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Abstract

We give more details on the experimental procedure and we derive in detail the first and second variations of the potential
energy used to carry out the numerical simulations. The numerical part is presented in a comprehensive way and allows direct
implementation in standard (commercial and non-commercial) finite element codes. We also investigate in depth the effect of
friction on the lateral faces between the magnetorheological film/substrate system and the experimental setup used to apply
pre-compression. We find that friction can have very significant effects on the obtained response and the present numerical
analysis explains a number of results obtained experimentally.

1 Experimental procedure and image processing
The compression device is 3D-printed in a polymeric material so as not to interfere with the magnetic field during the ex-
periments. It consists of three orthogonal walls forming a U shape (Fig.S1). A non-magnetic screw-driven system is used
to control the distance between the two parallel walls and thus defines the applied pre-compression stretch ratio λ0. Before
compression, silicone oil is applied onto the lateral faces of the film/substrate block that is in contact with the setup walls to
decrease friction. Even so at large pre-compressions, friction effects are not negligible and need to be taken into account in
the numerical analysis to reach a good quantitative agreement with experiments (see Section 3). In turn, the bottom part of the
block is uncoated in order to prevent pronounced translations at the bottom of the substrate. The specimens are magnetically
and mechanically unloaded and then retested under an increased pre-compression value. It is important to specify that the
specimens have been pre-cycled mechanically and magnetically to reach a stabilized state before recording the experimental
data.

The entire system is subsequently installed with the MRE layer perpendicular to the magnetic field, within the 82 mm-air
gap separating the two 90 mm-diameter poles of a two-coil electromagnet, as seen in Fig.S1. The magnetic field is increased
linearly from 0 to 0.6T at a rate of 0.002 T/s. An external sensor is used to measure the amplitude of the applied magnetic
field as far as possible from the boundary of the film/substrate block.

The bifurcation curves are then obtained by image processing of 12 µm/pixel resolution images, which were recorded
during testing at a rate of 17 frames per 0.1T magnetic field increment. Due to the tight spacing of the magnetic poles the
current setup does not allow the direct visualization and measurement of the wrinkling from the top of the film. Future work
in different setups is underway and will allow quantitative analysis of more complex magneto-mechanical wrinkling patterns
such as those obtained for small pre-compressions (see inset of blue region in Fig.5b of the main article).

We process the digital images in Matlab in order to obtain the bifurcation amplitude A curves of several specimens under
the range of pre-compressions λ0 ∈ [0.7,0.98] tested. Grayscale images (e.g., Fig.3a-p) are first normalized so that pixel values
in the range of [0,1] represented their brightness. In order to detect the film profile evolution versus the applied magnetic field,
the contrast between the dark film and the light background is enhanced by binarizing the images. In particular, after setting
a threshold (∼ 0.3) defining whether a pixel intensity corresponds to the film or to the lighter background close to the film,
the position vector of the pixels located at the film/background interface (jump from 1 to 0) is stored for the initial (i.e.,
zero magnetic field) and magnetically loaded film configurations. We consider that clear wrinkling occurs away from the
boundaries and thus both edge wrinkles are excluded from the bifurcation analysis. The absolute amplitude of the edge
wrinkles tends to be higher due to friction effects (see discussion in Section 3), as well as due to magnetic field concentration
near the corners of the specimen (as shown in the contours of Fig.6). The global maximum (peak) and minimum (valley) of
the central wrinkles are then tracked and the corresponding vertical displacements u2 (along the field direction) are measured
from the trajectories of the extreme points. The amplitude of film deflection A is quantified as the average distance between
the peak and the valley of the two wrinkles (Fig.S2). The pixel coordinate system is then transformed into the laboratory
Cartesian system. The difference between the current amplitude A at given magnetic field b0 and the initial (reference) film
amplitude A0, i.e. A−A0, is evaluated, e.g., Figs.3q,5a. The same process is also followed to obtain the numerical bifurcation
curves as discussed in the next section.
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Figure S1 Custom-made setup for the magnetomechanical experiment. The specimens are uniaxially compressed at a given stretch λ0 with
a non-magnetic screw-driven device. The pre-compression is fixed and the system enters within the two poles of the electromagnet. The
magnetic loading (b0) is applied along the film thickness in a linearly increasing fashion. A camera records the profile of the specimen and
thus the wrinkling of the film.
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Figure S2 Detection of the film-background interface corresponding to the film profile at λ0 = 0.8 and b0 = 0.2T. Our image analysis
excludes the external wrinkles to avoid measurements affected by friction. The current amplitude of film deflection A is determined as the
average value of the two middle wrinkle amplitudes, A = (A1 +A2)/2.

2 Variational formulation for finite magnetoelasticity
In this section, we discuss the variational formulation used in the finite element algorithms and explicit expressions are given
for the first variation (i.e., force vector), which yields the equilibrium and Maxwell equations, and the second variation (i.e.
stiffness matrix) of the variational principle. First, we consider the potential energy1 (but see also2,3) neglecting mechanical
body forces:

P(u,A) =
∫

Ωi

ρ
i
0Φi (F,B) dΩ+

∫
ℜ3

1
2µ0J

‖F ·B‖2 dΩ−
∫

∂Ωt
i

T ·udS, (1)

Here, ‖.‖ is the standard Euclidean norm, while B (with b = J−1FB) and A (with B = ∇×A≡CurlA) are Lagrangian vectors.
The deformation gradient F = ∇x = I+∇u (we use standard notation ∇≡Grad in the reference configuration) is a two-point
tensor describing the transformation of a material point from the reference to the deformed configuration. Note also the
determinant J = detF > 0, with x = X+u(X) denoting the position vector of a material point in the deformed configuration,
X the position vector of the same point in the reference configuration and u the displacement vector. In turn, the Helmholtz
free energy density Φi depends on the material choice, with i = f ,s for the film and the substrate, respectively. In addition, ρ i

0
is the reference density such that the current density reads by ρ i

0 = ρ iJ. It is noted here that in order to model the air domain,

2



it suffices to set ρair
0 = 0. As a consequence, all subsequent expressions are valid for all phases (MRE film, substrate and air).

In this regard, the second term in (1) serves to describe the background magnetic (Maxwell) energy in the entire space ℜ3

and thus it accounts for all three phases, i.e., film, substrate and air. T is the mechanical surface traction vector applied at the
traction part of the boundary of the reference volume denoted with ∂Ωt

i .

2.1 First variation and force vector
In equation (1), u and A serve as independent variables with respect to which the potential energy in (1) is minimized. This is
achieved first by considering the first and second variations of P with respect to the independent variables. The first variation
simply reads

δP(u,A) = P,u δu+P,A δA. (2)

To be more specific, it is helpful to define the following variations, where C = FT ·F denotes the right Cauchy-Green tensor
such that1

δF = δu∇, δC = 2FT · (δu∇), δB = ∇×δA

δρ =−ρ F−T : (δu∇), δ
(
J−1)=−J−1 F−T : (δu∇) =

δρ

ρ0
. (3)

Then, dropping for simplicity the indexes i referring to material properties and using (2) together with (3), one gets

δP =
∫

Ω

ρ0

{
∂Φ

∂F
: (δu∇)+

∂Φ

∂B
· (∇×δA)

}
dΩ

+
∫

ℜ3

{
δ
(
J−1
)

2µ0
(∇×A) ·C · (∇×A)+

1
µ0 J

(∇×A) ·C · (∇×δA)

+
1

2µ0 J
(∇×A) ·δC · (∇×A)

}
dΩ−

∫
∂Ωt

T ·δudS, (4)

which can be rewritten in terms of δF and δB by use of definitions (3) as

δP =
∫

Ω

ρ0

{
∂Φ

∂F
: δF+

∂Φ

∂B
·δB

}
dΩ

+
∫

ℜ3

{
− 1

2µ0J
‖F ·B‖2 F−T : δF+

1
µ0 J

(F ·B) · [F · (δB)]+
1

µ0 J
[(F ·B) B] : δF

}
dΩ

−
∫

∂Ωt
m

T ·δudS. (5)

Next, gathering the variations with respect to δF and δB one obtains the following quantities in index notation

∂P

∂Fi j
= ρ0

∂Φ

∂Fi j
− 1

2µ0 J
‖F ·B‖2 F−1

ji +
1

µ0 J
Fir Br B j (in ℜ

3),

∂P

∂Bi
= ρ0

∂Φ

∂Bi
+

1
µ0 J

Frk Bk Fri (in ℜ
3).

2.2 Second variation and Jacobian matrix
Similarly, the second variation of the potential energy (1), which forms the Jacobian of the numerical system of equations can
be written in the form

∆δP = (P,uu∆u)∆u+
(
P,Au∆A

)
∆u+

(
P,uA∆u

)
∆A+

(
P,AA∆A

)
∆A, (6)

or in matrix notation (and by use of definitions (3)) as

∆δP = {∆F,∆B}


∂ 2P

∂F∂F
∂ 2P

∂F∂B

∂ 2P

∂B∂F
∂ 2P

∂B∂B




δF

δB


. (7)

1We use the following vector-tensor product notation. For two second-order tensors, A and B, we define the operations A ·B = AikBk j , A : B = Ai jBi j .
For a second-order tensor A and a vector v, we denote A ·v = Ai j v j , vv = vi v j and v ·v = vi vi.
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The above second-order derivatives are evaluated by direct derivation of the potential energy (1), such that

∂ 2P

∂Fi j∂Fkl
=ρ0

∂ 2Φ

∂Fi j∂Fkl
+

1
2µ0J

‖F ·B‖2
[
F−1

lk F−1
ji −F−1

jk F−1
li

]
− 1

µ0J

[
Fks Bs Bl F−1

ji +Fin Bn F−1
lk B j−δik Bl B j

]
(in ℜ

3). (8)

and

∂ 2P

∂Fi j∂Bk
=ρ0

∂ 2Φ

∂Fi j∂Bk
+

1
µ0J

[
Fik B j +Fin Bn δ jk−Ckr Br F−1

ji

]
(in ℜ

3), (9)

and

∂ 2P

∂Bi∂B j
= ρ0

∂ 2Φ

∂Bi∂B j
+

1
µ0J

Ci j (in ℜ
3). (10)

2.3 Finite Element Discretization in two-dimensions
One can discretize the above equations by discretizing the total volume Ω in Ne discrete finite elements (and Nn nodes) by

Ω =
Ne

∑
I=1

Ω
I
e, (11)

with ΩI
e denoting the volume of each element. Then, the element vector of unknowns δqe is given readily by

δqe = {δu,δA}. (12)

Next, we define (in a general fashion) the discretized form of the unknown variables, i.e., u and A, using standard notation

δu = Nu ·δqe, δA = Nα ·δqe, (13)

where Nqe are the matrices associated with the element shape functions, whereas in order to compute the gradients, we have

δu∇ = Gu ·δqe, ∇×δA = Gα ·δqe, (14)

with Gqe denoting the gradient of the Nqe matrices. This allows for the definition of the element force vector fe conjugate to
the element vector of unknowns δqe and is given readily by

fe ·δqe =
∫

Ωe

δP dΩ =

[∫
Ωe

{
∂P

∂F
: Gu +

∂P

∂B
·Gα

}
dΩ

]
·δqe. (15)

Similarly, the element stiffness matrix ke is defined by

∆qe ·ke ·δqe =
∫

Ωe

∆δP dΩ = ∆qe ·


∫

Ωe

[
GT

u GT
α

]


∂ 2P

∂F∂F
∂ 2P

∂F∂B

∂ 2P

∂B∂F
∂ 2P

∂B∂B




Gu

Gα

 dΩ


·δqe. (16)

We write the force vector and stiffness matrix in index notation and we define the local-to-global coordinate transforma-
tion by the Jacobian matrix, denoted as [J ] = ∂Xi/∂ξ j = ∑

Nn
I=1(∂NI/∂ξ j)X I

i , i = 1,2, pertinent to the shape functions N.
Subsequently, we evaluate the quantities u∇ and ∇×A by

∂u1/∂X1

∂u1/∂X2

∂u2/∂X1

∂u2/∂X2

∂A3/∂X2

−∂A3/∂X1


︸ ︷︷ ︸

[dqdx]

=



J −1
11 J −1

12 0 0 0 0
J −1

21 J −1
22 0 0 0 0

0 0 J −1
11 J −1

12 0 0
0 0 J −1

21 J −1
22 0 0

0 0 0 0 J −1
21 J −1

22
0 0 0 0 −J −1

11 −J −1
12


︸ ︷︷ ︸

[JI]



∂u1/∂ξ1

∂u1/∂ξ2

∂u2/∂ξ1

∂u2/∂ξ2

∂A3/∂ξ1

∂A3/∂ξ2


︸ ︷︷ ︸

[dqdxi]

, (17)
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and the vector dqdxi by



∂u1/∂ξ1

∂u1/∂ξ2

∂u2/∂ξ1

∂u2/∂ξ2

∂A3/∂ξ1

∂A3/∂ξ2


︸ ︷︷ ︸

[dqdxi]

=


G11 0 0 G21 0 0 G31 0 0 G41 0 0
G12 0 0 G22 0 0 G32 0 0 G42 0 0
0 G11 0 0 G21 0 0 G31 0 0 G41 0
0 G12 0 0 G22 0 0 G32 0 0 G42 0
0 0 G11 0 0 G21 0 0 G31 0 0 G41
0 0 G12 0 0 G22 0 0 G32 0 0 G42


︸ ︷︷ ︸

[NG]



u(1)1

u(1)2

A(1)

u(2)1

u(2)2

A(2)

u(3)1

u(3)2

A(3)

u(4)1

u(4)2

A(4)


︸ ︷︷ ︸

qe

. (18)

Then, the derivative matrix [G] is given by
[G] = [Gu Gα ] = [JI] [NG] . (19)

2.4 Mesh and boundary conditions
To solve the boundary value problem of a finite geometry in nonlinear magnetoelasticity, we implement the above described
magnetoelastic element in the general code FEAP4. We define a simple, but largely sufficient, plane-strain 4-node quadrilateral
isoparametric element, with 3 degrees of freedom per node: the displacements u = {u1(X1,X2),u2(X1,X2)} and the magnetic
vector potential α = A3(X1,X2), with (X1,X2) the global reference coordinates. The (A1,A2) components are zero since
B = {B1,B2,0} = {∂A3/∂X2,−∂A3/∂X1,0} (we remind that B = ∇×A). The nodal unknowns qe ≡ {δu1,δu3,δα} were
interpolated by δqi(X1,X2) = ∑

4
j=1 δq j

i N j(X1,X2) (with δq j
i denoting the 4 nodal values of the degrees of freedom), using

linear shape functions,

N1(ξ1,ξ2) =
1
4
(1−ξ1)(1−ξ2), N2(ξ1,ξ2) =

1
4
(1−ξ1)(1+ξ2),

N3(ξ1,ξ2) =
1
4
(1+ξ1)(1+ξ2), N4(ξ1,ξ2) =

1
4
(1+ξ1)(1−ξ2), (20)

with (ξ1,ξ2) ∈ [−1,1] denoting the local coordinates.
Following convergence studies, the number of elements in the film is 1200, in the substrate 5200 and in the air 10160. The

nonlinear solutions of the field equations are obtained incrementally with the use of a standard Newton-Raphson scheme. In
turn, the air domain needs special treatment, since it has no mechanical energy and thus the deformation gradient is undefined
therein. In view of this, we have partitioned the air mesh into two domains. One with a structured mesh and the rest with
unstructured mesh, as shown in Fig.S3.

Specifically, the first structured domain is deformable and spatially defined by a square of side length 2R f +L, concentric
to the solid square of side length L(= 40mm). We use R f = 0.5∆Lair, where ∆Lair is the half length size of the entire air
domain minus the solid domain (see Fig.S3). The elements within the deformable air domain are forced to deform to avoid
severe mesh distortion near the specimen/air interface. This fictitious air deformation does not alter the solution of the problem
since the air density is zero and thus does not contribute to the mechanical energy of the system. To achieve this fictitious
deformation, we follow the steps below:

(i) for all nodes lying in the deformable air domain, we find the closest node on the specimen boundary by a simple search
algorithm, thus defining a set of pairs of size Na−s.

(ii) for each pair of air-solid nodes, we define the linear constraint function cu = (1−|x(2)i −x(1)i |/R f ) ·u(2)i −u(1)i = 0, with
i = 1,2. In this last expression, node (1) belongs to the deformable air and node (2) to the solid domain, respectively.

(iii) the above constraint function can be achieved with either a Lagrange multiplier or a penalty formulation. For simplicity,
we choose the second option and we define the penalty energy

Φpen(ui) =
Na−s

∑
n=1

2

∑
i=1

1
2ε

[(
1−
|x(n,solid)

i − x(n,air)
i |

R f

)
u(n,solid)

i −u(n,air)
i

]2

(21)
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Figure S3 Mesh of the film/substrate/air system. All regions are meshed with quadrilateral bilinear, 4-node isoparametric,
magnetomechanical elements. A structured mesh (blue) with deformable elements is defined by the distance R f from the solid boundary.
The rest of the air region (purple) (defined by distance ∆lair from the solid boundary) is unstructured and stationary.

which is added to the original variational formulation (1).

(iv) we choose a sufficiently small value for ε = 10−7 such that the constraint function is satisfied to a good accuracy. This
value and approach leads in general to more accurate results and better convergence than that of using a small but finite
shear and bulk moduli for the air domain.

(v) we consider first and second variations in (21) with respect to ui and amend the original force vector and stiffness matrix
of the entire system.

Finally, for the undeformable air domain, we apply identically zero displacements ui = 0 (i = 1,2). In turn, the magnetic
field is applied via the vector potential α 5 by imposing at the outer boundary of the air the following condition

α(X1,X2) = εi j(B0)i X j, Xi ∈ ∂ℜ
3, B0 = b0. (22)

In the above equation, we have abused the notation ℜ3 to denote the boundary of the undeformable (outer) air domain. In
addition, the Lagrangian, B0, and Eulerian, b0, magnetic fields are equal in the stationary air domain by definition.

3 Friction effects due to high pre-compression
In this section, we analyze numerically the response of the MRE film/substrate system at large pre-compressions λ0 ∈
[0.7,0.78] and probe the relevant experimental results. This study has as a goal to understand better the absence of wrin-
kling for purely mechanical pre-compressions, i.e., b0 = 0, λ0 < 1, even beyond the purely mechanical bifurcation point
λ c

0 = 0.76, which has been obtained numerically for the ratio Gs/G f = 0.3.
We begin the analysis by first noting in Fig.3a,e,i,m a noticeable curvature at the corners of the film. This curvature grows

as a function of pre-compression and is obviously related to friction effects at the boundary between the film/substrate and
the compression setup, even after silicone oil is applied onto the lateral faces that are in contact. The resulting curvature is
not negligible when compared with the thickness of the MRE film and the size of the specimen. As we show numerically, the
presence of friction and the resulting curvature inhibit a clean mechanical wrinkling instability and lead to a combined wrinkle
and localized pre-crease pattern.

In order to model numerically the friction effect, and taking into account the complexity of the air modeling as well as the
partial continuity of the magnetic fields, we employ an approximate procedure that does not necessitate the direct modeling
of contact. Specifically, we bypass the contact problem by adding an empirical tangential force f2 (in the X2 direction) at the
lateral edges of the block (see Fig.2 in the main text) to mimic contact. This force is a function of the applied pre-compression
λ0 and reads

f2 = fmax
1−λ0

1−λ max
0

, fmax = 72µN, λ
max
0 = 0.73. (23)

The quantity λ max
0 corresponds to the maximum pre-compression achieved experimentally. The previous law is related to a

nonlinear friction law in the sense that the applied stretch in direction X1, i.e. λ0 ≡ λ1 is related in a nonlinear fashion to the
normal force f1 at the lateral face. The maximum force fmax constitutes then a simple fitting parameter which is obtained by
fitting the early stage of the post-bifurcation response at λ0 = 0.73.
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In Fig.S4a, we examine quantitatively the effect of friction upon the bifurcation amplitude for three pre-compressions,
λ0 = 0.73,0.75,0.78. The main observation in this figure is that by application of friction (continuous curves denoted with
“W/ friction”), the bifurcation transition stagnates and does not further decrease with increase of pre-compression (i.e. de-
crease of λ0). By contrast, when the numerical calculations are frictionless, the curves exhibit a strong dependence on λ0.
For sufficiently small λ0 = 0.73, the numerical film/substrate wrinkles and develops a non-zero amplitude well before the
application of the magnetic field b0. There is of course a transition point, which is directly linked to the purely mechanical
critical wrinkling load, which is λ c

0 = 0.76. In this case, the bifurcation curve would start exactly at the origin in Fig.S4a (not
shown here). This observation implies that by reducing friction and hence boundary effects one can achieve wrinkling via a
critical magnetic field that is very close to zero, i.e. bc

0 ∼ 0T, as theoretically suggested in3. That is a significant point that
deserves further investigation and will be addressed in a future work.
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Figure S4 Role of lateral friction on critical loads and patterns for high pre–compressions λ0. Friction is modeled by applying a tangential
force f2 = 72µN along X2 direction at the lateral edges of the two-dimensional solid. a) Comparison between the experimental bifurcation
curves (symbols) vs. numerical curves with and without friction (continuous and dashed lines respectively) for λ0 = 0.73,0.75,0.78; (b-d)
Experimental and (e-j) numerical morphological modes with friction (film in blue) and without friction (film in red), respectively. At high
pre-compression λ0 = 0.75 < λ c

0 and in the presence of friction (e), the mechanical wrinkling mode vanishes but not in the case without
friction (h); The numerical pattern with friction turns into a more localized configuration (g), which fits better the experimental
period-doubling and localized (pre-crease) morphology (d) than the numerical pattern without friction (j).

For completeness, the influence of friction on the critical modes is also depicted in Fig.S4b-j. Here, we compare qualita-
tively the experimental morphological pattern evolution (Fig.S4b-d) versus the numerical results with (Fig.S4e-g) and without
(Fig.S4h-j) friction for λ0 = 0.75. In the absence of friction, the numerical simulation gives well-defined wrinkling, i.e.,
well-formed sinusoidal wrinkles of equal amplitude (Fig.S4h-j). The numerical wrinkling vanishes, however, with the addi-
tion of friction at the initial stages of pre-compression (Fig.S4e), whereby one observes the appearance of non-zero curvature
at the film boundaries both numerically and experimentally (Fig.S4b,e). With increase of lateral compression, combined
wrinkles with a slight localized mode in the middle (pre-crease Figs.S4g) patterns appear that resemble qualitatively the ex-
periments (Figs.S4c-d,f-g). Consequently, at large pre-compressions and under the presence of friction, the simultaneous
period-doubling and localized (pre-crease) morphology is potentially a tradeoff between the mechanical and magnetic load
contributions. Further investigations should be carried out to better understand the coexistence of mechanical localized modes
and magnetic wrinkles.
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