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We present a method of homogenization of thin metallo-dielectric structures as used in the design of artificial sur-
faces, or metasurfaces. The approach is based on a so-called matched asymptotic expansion technique, leading to
parameters being characteristic of an equivalent interface associated to jump conditions. It is applied to an array
of metal strips on top of a metal-backed dielectric slab, with the strips having a small but possibly finite thickness.
Solving the equivalent problem provides explicit expressions (i) of the reflection coefficient for a wave at oblique
incidence and (ii) of the dispersion relation of the surface waves. The results are shown to be in agreement with
results coming from the transmission line theory in the limit of vanishing thickness of the metallization and for
normal incidence of the wave. The influence of the finite thickness of the metallization is exemplified and validated
by comparison with full wave simulations.
© 2016 Optical Society of America

OCIS codes: 260.2065;160.3918; 160.3900; 310.2790.
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1. INTRODUCTION

It is nowadays admitted that the properties of bulk structures involving a periodic arrangement of scatterers at the subwavelength scale
are correctly captured by classical homogenization techniques, e.g. [1, 2]. In general, the problem ends with effective permittivity and
effective permeability able to describe the material at the macroscale, even in complex cases including non local effects [3], bianisotropy
at small scale [4] or resonances within the unit cell [5]. However, these homogenization techniques fail when the thickness of the
structures becomes of the order of (or smaller than) the wavelength and there is a lack in approaches able to give an effective behavior
of ultrathin devices within a rigorous mathematical framework (an enlightening review can be found in Ref. [6]).

Starting in the 1970s, homogenization techniques based on matched asymptotic expansions have been developed, mainly for static
problems, and adapted more recently to wave problems in few contexts, as in the context of seismic waves [7, 8]. These approaches
have the same ingredients as the classical homogenization, the two scale method and the asymptotic expansion, but they explicitly
account for the subwavelength thickness of the device. This is because two different expansions are used in the near and far fields of
the scatterers, which are connected using so-called matching conditions.

In this paper, we present an interface homogenization based on such matched asymptotic expansion technique as developed in
the static case in [9, 10]. We focus on the case of artificial metal-dielectric structures, formed by a periodic arrangement of metallic
components separated from a metallic ground plate by a dielectric substrate. Such surfaces are known as frequency selective surfaces
(FSS), artificial magnetic conductors (AMC) or high impedance surfaces (HIS), and they have found numerous applications in
telecommunication, for instance in the design of antennas. There is currently renewed interest in the context of the metamaterials
for these so-called metasurfaces, because of their unconventional properties to interact with light, see the recent review [11]. Among
the various functionalities of these artificial surfaces, their abilities to modify the reflection phase and the band gap structure (see
e.g.[12]) have been revisited to realize metasurfaces controlling the reflected wave within generalized Snell’s Descartes laws [13, 14]
and realizing perfect absorbers [15].
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To describe such devices, the main step in our approach is to replace the metallic array by an equivalent interface associated to jump
conditions involving interface parameters, afterwards the propagation in the grounded dielectric substrate is explicitly accounted for.
These interface parameters are determined by solving elementary problems (or unit cell problems) which allows to deal with complex
geometries of the array and of the interface with the dielectric. The transmission line theory has been shown to accurately describe
the propagation in such devices but the approach is limited to simple geometries of the metallization for which a capacitive or an
inductive structure is recognized [16]. Also, it neglects the thin but possibly non zero thickness of the metallization, and the influence
of this thickness will be regarded in the present study. In fact, although the metallization, realized by means of mechanical or chemical
etching, may lead to very thin metallic parts, accounting for a non vanishing thickness adds an extra flexibility to the design of the
metasurface. Besides, in practical realizations, the relative metal thickness ke (with e the metal thickness and k the wavenumber of the
incident wave) may be not negligible, for instance ke ∼ 0.2− 0.5 are used in Refs. [14, 17].

(a) (b)

Fig. 1. (a) Typical geometry of the artificial surface composed of a metallic array supported by a metal backed dielectric substrate,
(b) equivalent thin interface on the metal backed dielectric substrate.

The paper is organized as follow. In Section 2, the matched asymptotic expansion is presented for transverse magnetic polarization
(TM). Particularities due to the presence of the air/dielectric interface in addition to the presence of the metallic array are stressed.
The problem ends with transmission, or jump conditions being expressed in terms of interface parameters, among which the volume
fraction of metal in the array, Eqs. (24). The interface parameters are given unambiguously by means of the resolution of static unit cell
problems being expressed in the near field of the array, Eqs. (15)-(16), and unambiguously is meant without any retrieval procedure.
The section 3 presents results from full wave simulations validating our homogenized model in the simplest geometry of metallic
strips, for which explicit expressions of the effective parameters are given, Eqs. (23). This is done by inspecting the variations of
the reflection phase with the frequency. For a metallic array with zero thickness, the agreement with the transmission line theory is
demonstrated at normal incidence, where the two approaches can be compared. Next, the sensitivity of the reflection phase on the
array thickness is illustrated, leading to an additional flexibility in the central frequency of the in-phase reflection without affecting
much the useful bandwidth. We end the validation by inspecting the dispersion relation of the guided waves, Eq. (27), and we
show that increasing the array thickness allows for a control in the band gap structure of the guided waves. Finally, two appendices
collect minor results, (i) results and comments on the interface parameters in TM polarization and (ii) the derivation of the interface
parameters and the reflection coefficient in the case of transverse electric polarization (TE). This polarization is of less interest in the
present case since it does not allow for much flexibility in the reflection phase and in the band gap structure.

Throughout the paper, the time dependence is eiωt, with ω the frequency and t the time.

2. HOMOGENIZATION OF THE STRUCTURED METALLIC ARRAY

The idea is to replace the metallic array of thickness e by an interface, and it is the main problem to determine the effective conditions
to be applied at this equivalent interface. To that aim, we first consider the problem of the metallic array sandwiched between the air
and the dielectric with relative permittivity εr (the ground plane is disregarded at this stage).

We start with the wave equation written for the magnetic field H(X) (X = (X1, X2)) being polarized along e3

div
[

1
ε
∇H

]
+ k2H = 0, (1)

with k =
√

ε0µ0ω the wavenumber in the air, ε the relative permittivity being dependent on space (the relative permeability for the
dielectric is 1). The boundary conditions at the air/dielectric interface are the continuities of H and of 1/ε∇H.n, and the boundary
condition on the metal is ∇H.n = 0; note that this latter condition for a perfectly conducting metal has been regarded in detail when a
thin structure is considered [18, 19]. Next, we define the field C, with ∇H = kεC, so that the Eq. (1) is written

divC + kH = 0, C ≡ 1
kε

∇H, (2)

with boundary conditions being now the continuities of H and of C.n at the air/dielectric interface, and C.n = 0 on the metal.
Incidentally, it is easy to see that the electric field E = (E1, E2, 0) can be deduced from C, using

C1 = −i
√

ε0µ0 E2, C2 = i
√

ε0µ0 E1. (3)
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As in classical homogenization, we work using two dimensionless systems of coordinates, x = (x1, x2) and y = (y1, y2), being
deduced from X by the relations x = kX and y = X/h, and we define the small parameter

η = kh� 1.

Figs. 2 show the resulting rescaling of the unit cell in x and y coordinates. In the (y1, y2) plane, we define Y+ = [0, ym
1 ]× [0, 1] and

Y− = [−ym
1 , 0]× [0, 1]\S, where S corresponds to the metallic part (and we denote S its volume); then Y = Y− ∪ Y+. The value of ym

1
is incidental, since only the limit ym

1 → ∞ will be considered. Finally, for a function being discontinuous at x1 = 0, we use the notations
f (0) ≡ 1

2
[

f (0+) + f (0−)
]

,

J f K ≡ f (0+)− f (0−).

(a) (b)

Fig. 2. Geometry and dimension of the metallic array between the air and the dielectric (a) in the (x1, x2) space and (b) in the
(y1, y2) space.

A. Expansions of the solution in the near and far fields
The dependance of the field H on the systems of coordinates x and y is pertinent or not depending on how close we are from the array.
Sufficiently far away, say in the far field, only the propagating field exists and it is associated to variations |∇H(X)| ∼ kH(X). With
H(x) = H(X), the coordinates x naturally account for these variations, with |∇xH(x)| ∼ H(x) by construction. To the contrary, in
the near field, we have to account for (i) the rapid variations of the evanescent field, typically associated to the scale h and (ii) the
slow variations associated to the propagating field along X2, say the condition of the pseudo-periodicity. The rapid variations are
naturally accounted for with the coordinates y and to account for the slow variations, we keep x2 as an additional coordinate, leading
to H(X) = H(y, x2) in the near field.

We now define the expansions in the far field

H = H0(x) + ηH1(x) + . . . ,

C = C0(x) + ηC1(x) + . . . ,

(4)

and the expansions in the near field

H = h0(y, x2) + ηh1(y, x2) + . . . ,

C = c0(y, x2) + ηc1(y, x2) . . . .

(5)

As in the classical homogenization, the fields hn and cn, n = 0, . . . , are assumed to be periodic with respect y2 and this is not
meaningless in the present context since the condition of pseudo-periodicity is handled by the variable x2. Thus, we recognize Floquet
type solutions for (hn, cn). The Eqs. (2) will be written at the orders η−1 and η0 in the near field and at the order η0 and η1 in the far
field, using the differential operators 

∇→ k∇x, in the far field,

∇→ k
[

1
η
∇y +

∂

∂x2
e2

]
, in the near field,

(6)

afterwards matching conditions will be applied to connect the fields in the two regions. The leading order solution refers to the
solution found at dominant order and the first order solution to the solution obtained at the next order.

Finally, something has to be said on the variation of ε. In the far field, it is equal to ε− = 1 for x1 < 0 and equal to ε+ = εr for
x1 > 0; in the near field, it varies in a more complex way depending on the geometry of the array and on the shape of the air/dielectric
interface. It is denoted ε(y) in the following, with

ε(±∞, y2) = ε±. (7)
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B. Equations at leading and first orders, and associated matching conditions
B.1. Matching conditions

The boundary conditions on the metal and at the air/dielectric interface apply for the near field solution (at each order in η).
Boundary conditions to be applied to the far field solution, called matching conditions, are written to ensure the continuity of
H and C in an intermediate region where the evanescent field can be considered as negligible. It is y1 → ±∞ for the near field
solution and it is x1 → 0± for the far field solution. Owing to the Taylor expansions H0(x1, x2) = H0(0, x2) + x1∂x1 H0(0, x2) + · · · =
H0(0, x2) + ηy1∂x1 H0(0, x2) + . . . (same for C0), we get at order 0

H0(0±, x2) = h0(±∞, y2, x2), C0(0±, x2) = c0(±∞, y2, x2), (8)

and at order 1, 
H1(0±, x2) = lim

y1→±∞

[
h1(y1)− y1

∂H0

∂x1
(0±, x2)

]
,

C1(0±, x2) = lim
y1→±∞

[
c1(y1)− y1

∂C0

∂x1
(0±, x2)

]
.

(9)

B.2. Solution at order 0

In the near field, Eqs. (2) give at leading order, in η−1,

∇yh0 = 0, divyc0 = 0, (10)

with the continuities of h0 and of c0.n at the air/dielectric interface and c0.n = 0 on the metal. The first equation of the above system
tells us that h0 does not depend on y, and we deduce from the first matching condition in Eqs. (8) that

h0(x2) = H0(0±, x2). (11)

By integrating over Y the second equation of the Eqs. (10) and owing to (i) c0.n = 0 on the metal (∂S), (ii) c0.n continuous at the
air/dielectric interface, and (iii) to the periodicity of c0 w.r.t y2, we get

∫
dy2c0

1(y
m
1 , y2, x2) =

∫
dy2c0

1(−ym
1 , y2, x2). Now, we take the

limit ym
1 → +∞, from which the second matching condition in Eqs. (8) gives

C0
1(0

+, x2) = C0
1(0
−, x2),

(note that the matching condition has been integrated w.r.t y2 ∈ [0, 1]). At dominant order, the presence of the metal is not visible: the
equivalent interface is simply the interface between the air and the dielectric, with the continuities of H0 and of C0

1 . To capture the
effect of the metallic array, we need to go to the next order.

B.3. Elementary problems

Before going to the next order, unit cell problems are defined, which will make the parameters of the equivalent interface to appear. To
that aim, we focus on the problem satisfied by h1. In the near field, we have

c0 =
1

ε(y)

[
∇yh1 +

∂H0

∂x2
(0, x2)e2

]
. (12)

The above relation is obtained using C = 1/ε∇H written at the order η0 for the near field solution, and using h0(x2) = H0(0, x2), Eq.
(11). Then, the relation divyc0 = 0 provides a bulk equation for h1, namely

divy

[
1

ε(y)

(
∇yh1 +

∂H0

∂x2
(0, x2)e2

)]
= 0,

associated to boundary conditions being the continuities of h1 and of c0.n at the air/dielectric interface, and c0.n = 0 on the metal.
Finally the matching conditions c0(±∞, y2, x2) = C0(0±, x2) give the last boundary conditions needed to solve the problem on h1

unambiguously. Let us be more specific on these latter conditions. For the far field solution, we have C0(0±, x2) = 1/ε± ∇xH0(0±, x2),
and this tell us that ∂x1 H0 is not continuous at x1 = 0. Using the Eq. (7) in the Eq. (12), the matching conditions read

lim
y1→±∞

∇yh1 = ε±C0
1(0, x2)e1. (13)

The problem on h1 appears to be linear w.r.t the quantities ∂x2 H0(0, x2) and C0
1(0, x2), which will produce significant simplifications.

Specifically, let us write

h1(y, x2) = C0
1(0, x2)h( 1 )(y) +

∂H0

∂x2
(0, x2)h( 2 )(y). (14)

It is easy to see that h1 is solution of the problem if h( 1 ) satisfies
div

[
1

ε(y)
∇h( 1 )

]
= 0,

lim
y1→±∞

∇h( 1 ) = ε±e1,
(15)
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with h( 1 ) and 1/ε(y)∇h( 1 ).n being continuous at the air/dielectric interface and ∇h( 1 ).n = 0 on the metal, and if h( 2 ) satisfies
div

[
1

ε(y)
∇(h( 2 ) + y2)

]
= 0,

lim
y1→±∞

∇h( 2 ) = 0,
(16)

with the same boundary conditions as h( 1 ). (h( 1 ), h( 2 )) are of the form

h( 1 ) =

 ε−y1 + h (1)
ev ,

ε+y1 + B + h (1)
ev ,

h( 2 ) =

 h (2)
ev ,

B′ + h (2)
ev ,

y1 < 0,

y1 > 0.
(17)

where (h (1)
ev , h (2)

ev ) are evanescent fields. The evanescent fields, as the constant (B,B′), depend on the shape of the metallic array and on
εr. Except in some particular cases, that will be considered in the following, the problems have to be solved numerically; we will see in
the following section that these unit cell problems define the interface parameters.

B.4. Solution at order 1

The jump of H1 directly follows from the first matching condition in Eqs. (9), using Eq. (14), with Eqs. (17)

r
H1

z
= BC0

1(0, x2) + B′
∂H0

∂x2
(0, x2). (18)

To determine the jump in C1
1 , we integrate over Y the first equation of Eqs. (2) written for the near field solution at order 0 in η

divyc1 +
∂c0

2
∂x2

+ H0(0, x2) = 0. (19)

Next, we use, in Y±, the relations 1/ε± ∂2
x2

H0 + H0 = −1/ε±∂2
x1

H0 = −∂x1 C0
1 . With c0 given in Eq. (12), the integration of Eq. (19)

over Y reads ∫
Y

dy divyc1 +
∂

∂x2

∫
Y

dy
ε(y)

∂h1

∂y2
−
∫
Y+

dy
∂C0

1
∂x1

(0+, x2)−
∫
Y−

dy
∂C0

1
∂x1

(0−, x2) = 0.

Because c1.n is continuous at the air/dielectric interface and vanishes on the metal, and because c1 is periodic w.r.t y2, the first
integral of the above equation reduces to

∫
dy′

[
c1

1(y
m
1 , y2, x2)− c1

1(−ym
1 , y2, x2)

]
. The two last integrals are respectively equal to

−ym
1 ∂x1 C0

1(0
+, x2) and −(ym

1 − S)∂x1 C0
1(0
−, x2) because of the disymmetry in Y±. Finally, using the matching condition, Eq. (9) and

Eq. (14), we get for ym
1 → +∞,

r
C1

1

z
= D

∂C0
1

∂x2
(0, x2) + C

∂2H0

∂x2
2
(0, x2)− S

∂C0
1

∂x1
(0−, x2),

with

D ≡ −
∫
Y

dy
ε(y)

∂h( 1 )

∂y2
(y), C ≡ −

∫
Y

dy
ε(y)

∂h( 2 )

∂y2
(y). (20)

B.5. Final jump conditions and interface parameters

To express the final jump conditions, we use that JHK = η
q

H1y + O(η2) (same for C1
1) and H = H0 + O(η). It is now sufficient to

come back to the real space H(X) = H(x) with ∂Xi = k∂xi to get the jump conditions
JHK = hBC1 + hB′ ∂H

∂X2
,

JC1K = hD ∂C1
∂X2

+ hC ∂2H
∂X2

2
− hS ∂C1

∂X1
(0−, X2),

(21)

and the second jump condition is equivalent to a jump in E2 through the Eq. (3). It can be noticed that now, the right hand side
terms involve values of the fields at both sides of an interface with zero thickness. For this interface, the thickness e has not really
disappear, being encapsulated in the interface parameters. Nevertheless, it is useful to restore this small but finite thickness in the
jump conditions. This is done by "enlarging" the equivalent interface; to do that, we define H+ = H(0+, X2) and H− = H(−e, X2)
(with the convention of X1 = 0 in Fig. 1). At dominant order, this does not affect the right hand side terms in Eqs. (21), namely
C1 = 1/2(C+

1 + C−1 ) + O(e). Next, we define new jump conditions JC1Ke ≡ C+
1 − C−1 = JC1K+ e∂X1 C−1 + O(e2), where we have used

a Taylor expansion of C1(−e). The jump conditions at the new equivalent interface of thickness e finally read
JHKe =

(
hB
2

+ ε−e
)

C−1 +
hB
2

C+
1 +

hB′
2

[
∂H−

∂X2
+

∂H+

∂X2

]
,

JC1Ke =
hD
2

[
∂C−1
∂X2

+
∂C+

1
∂X2

]
+

hC
2

[
∂2H−

∂X2
2

+
∂2H+

∂X2
2

]
+ (e− hS)

∂C−1
∂X1

.

(22)
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3. NUMERICAL VALIDATION

In order to validate our homogenization approach, and to compare with results coming from the transmission line theory, we consider
a metallic array composed of strips (Fig. 3). Significant simplifications occur in the jump conditions, Eqs. (22). This is because h( 1 ) is
symmetric with respect to y2, see Eqs. (15), leading to D = 0 in Eq. (20); also, h( 2 ) is antisymmetric with respect to y2, from which
B′ = 0. Thus, the interface parameters reduce to (B, C,S) among which the dimensionless surface of the metallic array S , for a plate
S = e`/h2. Also, B is known and a good estimate of C is obtained (see the Appendix A)

B = e
`

h− `
− εr + 1

π
log
(

sin
π

2

(
1− `

h

))
,

C ' e
h

(
1− `

h

)
− π

8

(
1− `

h

)2
, for e > h(1− `),

(23)

and C can be neglected for e < h(1− `). Owing to ε− = 1, ε+ = εr, the jump conditions Eqs. (22) can be written in terms of H and its
spatial derivatives. Specifically, we have

H+ − H− =

(
hB
2

+ e
)

∂H−

∂X1
+

hB
2εr

∂H+

∂X1
,

1
εr

∂H+

∂X1
− ∂H−

∂X1
=

hC
2

[
∂2H−

∂X2
2

+
∂2H+

∂X2
2

]
+ (e− hS) ∂2H−

∂X2
1

.

(24)

A. Scattering coefficients

The scattering problem for the real structure is shown in Fig. 3. A plane wave hits the metallic array at incidence θ in the (X1, X2)
plane, with kinc = k(cos θ, sin θ) (and Hinc is along e3). The metallic array, of thickness e, is located at a distance d from the metallic
ground plane, in −e ≤ X1 ≤ 0; finally the dielectric material occupies 0 ≤ X1 ≤ d. This problem is solved numerically using full wave
simulations based on a multimodal method [20, 21]. In the numerics, the resolution is done on the magnetic field H(X1, X2), and we
get the reflection coefficient R = −Hr/Hinc (Hinc and Hr refer to the incident and reflected fields at X1 = 0).

Fig. 3. The scattering problem for the whole metasurface. The reflection coefficient R = −Hr/Hinc is obtained numerically. In
the homogenized problem, the metallic array is replaced by the equivalent interface and the propagation in the dielectric slab is
explicitly solved.

This coefficient R refers to the Fresnel reflection coefficient of the electric field for the conventions in the orientations of the
fields shown in Fig. 3. With these conventions, the components of the electric field are E1(0, X2) = sin θ(R − 1)Eince−ik sin θX2 ,
E2 = cos θ(R + 1)Eince−ik sin θX2 . Next, with H(X1 < −e, X2) in the free space written in the form

H(X1, X2) =
[

Hince−ik cos θX1 + Hreik cos θX1
]

e−ik sin θX2 ,

and using Eqs.(3), we get Hr/Hinc = −R (and Einc =
√

µ0/ε0Hinc).

B. The scattering coefficients in the homogenized problem

In the homogenized problem, the metallic array is replaced by the equivalent interface. Thus, the solution is of the form

H(X1, X2) =


[
e−ik cos θX1 − Rheik cos θX1

]
e−ik sin θX2 , X1 < −e,

B cos K(X1 − d)e−ik sin θX2 , d ≥ X1 > 0,

(25)
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with K ≡ k
√

εr − sin2 θ the component along X1 of the wavenumber in the dielectric (and Rh stands for the reflection coefficient of the
homogenized solution). Applying the jump conditions Eqs. (24), the reflection coefficient Rh is easily obtained

Rh = −e2ik cos θe Zh
Zh
∗ ,

Zh =

[
i + k cos θ

(
Bh
2

+ e
)] [

K
εr

tan Kd +
Ch
2

k2 sin2 θ

]
−k cos θ

[
1− ik cos θ

(
e− Sh +

Ch
2

tan2 θ

)] [
1− Bh

2εr
K tan Kd

]
,

(26)

with Zh
∗ the complex conjugate of Zh. As expected, Rh is of modulus unity.

C. The case e = 0, comparison with the transmission line theory
One powerful method to describe the scattering properties of dielectric-metal structures is the transmission line theory [22]. It is based
on the identification of an electric circuit characterized by an equivalent input impedance. Generally speaking, once all the components
of the device have been identified and associated to impedances being placed in parallel or in series, the input impedance is obtained,
from which the scattering properties are deduced. Nevertheless, the method is restricted to simple geometries of the metallic parts
with zero thickness, being of capacitive type (large plates separated by small gaps) or inductive type (small metal strips with large air
gaps). The device of Fig. 1 has been studied in [16] for an electric field being polarized along e2, and the denomination TM is used for
this configuration in this reference; the metallic plates are of capacitive type in this case (the other polarization considered in [16],
with the electric field along e3, is discussed in the Appendix B). In our study, TM refers to a magnetic field being polarized along e3,
and thus, the two approaches can be compared for normal incident wave only. The calculation presented in this paper ends with the
expression of R of the form

RTL = −1− Z/Z0
1 + Z/Z0

,

where Z/Z0 is given by

Z/Z0 = i
tan Kd/

√
εr

1− khB0 tan Kd(εr + 1)/
√

εr
,

with

B0 = − 1
π

log
(

sin
π

2

(
1− `

h

))
,

(we have used the Eqs. (13) and (20) in Ref. [16] for θ = 0). In [16], the coefficient B0 appears through the so-called grid parameter
α = khB0, with k being replaced heuristically by an averaged wavenumber ke f f = k

√
(εr + 1)/2. The coefficient B0 is known in fluid

mechanics for potential flows around a flat plate; it corresponds to the problem whose solution is h( 1 ) for εr = 1, and it is called the
blockage coefficient in this context [23].

For e = 0, our interface parameters simplify, with obviously S = 0 and from Eqs. (23), B = (1 + εr)B0 and C = 0. At normal
incidence θ = 0, we get from Eq. (26)

Ze=0
h = −k

[
1− Bh

εr
K tan Kd

]
+ i

K
εr

tan Kd.

It is easy to see that Ze=0
h = C(1− Z/Z0) (and C = −k [1−BhK tan Kd/εr] is purely real). With Z/Z0 purely imaginary, Zh

∗ =
C(1 + Z/Z0). Thus both approaches give the same result in this limiting case θ = 0.

D. Numerical validation of the reflection phase
In this section, we inspect the validity of our prediction, Eq. (26), on the reflection phase. We consider a metallic array with h = 2 mm,
` = 1.8 mm; otherwise, εr = 10 and d = 1 mm.

Fig. 4 reports the variations of the reflection phase as a function of the frequency for vanishing thickness of the metal, e ' 0, (in the
numerics, e = 10−3 mm has been considered), and θ = 0, 60 and 85◦. The dotted line in Fig. 4 shows the reflection phase due to the
dielectric slab only (for normal incidence). It is visible that the metallization allows for higher variations in the reflection phase, as
expected. For e = 0, the in-plane reflection is obtained at the low central frequency of 11.75 GHz, with a useful bandwidth of 2.5 GHz
(frequency range [10.5-13] GHz realizing the transition from 90◦ to -90◦). The plain lines show the reflection phase in the homogenized
problem, Rh in Eq. (26) (with S = C = 0 and B = 6.49 from Eq. (23)). The agreement between direct numerics and homogenization is
very good, about 1%, for the 3 incidences considered. In this case, the parameter η = kh ranges in [0.25; 0.75] for frequencies in [6, 18]
GHz; this is reasonable since η < 1, but it can be noticed that the homogenization is not restricted to very small η-values.

Next, we inspect the influence of the thickness e of the metallic array. Figs. 5 report the variations of the reflection phase for e = 0, 1
and 2 mm (θ = 0 and 60◦ have been considered). The sensitivity to the thickness is visible: when e increases, the central frequency of
the in-phase reflection is shifted significantly, from 11.75 GHz to 9.5 and 8 GHz at normal incidence (for e = 1 and 2 mm respectively);
note that the useful bandwidths decrease slightly, but not significantly, and they remain close to 2 GHz. Next varying e makes B to
increase, Eq. (23), and thus, produces a decrease in the frequency realizing the in phase reflection. As in Fig. 4, we reported in Fig. 5
the reflection phase of Rh in the homogenized problem in plain lines. For e = 1 mm, we find B = 11.0, C = 0.048 (and S = 0.45); for
e = 2 mm, we find B = 15.50, C = 0.098 (and S = 0.9). Here, we still have η = kh < 0.75, with ke up to 0.4 for e = 1 mm and ke up to
0.8 for e = 2 mm. The agreement with the homogenized result remains very good but slightly decreases when e increases, from 1-2%
for e ' 0, to 3-4% for e = 1 mm and to 5-7% for e = 2 mm.
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Fig. 4. Reflection phase diagram. The parameters of the AMC structure are h = 2 mm, ` = 1.8 mm, d = 1 mm, e ' 0 and εr = 10.
Symbols correspond to full numerics and plain lines to the homogenized results, Rh in Eq. (26). The dotted line shows the reflection
phase due to the dielectric slab in the absence of metallization (for θ = 0).

(a) (b)

Fig. 5. Reflection phase diagram for (a) θ = 0 and (b) θ = 60◦. The parameters of the AMC structure are h = 2 mm, ` = 1.8 mm,
d = 1 mm, εr = 10 and e = 0, 1 mm or 2 mm. Symbols correspond to full numerics and plain lines to the homogenized results, Rh
in Eq. (26).

E. Numerical validation of the guided waves
The ability of metamaterial surfaces to modify the band structure of guided waves has practical applications, notably to improve the
directivity of printed antenna (in this case, surface wave propagation is unwanted). In [16], the band structure of guided waves was
inspected for e = 0. In this section, we generalize the dispersion relation to non vanishing e and we show that an increase in e increases
the band gap, resulting also in a decrease in the wavelength of the guided wave. Guided waves are solution of the homogeneous
problem in the absence of a source or of an incident wave. Thus, they are of the form

H(X1, X2) =


eα(X1+e)e−iβX2 , X1 < −e,

B cos K(X1 − d)e−iβX2 , d ≥ X1 > 0,

with α =
√

β2 − k2, K =
√

εrk2 − β2 (and k < β). Applying the boundary condition, Eqs. (24), the dispersion relation of the guided
wave reads [

K
εr

tan Kd +
Ch
2

β2
] [

1 +
(
Bh
2

+ e
)

α

]
−
[

1− Bh
2εr

K tan Kd
] [

α− Ch
2

β2 + (e− S)α2
]
= 0. (27)

In the limit of zero thickness array, it simplifies to√
β2 − k2 [1− hB0K tan Kd (1 + 1/εr)] =

K
εr

tan Kd,

from which it is clear that the metallization reinforces the confinement of the wave guided within the dielectric slab, obtained setting B0
to zero in the above relation (namely, in the absence of the metallization, the dispersion relation reduces to

√
β2 − k2 = K tan Kd/εr).
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Now, we inspect the effect of increasing the array thickness, and the ability of our interface conditions to capture this effect. The Fig. 6
reports the dispersion relations of the guided waves for h = 2 mm, ` = 0.8 mm, d = 4 mm, and we have considered e ' 0 and e = 4
mm. For comparison, the dispersion relation of the structure without the metallic array is shown in dash-dot line.

Fig. 6. Dispersion relation of the wave guided by the metasurface, with wavelength 2π/β. The parameters are h = 2 mm, ` =
1.8 mm, d= 4 mm, εr = 10; e ' 0 and e = 4 mm are considered. Symbols correspond to full numerics and plain lines to the
homogenized results, Eq. (27). The two dotted lines show the light lines of the air β = k and of the dielectric β = εrk. The dash-dot
line shows the dispersion relation for the dielectric slab alone (without any metallization).

It is visible that non zero thicknesses of the metal affect the band structure of the guided waves. Specifically, an increase in e enlarges
the band gap. The homogenized prediction (plain lines) is obtained by solving the dispersion relation, Eq. (27), where the dependance
in e is encapsulated in the interface parameters (S ,B, C). The agreement is very good for e ' 0 (0.7%) and increases, as expected,
for e = 4 mm (2%); in the present geometry, we have kh < 0.2 and ke < 0.33. Beyond the observed agreement, it is visible that the
wavelength of the guided wave decreases when e increases, a fact that could be used for practical applications. This change in the
wavelength of the guided waves is exemplified in Fig. 7, where we reported the magnetic fields H(X1, X2) of the guided waves at 3.5
GHz, for e ' 0 and e = 4 mm. At this frequency, the guided wave for the dielectric alone (without any metallization) would have
roughly the same characteristics as the one in Fig. 7(a). The resulting wavelengths 2π/β are 74 mm (β = 85 m−1) and 40 mm (β = 153
m−1) respectively.

Fig. 7. Two dimensional magnetic wavefields H(X1, X2) of the guided wave. (a) for e = 0 and (b) for e = 4 mm, the parameters are
the same as in Fig. 6.

4. CONCLUSION

We have presented a homogenization model able to describe the properties of metasurfaces made of thin metallo-dielectric structure
by jump conditions at an equivalent interface. We have exemplified the accuracy of the method in the case of simple rectangular plates
of metal. The model accurately describes the variations of the reflection phase in the low frequency regime, namely for ke, kh < 1
as the band structure of the guided waves. While the limiting case of vanishing thickness e ' 0 recovers the prediction given by
transmission line theory, we have illustrated the effect of small but finite metallization thicknesses. Natural extensions of the present
study concerns more involved repartitions of the metallization, notably non symmetric repartitions of metal in the unit cell which
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are able to make hybridization to appear. Except in particular configurations, extensions to three dimensional geometries require
the whole Maxwell equations to be considered, in order to allow for changes in the wave polarization. Finally, these metasurfaces,
say of AMC-type, involve resonances in the dielectric substrate, being reduced to subwavelength scale by the metallization. Other
metasurfaces involve resonances of components within the unit cell; in this case, the presented homogenization can be adapted which
would make frequency dependent effective parameters to appear.
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A. THE INTERFACE PARAMETERS

The Figs. 8 report the variations of B and C as a function of `/h for different e-values. They have been calculated by means of the
resolution of the unit cell problems, Eqs. (15)-(16); we have considered εr = 10 in these calculations. Inspecting further the influence of
the εr value, we found that B behaves accordingly to Eq. (23) with the accuracy of the numerical resolution. The approximation given
in Eqs. (23) for C is rather satisfactory, with less than 1% for εr = 1 and 5% for εr = 10.

Fig. 8. Variations of B and C with `/h; the arrows indicate increasing values of e/h (e/h = 0, 0.5, 1 and 2). εr = 10 has been consid-
ered. Plain lines show the results coming from the resolution of the elementary problems and dotted lines the predictions in Eqs.
(23).

B. THE CASE OF TRANSVERSE ELECTRIC POLARIZATION

Transverse electric polarization corresponds to an electric field being polarized along e3 in Fig. 1. In this case, the Helmholtz equation
applied for E(X) = E(X)e3 leading to the problem

div [∇E] + εk2E = 0, (28)

and, as previously, ε depends on space. The boundary conditions between the air and the dielectric are the continuities of E and of
∇E.n and the boundary condition on the metal is E = 0. As in the TM polarization, we define an auxiliary field G, with ∇E = kG, so
that the Eq. (28) reads

divG + εkE = 0, G ≡ 1
k
∇E, (29)

with boundary conditions being the continuity of G.n at the air/dielectric interface, and E = 0 on the metal.

A. Homogenization for TE polarization
In the far field, we use

E = E0(x) + ηE1(x) + . . . ,

G = G0(x) + ηG1(x) + . . . ,
(30)

and in the near field
E = e0(y, x2) + ηe1(y, x2) + . . . ,

G = g0(y, x2) + ηg1(y, x2) . . . .
(31)

Finally, the matching conditions on (En, Gn) and (en, gn), n = 0, 1, are as in Eqs. (8)-(9), owing to H → E and C → G. Now, the Eq.
(29) will be inspected at leading and first orders in η using the differential operators, Eqs. (6).
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At leading order (η−1), we have, from the second equation in Eqs. (29), ∇ye0 = 0, from which e0(x2) is independent of y. Because
the boundary condition e0 = 0 is written in terms of the spatial coordinates y, we deduce that e0(x2) = 0 everywhere, and with the
matching condition, we get

e0(x2) = E0(0, x2) = 0,
∂E0

∂x2
(0, x2) = 0, (32)

(and the latter equation is a consequence of the former). Note that the result is very different from the TM case: here, we have at
leading order a boundary condition on E0 rather than a jump condition. Besides, we found that the metallic array was invisible at
leading order in the TM case, and only the air/dielectric interface conditions was visible. Here to the contrary, we find that only
the metal is visible. To capture the effect of the array structuration and to restore the air/dielectric interface, we need to inspect the
behavior of E1. The first equation in Eqs. (29) gives, at order η−1: divyg0 = 0, and the second at order η0: g0 = ∇ye1 (using that
de0/dx2 = 0, from Eq. (32)). It follows that e1 is solution of

∆ye1 = 0,

lim
y1→±∞

∇ye1 =
∂E0

∂x1
(0±, x2)e1,

(33)

with e1 = 0 on the metallic array. By linearity of the above system, we can use

e1(y, x2) =
∂E0

∂x1
(0+, x2)e+(y) +

∂E0

∂x1
(0−, x2)e−(y), (34)

and e1 is solution of Eqs. (33) as soon as e± are solutions of
∆e± = 0,

lim
y1→−∞

∇e+ = 0, lim
y1→+∞

∇e+ = e1,

lim
y1→−∞

∇e− = e1, lim
y1→+∞

∇e− = 0,

with e± = 0 on the metallic array. The solutions e± are of the form

e+ =

 A+
1 + e+ev , y1 < 0,

A+
2 + y1 + e+ev , y1 ≥ 0,

e− =

 A−2 + y1 + e−ev , y1 < 0,

A−1 + e−ev , y1 ≥ 0,
(35)

where e±ev (y) are evanescent fields, and it is easy to see that A1 ≡ A+
1 = −A−1 (looking for

∫
dy e±∆e∓ = 0). Besides, for inclusions

being symmetric w.r.t A2 = A+
2 = e/h−A−2 .

It si now sufficient to use the matching condition on E1(0±, x2) = limy1→±∞
[
e1 − y1∂x1 E0(0±, x2)

]
to find the boundary conditions

expressed in the real space 
E(0−, X2) = (e− hA2)

∂E
∂X1

(0−, X2) + hA1
∂E

∂X1
(0+, X2),

E(0+, X2) = −hA1
∂E

∂X1
(0−, X2) + hA2

∂E
∂X1

(0+, X2).

Finally, using E+ = E(0+) and E− = E(−e) to restore the small but finite thickness of the array, we get
E− = −hA2

∂E−

∂X1
+ hA1

∂E+

∂X1
,

E+ = −hA1
∂E−

∂X1
+ hA2

∂E+

∂X1
.

(36)

B. The scattering problem in TE polarization
For a wave at oblique incidence on the structure, the solution is thought as in Eq. (25)

E(X1, X2) =


[
e−ik cos θX1 + Rheik cos θX1

]
e−ik sin θX2 , X1 ≤ −e,

B sin K(X1 − d)e−ik sin θX2 , d ≥ X1 ≤ 0,



Letter Journal of the Optical Society of America B 12

with K ≡ k
√

εr − sin2 θ the component along X1 of the wavenumber in the dielectric (as previously, Rh stands for the reflection
coefficient of the homogenized solution). At the equivalent interface, applying the jump conditions, Eqs. (37), we get

Rh = −e2ik cos θe Zh
Zh
∗ ,

Zh = [1− ikhA2 cos θ] [tan Kd +A2Kh] + iA2
1kKh2 cos θ.

(37)

However, it is easy to check that the presence of the array in this polarization has no particular interest in term of the control of
the reflection phase. Indeed, for small device (say, d/e of order unity), even with very sparse metallic parts (`, e� h), the Dirichlet
condition is dominant and tends to impose a constant phase, close to 180◦ (in fact, the variation of the reflection phase in the absence
of the array are more significant). This was not the case in TM polarization, see Fig. 4.

C. The interface parameters in TE and the case e = 0
We report in Fig. 9 the variations of (A1,A2) with `/h for e/h = 0, 1. Because the unit cell problems do not depend on εr, the interface
parameters are unaffected by a change in the permittivity of the dielectric (they would be affected by a change in the permeability,
which has been disregarded here).

Fig. 9. Variations of A1 and A2 with `/h. The arrow indicates increasing values of e/h (e/h = 0, 0.1, 0.5) and the asymptotic e/h =
10 is shown in dotted lines. For e = 0, open symbols show A0, Eq. (39).

As previously said, the case of vanishing thickness e = 0 is of practical importance in the actual design of metamaterials. In this
case, the interface parameters have significant simplifications, with A1 = A2 = A0, and

A0 = − 1
2π

log
(

sin
π

2
`
)

. (38)
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