porosity in the 

range 2.8% to 14%). All calculations were performed using the commercial finite 

element (FE) package Abaqus FEA and the unit cell discretised via 10-noded 

tetrahedral element (C3D10 in the Abaqus FEA notation) with a minimum element 

size       , where   is the diameter of the spherical particles. The mesh is chosen to 

be denser in the narrow inter-particle channels, and coarser inside the elastic particles. 

All calculations are carried out in a finite strain setting.  

 

We emphasise here that loading is specified in terms of the Cauchy stresses and the 

corresponding triaxiality  , consistent with stress measures employed in the porous 

matrix constitutive model. However, we present the stress predictions in terms of the 

2
nd

 Piola-Kirchhoff stress            
            

  , where      is the macroscopic 

deformation gradient (i.e. volume average of the deformation gradient over the unit 

cell) and             , in order to be consistent with the measurements discussed in 

Section 3.1. Correspondingly, the strains are presented in terms of the macroscopic 

Green-Lagrange strains                        , which are work-conjugate to     . 

The macroscopic effective stresses and strains then follow the definitions in Section 2. 

 

 

 
Figure 10: Predictions of the (a)            response under uniaxial compression         
and (b) corresponding strain paths in         space for the FCC unit cell with particle 

volume fractions in the range             and initial matrix porosity       . 
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4.2 Summary of predictions for the periodic composites 

Predictions of the            responses under uniaxial compression         are 

plotted in Fig. 10a, with the corresponding strain paths in         space included in 

Fig. 10b for particle volume fractions in the range             and       . As 

expected, the strength increases with increasing   . More intriguingly, the strain paths 

show a qualitative change with increasing particle volume fraction. At low   , the 

composite undergoes volumetric compaction with the porosity in the matrix 

decreasing, consistent with the compressive mean stress associated with uniaxial 

compression. However, with increasing   , after an initial compaction phase the 

composite begins to dilate with             even under the imposed compressive 

mean stress. In fact, for the        composites, there is overall dilation on the order 

of 0.5% after deforming the composite to about         .  

 

 
Figure 11: Predictions of spatial distribution of triaxiality   in the FCC unit cell with volume 

fractions (a)        and (b)         of spherical particles. Results are shown for the case 

of an initial porosity        in the matrix with the unit cell subjected to uniaxial 

compression (       to a strain        . Loading is axisymmetric about the    axis. 

 

 
Figure 12: Predictions of spatial distribution of the porosity   in the matrix in the FCC unit 

cell with volume fractions (a)        and (b)         of spherical particles. Results are 

shown for the case of an initial porosity        in the matrix with the unit cell subjected to 

uniaxial compression (       to a strain        . Loading is axisymmetric about the 

   axis. 
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In order to understand these differences, we include in Figs. 11a and 11b spatial 

distributions of the stress triaxiality (        ) within models with         and 

0.65, at         . The stress state is more spatially homogeneous in the low volume 

fraction composite with    . By contrast, at high volume fractions,   is spatially 

very heterogeneous and there exist regions wherein     (i.e. tensile mean stresses) 

even though the macroscopic mean stress is compressive. These tensile mean stresses 

within the matrix result in the dilation of the matrix with an associated increase in the 

porosity. Contours of porosity, included in Fig. 12, show clearly that in the         

composite there are regions with significant increases in the porosity at the prescribed 

deformation, whereas in the        composite, the porosity is seen to mainly 

decrease from this initial value. This high porosity is localised in between the thin 

inter-particle zones where the triaxiality is also higher. The increase in porosity in the 

        composite results in an overall dilation.  

 

This general behaviour is strongly affected by the initial porosity   . Predictions of 

the variation of     with     for uniaxial compression of the       § composite are 

included in Fig. 13 for             . While the high porosity composites 

undergo initial compaction, this compaction phase is reduced or eliminated with 

decreasing porosity. On the other hand,           is nearly independent of    when 

the deformations as parameterised by     are large. This nevertheless implies that for a 

given     the overall levels of positive     are larger for composites with lower    as 

seen in Fig. 13 as the compaction mode is penalised at low   . 

 

 
Figure 13: Predictions of the variation of     with     for uniaxial compression         of 

the        composite with the FCC unit cell. Results are shown for initial matrix porosities 

in the range             . 

 

Predictions of the            responses of the        (      ) composite with 

varying levels of triaxiality   are included in Fig. 14a, and corresponding strain paths 

in         space are plotted in Fig. 14b. The corresponding measured            

responses are also included in Fig. 14a with the choice           (Bele and 

                                                      
§
 Henceforth we restrict results to the        case for the high volume fraction composites. 

With increasing   , the thin matrix channels resulted in numerical convergence difficulties 

and a full set of results could not be obtained for       . 
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Deshpande, 2015). There are some clear consistencies between measurements and 

predictions: (i) the stress-strain measurements and predictions are in remarkable 

agreement with the predictions capturing the increase in the hardening rate with 

increasing triaxiality and (ii) both predictions and measurements show a transition 

from dilation to compaction with increasing triaxiality, which is in qualitative 

agreement with experiments. Nevertheless, a clear quantitative discrepancy remains 

between the numerical predictions and measurements: the levels of predicted dilation 

at low stress triaxiality are relatively small compared to the analogous experimental 

results (compare Figs. 3b and 14b). This difference can be understood by recalling 

that the level of dilation increases with increasing    (Fig. 10b) due to the constraint 

imposed by the particle skeleton. While the particle volume fractions of these periodic 

models are approximately equal to those of the idealised cermets, there exists a key 

microstructural difference. The experimentally investigated cermets have a random 

packing of the spherical particles with particle-particle contacts forming force chains 

as discussed in Bele and Deshpande (2015) and Pickering et al. (2016). This imposes 

a strong kinematic constraint on the deformation mode, and we anticipate that similar 

to granular materials it results in relatively high macroscopic dilation.  

 

 
Figure 14: Predictions of the (a)            responses and (b) corresponding strain paths in 

         space for varying levels of triaxiality  . The calculations use the FCC unit cell with 

particle volume fraction        and initial matrix porosity       . In (a) we include the 

corresponding measurements with the measured stresses normalised by the Sn/Pb solder 

matrix yield strength          . 
 

We note in passing here that the conventional porous plasticity model (i.e. model with 

no higher order terms such as gradients of plastic strain etc.) used to describe the 

matrix allows for large plastic strains to develop at the particle/matrix interfaces. In 

reality, the blockage of dislocation motion by the elastic particles will inhibit plastic 

straining near the interface (Danas et al., 2010) and thereby enhance the effective 

matrix strength. This strengthening effect due to the formation of a boundary layer at 

the interface is only significant in thin matrix films on the order of a few microns. 

While the roles of such higher order plasticity effects are not investigated here, the 

fact that the conventional plasticity model predicts the measured strength to 

reasonable level of accuracy (Fig. 14a) suggests that these effects play a minor role in 

the idealised cermets analysed here. By contrast, FE calculations performed as part of 

this study, but not shown here for the sake of brevity, suggest that de-bonding 

between the matrix and the particles significantly reduces the strength of the 

composite and increases the overall dilation levels. For instance, we found that for a 

composite with 60% by volume particles, the uniaxial compressive strength of the de-
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bonded composite is about half that of the composite with bonded particles but this 

de-bonded composite dilates to          at a imposed strain          whereas the 

corresponding dilation in the bonded composite is negligible. 

 

The analysis of random composites with a high volume fraction of spherical particles, 

even though theoretically possible (see for instance Lopez-Pamies et al. (2013), albeit 

at lower particle volume fractions), is beyond the scope of current numerical tools for 

two reasons: the analysis will require (i) the modelling of large representative volume 

elements and many millions of degrees of freedom to adequately represent the porous 

matrix and the particles and (ii) the inclusion of the very thin matrix films in between 

particles that are touching each other; accurate FE modelling of the deformation of 

such thin porous films that undergo very large local deformations further complicates 

the FE modelling. A more appropriate discrete particle model is presented in the 

following section that is free of such disadvantages. 

 

 

5. Analysis of the deformation of a random assembly of spherical particles 

The periodic regular composite analysed in Section 4 does not adequately capture the 

kinematic constraints imposed by the particle skeleton. Hence in order to understand 

the kinematics of idealised cermets, we analyse the response of a model comprising a 

random aggregate of densely packed particles, with no matrix filling the interstitial 

sites (i.e. a so-called discrete element model). This approximation thus represents the 

other extreme, i.e. we model the constraints due to the particle skeleton but do not 

accurately account for the constraints imposed by the matrix. 

 

5.1 Brief description of model 

Here we analyse a “full specimen” rather than a RVE. The specimen is a cuboid of 

height   and square cross-section of side length    , containing randomly packed 

spherical particles of diameter        as shown in Fig. 15a. The particles are 

packed using the Lubachevsky-Stillinger algorithm (Lubachevsky and Stillinger, 

1990), which has been used extensively to simulate random packing of objects within 

boundary walls. Within the cuboidal box, 400 spheres are packed to a volume fraction 

      . Both tensile and compressive inter-particle forces are modelled, in order to 

ensure the stability of the assembly under hydrostatic and deviatoric applied stress 

states. The contact model sketched in Fig. 15b defines these forces. Such a modelling 

scheme is commonly referred to in the literature as a “discrete element” simulation. 

 

The contact law between particles is defined as follows. An elastic-plastic truss (i.e. a 

strut that can carry tensile and compressive loads but no shear or bending loads) of 

cross-sectional area   , tensile yield strength   , compressive yield strength    and 

Young’s modulus    connects the centres of each neighbouring particle. The 

undeformed length of the truss (i.e. state when the truss carries no force) is its length 

in the initial undeformed configuration of the assembly with the truss exerting either 

compressive or tensile forces between the connecting particles as it is shortened or 

lengthened, respectively from this initial state. In order to represent the full kinematic 

constraint of the particles, we also include a soft contact particle model along the lines 

of the model introduced by Cundall and Strack (1979). This contact model is included 

in the sketch in Fig. 15b. Briefly, with   as the distance of separation of the particle 

centres, and the particle interpenetration given by       , the normal contact 

force during active contact (    ) is given by          so that the total contact 
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force equals the contact force    and the force exerted by the truss.  A tangential force 

   between the particles also only exists during an active contact, and opposes sliding. 

It is limited in magnitude to            , where   is the friction coefficient. This 

frictional force    is defined by an elastic-plastic Coulomb type relation with stiffness 

  , i.e.  

 

        
 
                                     

                          
 ’ (5.1) 

 

with     defined as the tangential displacement rate between the contacting particles. 

Unless otherwise specified, all calculations are presented with            , 

        ,      ,           and        . The purpose of this model is 

only to investigate the kinematics and does not attempt to predict the stress versus 

strain response. While the absolute values of these strengths and stiffnesses do not 

affect the kinematics, for completeness we mention that the calculations used a 

relatively low truss strength          . 

 

 
Figure 15: (a) The assembly of 400 spherical particles forming a cuboidal specimen of height 

  and base         analysed using discrete element simulations. Axisymmetric loading 

about the     axis was applied by compressing the specimen between the rigid platens 

included in the sketch. (b) Sketch of the inter-particle contact model used in the simulations. 

 

Similar to the experiments reported in Section 3, the cuboidal specimen (Fig. 15a) 

analysed here was subjected to axisymmetric loading about the     axis with 

proportional stress paths. This loading was imposed as follows. The specimen was 

compressed in the     direction between two rigid platens as shown in Fig. 15a. All 

displacement degrees of freedom were constrained on the bottom platen, while in the 

top platen all rotations, and translations in the    and    directions, were constrained. 

The top platen was compressed against the specimen by the application of a 

compressive force    in the     direction such that the nominal axial stress      
     

 , with    defined to be negative in compression. Further, a non-sliding 

frictional constraint was imposed on the particles in contact with both the platens, i.e. 

the translation in the       plane of particles in contact with the platens was 

constrained. The specimen was subjected to an axisymmetric stress state by 
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specifying that the nominal stresses          . These stresses are related to the axial 

stress via the triaxiality   via 

           
    

    
      (5.2) 

Note that here we use the symbol   to denote triaxiality, as it is defined in a manner 

analogous to the experiments in terms of the nominal stresses. The forces on the 

lateral surfaces with outward normal    (in the undeformed configuration) that 

generate these nominal stresses      and       are given as  

    
  

 
        (5.3) 

This total force is distributed equally over all particles on that lateral outer surface, i.e. 

a force         is applied at the centre of each of the   surface particles on the 

respective lateral surface. This scheme ensures that the specimen is subjected to 

proportional axisymmetric stressing with overall force equilibrium guaranteed and 

moment equilibrium satisfied by the force distributions generated by the contact of 

the specimen with the rigid platens on the top and bottom surfaces. 

 

 
Figure 16: Discrete element predictions of the variation of the macroscopic strains     and     

for varying levels of triaxiality  . 

 

The main aim of this model is to predict both the overall deformation state and also 

the distribution of deformation within the specimen. The local “strains” within the 

assembly are defined as follows. The domain is discretised into linear (i.e. 4-noded) 

tetrahedral elements with the nodes at the centres of the particles. The displacements 

at the four nodes of the tetrahedra along with their associated shape functions in the 

undeformed configuration are used to calculate the deformation gradient    
   

 within 

element     and the corresponding Green-Lagrange strain    
   

        
      

    

    . The volume averaged deformation gradient over the   tetrahedral elements with 

the specimen then follows as 

      
 

  
        

   

 

   

  (5.4) 

where          
    with      the undeformed volume of element    . In the 

following we discuss distributions of the volumetric and effective strains   
   

 and 

  
   

, respectively defined in a manner analogous to the DVC analysis of Section 3.2. 
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We emphasise here that     is not the strain in the matrix or the particles but rather a 

measure of the average strain in the tetrahedron comprising both matrix and particles. 

The corresponding macroscopic average strains      as well as     and     are defined 

from      as detailed in Section 4.1. We note in passing that the non-linear definition of 

the Green-Lagrange strain implies that      is not equal to the volume average of    
   

. 

 

5.2 Deformation fields and effect of triaxiality 

Predictions of the variation of     with     are plotted in Fig. 16 for selected 

triaxialities  . Consistent with observations (Fig. 3b) and predictions of the periodic 

model (Fig. 14b), the levels of dilation increase with decreasing triaxiality   and the 

aggregate undergoes overall compaction at the higher triaxialities over the range of 

deformations considered here. However, unlike the periodic model of Section 4, the 

levels of dilation are now significantly higher for the low triaxialities and similar to 

those seen in the measurements. This confirms our initial hypothesis that at a 

relatively high particle volume fraction, a random particle arrangement invariably 

implies percolated particle chains, and results in kinematic constraints that give rise to 

high levels of dilation at low triaxialities. 

 

Three-dimensional views of the specimen showing distributions of    and    are 

included in Figs. 17 and 18, respectively. The views are shown at four levels of 

applied strain     and for three values of   (the two largest values of     are omitted for 

the highest triaxiality of       as those calculations encountered numerical 

convergence difficulties). First consider the distributions of   . At low levels of 

overall deformation (         ), regions of both compaction and dilation are 

observed for all values of  . With increasing deformation, regions of dilation 

dominate for the       case while regions of compaction dominate for      . 

This is consistent with the overall levels of     seen in Fig. 16 but nevertheless it is 

worth emphasising that regions of compaction and dilation are observed for both 

      and 1.5 at all levels of    , in line with the DVC measurements reported in 

Section 3.2. By contrast the distributions of    are reasonably similar for the three 

triaxialities   included in Fig. 18. 

 

To further illustrate the observation that the kinematic response of a region within the 

specimen is dependent on the macroscopic stress triaxiality, we consider in Fig. 19 the 

evolution of    with the overall deformation     for three tetrahedra within the 

specimen. Results in Fig. 19 are shown for the       and 1.5 cases and exemplifies 

the complexity of the kinematics. Tetrahedra labelled (i) and (ii) in Fig. 19 switched 

from dilatory paths to compactive paths as triaxiality was changed from       to 

1.5 while the tetrahedron labelled (iii) dilated for deformation with       but 

slightly compacted with      .  
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Figure 17: Discrete element predictions of the spatial distribution of the volumetric strain    

(shown on the deformed configurations) in the idealised cermet specimen at selected applied 

macroscopic strains    . Results are shown for three stress paths (a)      , (b)       and 

(c)      . The numerical simulations did not converge for        for       and hence 

those cases are omitted in (c). 



 24 

 
Figure 18: Discrete element predictions of the spatial distribution of the effective strain    

(shown on the deformed configurations) in the idealised cermet specimen at three applied 

macroscopic strains    . Results are shown for three stress paths (a)      , (b)       and 

(c)      . The numerical simulations did not converge for        for       and hence 

those cases are omitted in (c). 
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While the dependence of local particle kinematics on the macroscopic stress state is 

relatively complex, the trends of the collective response are clear from Fig. 16: the 

specimen undergoes less dilation and even compaction with increasing triaxiality. 

This suggests that with increasing triaxiality, a larger fraction of the specimen is 

compacting rather than dilating. In order to quantify this, we define a dilated volume 

fraction as 

 

   
 

  
        

 

   

  
   
   (5.5) 

where      is a Heaviside step function. The variation of   with     is included in 

Fig. 20 for       and      : clearly   is significantly higher at the lower 

triaxiality value. Moreover, while   is nearly monotonically increasing with     for 

     , the   versus     relation fluctuates at       as regions of the specimen 

compact and dilate alternatively during different stages in the deformation. 

 
 

 
Figure 19: Discrete element predictions of the evolution of the mean strain    with the 

macroscopic strain     in three selected tetrahedra within the assembly of spherical particles 

analysed here. The three tetrahedra are indicated in the specimen and the        curves 

shown for       and      . 

 

5.3 Effect of inter-particle contact properties 

The differences in the local kinematic response to the imposed stress triaxiality are 

related to the relative constraints against compaction and dilation, and can be 

understood in a qualitative manner as follows. For the purpose of this discussion 

assume that there are two modes whereby a local region can be deformed to a given 

level of   : a dilatory and a compaction mode. The dilatory mode is inhibited with 

increasing triaxiality as the mode involves work done against the externally applied 

pressure, with the compaction mode becoming more favourable as seen in the results 

presented above. Moreover, increasing the internal constraints can also inhibit the 

dilatory mode. For example, an incompressible matrix filling all the interstitial gaps 

between the particles will significantly reduce the tendency of the system to dilate, 

with the dilation mode only activated if the tensile hydrostatic stress within the matrix 
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exceeds the cavitation pressure. In order to illustrate the effect of varying the level of 

the dilatory and compaction constraints, we report here calculations with unequal 

compressive and tensile yield strengths: viz. the tensile truss yield strength    is 

decreased from       to           while keeping all other particle contact 

properties unchanged from the reference values detailed in Section 5.1. 

 

Predictions of the variation of   with     are included in Fig. 20 for          and 

100 in addition to the reference value of         for both       and 1.5. With 

increasing      , the dilated fraction   clearly increases at      , due to the fact 

that the lower tensile truss strength favours the dilatory mode over the compaction 

mode. A similar increase is also observed for       but the changes are relatively 

small as only a small fraction of the specimen dilates at this high triaxiality.  

 

It is thus evident that a full quantitative prediction of the response of the idealised 

cermets reported in Section 3 will require not only the accurate capture of the 

constraint imposed by the porous matrix (using formulations as in Section 4) but also 

the analysis of large RVEs with a high volume fraction of randomly packed spheres 

that include the constraints on the kinematics imposed by the contact of the particles. 

Such an analysis is beyond the scope of current computational capability but the 

limiting models presented here reveal some key physics and illustrate the limitations 

of these simplified models. 

 

 
Figure 20: Discrete element predictions of the fraction   of the specimen that undergoes 

dilation, as a function of the macroscopic strain     for two selected values of the triaxiality  . 

In each case we show results for the reference value of         and two additional values 

of      . 

 

 

6. Concluding remarks 
The response of idealised cermets comprising approximately 60% by volume steel 

spheres in a Sn/Pb solder matrix is investigated under a range of axisymmetric 

compressive stress states. The measured macroscopic stress-strain responses, and 

digital volume correlation (DVC) analyses revealed two distinct deformation 

mechanisms. At low triaxialities, the cermets behave as granular media and dilate 

under compressive loading. This gives rise to an increasing hardening rate with 

increasing triaxiality. By contrast, at sufficiently high triaxialities the deformation 

switches to a macroscopically incompressible mode, resulting in a stress versus strain 
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response that is independent of triaxiality. However, the DVC reveals that under all 

triaxialities there are local regions with dilatory and compaction responses; the 

magnitude of dilation and the number of zones wherein dilation occurs decreases with 

increasing triaxiality.  

 

Two numerical models are presented in order to understand these mechanisms: (i) a 

FCC periodic unit cell model comprising nearly rigid spherical particles in a porous 

metal matrix and (ii) a discrete element model comprising a large random aggregate 

of spheres connected by non-linear normal and tangential “springs”. The periodic unit 

cell model captures the measured stress-strain response with reasonable accuracy but 

significantly under-predicts the observed dilation at the lower triaxialities. While this 

model does predict overall dilation at low triaxialities, it under-predicts the magnitude 

of the dilation significantly because the non-contacting particles in this model 

underestimate the kinematic constraints imposed by the percolated particle chains in 

the idealised cermets. 

 

By contrast, the discrete element model captures the kinematics and predicts not only 

the overall levels of dilation but also the fact that both local compaction and dilatory 

regions exist for all triaxialities. However, this model does not explicitly include the 

matrix and it is unclear how the inter-particle contact law can be directly connected to 

the matrix properties. Thus, the model cannot be used as a predictive tool for the 

overall stress versus strain responses of idealised cermets.  

 

The analyses reported here have revealed that the complete constitutive response of 

cermets depends sensitively on both the kinematic constraints imposed by the particle 

aggregate skeleton and the constraints imposed by the metal matrix filling the 

interstitial spaces in that skeleton. It is thus evident that a full quantitative prediction 

of the response of the idealised cermets will require the analysis of large RVEs 

comprising a high volume fraction of randomly packed spheres within a porous 

plastic matrix. While such an analysis is beyond the scope of current computational 

capability, the limiting models presented here reveal some key physics of the 

deformation mechanisms of cermets. 

 

Appendix A: Volumetric and deviatoric strains for Green-Lagrange strain 

measures 

Throughout the main body of the paper we have used Green-Lagrange strain 

measures. This is because local strains and rotations within the idealised cermets 

might be large and thus it is most convenient to illustrate the deformations as 

measured by the DVC analysis via a finite strain measure such as the Green-Lagrange 

strain measure. Further, for simplicity, we then used       and    
               

to parameterise the volumetric and deviatoric strains, respectively. These measures 

were motivated from the analogous small strain definitions but are not precise in the 

finite strain context. 

 

While the decomposition        
          ensures that    

  is trace-less it is not a 

deviatoric strain in the sense of representing a deviation from the volumetric strain. 

This is because    is not the Green-Lagrange volumetric strain. An alternative 

decomposition suggested by Bažant (1996) is 
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           (A1) 

with 

 
        

 

 
  
    

 

(A2) 

where           with            and     the deformation gradient. With this 

decomposition         is the Green-Lagrange strain tensor for purely volumetric 

deformations and therefore    
  is a deviatoric strain tensor (i.e. vanishes for purely 

volumetric deformation). However, now    
  is no longer trace-less as is the case with 

small strain measures of the deviatoric strain tensor. We can then define a measure of 

the deviatoric deformation analogous to the von-Mises effective strain as 

      
 

 
   
    

   (A3) 

and decompositions of the average strain measures      follow analogous definitions. 

The data in Fig. 3b for      , 0.75, 1 and 1.5 is re-plotted in Fig. A1a as     versus 

     with the data in terms of     versus     also included for comparison purposes. 

The differences are relatively small over the full range of strains investigated here.  

 

 

 
Figure A1: Comparisons between the measured (a)     versus      and     versus     strain 

curves and (b)       versus     and     versus     curves for the idealised cermets. Curves 

are shown here for four values of   using the data from Fig. 3b. 

 

We emphasise that while        is a volumetric tensor, neither     nor     gives the 

volumetric strain defined as      , where    and    are the change in volume and 

initial volumes, respectively of the specimen. To illustrate this we re-plot in Fig. A1b 

the data of Fig. 3b in terms of           versus     along with     also versus 

   . Again, we can see that the differences between     and       are relatively small 

even at the highest levels of deformation investigated here. Similar small 

discrepancies are also seen between     and       (omitted here for the sake of 

brevity). We thus conclude that for strain levels investigated here the simple measures 

of volumetric and deviatoric deformations motivated by small strain definitions 

suffice but we anticipate significant differences to emerge at larger strains. 
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