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SECOND ORDER HOMOGENIZATION OF SUBWAVELENGTH1

STRATIFIED MEDIA INCLUDING FINITE SIZE EFFECT2

JEAN-JACQUES MARIGO∗ AND AGNÈS MAUREL†3

Résumé. We present a homogenization method to find the effective behavior of a periodically4
stratified slab which accounts for the finite size of the slab. The effective behavior is that of a5
homogeneous anisotropic slab associated with discontinuity conditions, or jump conditions, for the6
displacement and for the normal stress at the boundaries of the slab. The coefficients entering in7
the effective homogenized wave equation are related to the geometry and to the composition of the8
layers only, as in the classical homogenization. Those entering in the jump conditions are related to9
boundary layer effects and thus they depend also on the properties of the media surrounding the10
slab. The validity of our homogenization method is inspected in the case of layers associated with11
Neumann boundary conditions.12

Key words. homogenization, two-scale method, matched asymptotic expansion, stratified me-13
dia, finite size effects, effective jump conditions,14

AMS subject classifications. 34E13, 35B27,74Q10, 74Q15,80M35, 74J20,15

1. Introduction. The scattering properties of media stratified at a subwave-16

length scale are known to be correctly described by an equivalent homogeneous aniso-17

tropic medium whose effective bulk parameters involve averages of the bulk parame-18

ters of the layers (the parameters entering in the wave equations) ; for shear horizontal19

(SH) elastic waves, it is the mass density and the shear modulus, and the averages20

involve also the surface or volume fractions of the layers. This is known since Rytov’s21

work in 1956 [14] and the result has been extended within a rigorous mathematical22

framework to periodic media using the homogenization theory, see e.g. [3].23

In its classical form, the homogenization is performed considering that the structu-24

red medium occupies the whole space. Obviously in practice, samples of finite thickness25

e are considered and it has been shown that, for small e, the scattering properties of26

the samples were not correctly described by their homogenized counterparts [7, 8, 9].27

In this paper, we show that the homogenization theory can be adapted to stratified28

structures of finite thickness, which yields an equivalent slab whose scattering proper-29

ties accurately describe those of the actual structure. We establish that, in addition30

to the bulk parameters entering in the effective wave equation, the homogenization31

makes interface parameters to appear, which enter in jump conditions at the boun-32

daries of the equivalent slab (Figure 1). While the effective bulk parameters depend33

only on the characteristics of the structure at the microscale, the interface parameters34

result from boundary layer effects and as such, they depend also on the characteristics35

of the surrounding media.36

The homogenization for finite size stratified structures is performed up to the37

second order in ε ≡ kh � 1 (k being the wavelength and h the periodicity of the38

structure). It is presented in the section 2 and the approach essentially follows the39

one presented in [1] in the context of solid mechanics. We start with the elastic wave40

equation for the scalar displacement field U(X) of shear waves written in the harmonic41

regime42

(1) div (µ∇U) + ρω2U = 0,43
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Figure 1. On the left, the wave problem is set for a slab filled with a stratified medium, with the
usual continuity conditions on the boundaries of the layers. On the right, it is set for an equivalent
slab made of an effective medium (homogeneous and anisotropic) and jump conditions apply at the
boundaries of the slab X1 = ±e/2 (the boundaries at |X2| = H/2 are disregarded or equivalently, we
consider H → +∞).

with µ(X) the shear modulus and ρ(X) the mass density being spatially dependent
of X = (X1, X2) ∈ R × (−H/2, H/2) and ω the frequency (Fig. 1). Eq. (1) can be
written using the non dimensional parameters

α(X) ≡ µ(X)

µm

, and β(X) ≡ ρ(X)

ρm

,

with (µm, ρm) the shear modulus and mass density of the medium surrounding the44

stratified structure, hereafter called the substrate ; with k = ω
√
ρm/µm the wavenum-45

ber in the substrate, we get46

(2) div (α∇U) + βk2U = 0,47

which also applies to acoustic waves, to transverse magnetic or transverse electric48

polarized electromagnetic waves or to scalar (shear) elastic waves. It follows that the49

Helmholtz equation ∆U + k2U = 0 applies in the substrate by construction. We shall50

establish that the homogenized wave equation, up to second order, is of the form51

(3) divΣ + βeffk2U = 0, Σ =

(
αeff
1 0
0 αeff

2

)
∇U,52

where (αeff
1 , α

eff
2 , β

eff) will be defined in subsection 2.2, see (27). Next, for the stratified53

medium occupying the region X = (X1, X2) ∈ (−e/2, e/2)× (−H/2, H/2), the homo-54

genized slab, in which (3) applies, occupies the same region and effective continuity55

or discontinuity conditions apply at X1 = ±e/2. While the usual continuities of the56

displacement U and of the normal stress Σ ·N are obtained at the first order, dis-57

continuities of these quantities at second order are established. Specifically, the jump58

conditions read59

(4)


JUK =

hB
2

(
Σ− + Σ+

)
·N,

JΣK ·N = −hC
2

(
∂2U−

∂X2
2

+
∂2U+

∂X2
2

)
.

60

In the above relations, for any field V being discontinuous across a boundary with61

(V −, V +) its values on both sides, we have defined the jump JV K ≡ V + − V − (and62
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HOMOGENIZATION OF FINITE SIZE STRATIFIED MEDIA 3

the convention ± refers to the direction of the normal N). The parameters (B, C)63

entering in the jump conditions are deduced from elementary problems, being the64

equivalent of the cell problems in the classical homogenization, Eqs. (34) and (35). In65

the absence of high contrasts resulting in possible resonances in one or several layers66

(and possible resonances are disregarded here), these problems are static problems67

that can be solved once and for all. Finally, the problem of the boundary layers at the68

boundaries X2 = ±H/2 would require a specific treatment and they are disregarded69

in the present paper (alternatively, we may consider H → +∞).70

Validations of our homogenization method are presented in section 3 by compa-71

rison with full wave numerics. We restrict ourselves to the case of layers associated72

with Neumann boundary conditions ; it corresponds to cracks or voids in elasticity, to73

sound hard inclusions in acoustics or to perfectly conducting metals in electromagne-74

tism. This case allows for explicit expressions of the interface parameters (B, C), Eq.75

(53) (see also subsection S2.1). The limitations of the present approach to small slab76

thicknesses are discussed in Appendix A. Finally, we report in section S1 the case of77

a stratified slab with one boundary being free of stresses (associated with Neumann78

boundary condition) and details on the numerical resolutions are given in section S2.79

2. Up to second-order homogenization. In this section, we shall work on80

a problem simplified with respect to the one in Fig. 1 in the sense that we consider81

a single interface (also, we shall work in dimensionless coordinates). We define x1 =82

k(X1 − e/2), x2 = kX2, which means that we focus on a region near the boundary83

of the stratified medium at X1 = e/2 in the original problem in Fig. 1(a). But now,84

we assume that the stratified medium occupies the region x1 < 0, Fig. 2. Doing85

so, we assumed implicitly that the wave passing through the stratified slab in the86

configuration of the Fig. 1 feels the boundaries and the bulk of the stratified medium.87

To anticipate, this means that the slab is thick enough, and thick means that the88

evanescent fields at both boundaries of the slab do not interact. If it is not the case, one89

should consider the whole thin slab in the asymptotic analysis, as done in [5, 6, 9, 11]90

(this is discussed further in Appendix A).

"
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x2

0
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x2

0

(u",�"
2) continuous

(u",�"
1) continuous

kH

Figure 2. Single interface between the stratified medium occupying the region x1 < 0 and the
substrate occupying the region x1 > 0. The usual continuity conditions apply at the boundaries
between the layers (uε, σε

2) and at the boundaries between the layers and the substrate (uε, σε
1) at

x1 = 0.

91
We shall define the actual problem for x = (x1, x2) ∈ R× (−kH/2, kH/2). With92

the periodicity of the stratified medium ε = kh � 1, the solution of the problem93

depends on ε and we make this dependence to appear explicitly, by denoting aε(x) ≡94

α(X), bε(x) ≡ β(X) and uε(x) ≡ U(X), σε(x) ≡ k−1α(X)∇U(X). In x-coordinate,95
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4 JEAN-JACQUES MARIGO AND AGNÈS MAUREL

(2) reads96

divσε(x) + bε(x)uε(x) = 0,(5a)97

σε(x) = aε(x)∇uε(x),(5b)9899

and100

(6) aε(x) =

{
1, x1 > 0,
a
(
x2

ε

)
, x1 < 0.

bε(x) =

{
1, x1 > 0,
b
(
x2

ε

)
, x1 < 0.

101

The functions a and b are 1-periodic and piecewise constant ; at this point, it is not102

necessary to define them more specifically. To (5), we have to associate boundary103

conditions. At each boundary between two different media, the continuity of the dis-104

placement uε and of the normal stress σε · n apply (with n the vector normal to the105

boundary) ; this applies at the boundaries between two layers within the stratified106

medium and at the boundaries between the layers and the substrate at x1 = 0 (Fig.107

2). Finally, once the wave source is defined, the conditions satisfied by (uε,σε) for108

x2 = ±kH/2 and for |x1| → +∞, often referred as to radiation conditions, can be109

defined ; for the time being, we do not need to specify them.110

2.1. The asymptotic analysis. The idea is to define three regions where dif-111

ferent asymptotic expansions will be used, Eqs. (7). The inner region contains the112

boundary between the stratified medium and the substrate. Roughly speaking, it is113

the region where the boundary layer effects are significant ; in terms of wavefield, this114

means that the inner region contains the so-called evanescent field vanishing far from115

the boundary. The two outer regions for x1 > 0 and x1 < 0 are the regions far enough116

from the interface, where the evanescent field can be neglected. Next, the inner region117

and the outer regions are connected using so -called matching conditions, which will118

constitute the boundary conditions for the outer solutions.119

x1

x2

0
inner reg. outer reg.

x1 > 0x1 < 0
outer reg.

"
1

y1

y2

0

Figure 3. On the left, configuration in x coordinate ; the periodicity along x2 is ε ≡ kh ; the
inner region corresponds to the neighborhood of the boundary between the stratified medium (x1 < 0)
and the substrate being a homogeneous medium (x1 > 0). On the right, the unit cell (inner region)
in y coordinate, with y = x/ε, and y ∈ R× Y , with Y = (−1/2, 1/2).

2.1.1. The outer and inner expansions. As in the classical homogenization,120

the asymptotic expansions are thought with spatial dependences on a macroscopic121

coordinate x associated with slow variations of the fields (with the typical scale 1/k122

of the wave) and a microscopic coordinate y, associated with rapid variations (the123

typical scale h of the layers), and in each region, we keep the coordinates that are124

relevant to describe the variations of the field. To do so, we define y ≡ x/ε and we125
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HOMOGENIZATION OF FINITE SIZE STRATIFIED MEDIA 5

assume that (uε,σε) can be expanded by using the following asymptotic expansions126

(7)



outer region x1 > 0, uε = u0(x) + εu1(x) + . . . ,

σε = σ0(x) + εσ1(x) + . . . ,

outer region x1 < 0, uε = u0(x, y2) + εu1(x, y2) + . . . ,

σε = σ0(x, y2) + εσ1(x, y2) + . . . ,

inner region, uε = v0(x2,y) + εv1(x2,y) + . . . ,

σε = τ 0(x2,y) + ετ 1(x2,y) + . . . ,

127

with the outer terms (un,σn) for x1 < 0 and the inner terms (vn, τn) being Y -periodic128

with Y = (−1/2, 1/2). Thus, we shall consider y2 ∈ Y and in the inner region y1 ∈ R ;129

next, in the three regions x2 ∈ (−kH/2, kH/2) and in the outer regions x1 ∈ (−∞, 0)130

and x1 ∈ (0,+∞) respectively.131

The differential operator reads, in the different regions, as132

(8)



in the outer region, ∇→∇x, x1 > 0,

∇→∇x +
1

ε

∂

∂y2
e2, x1 < 0,

in the inner region, ∇→ ∂

∂x2
e2 +

1

ε
∇y,

133

where ∇x means gradient w.r.t. x and ∇y means gradient w.r.t. y. Let us comment134

the dependences in x and y of the fields in each region, (7). The inner solution is135

characterized by rapid variations of the evanescent field, and these variations are136

naturally described by y (|∇U | ∼ U/h gives |∇yu| ∼ u). But the inner solution137

contains also the propagating field associated with slow variations along x2, typically138

the phase variation along the boundary at x1 = 0 ; this is taken into account by139

keeping x2 as an additional coordinate. In the outer region x1 > 0, there is no rapid140

variations due to the evanescent field (this latter being confined in the inner region,141

by definition) ; thus, we need only the coordinates x which describe the propagating142

field with |∇U | ∼ kU and thus ∇xu ∼ u. The story is different for x1 < 0 ; there, the143

field has still slow variations, but it also experiences rapid variations across the layers144

and this is accounted for by keeping the coordinate y2.145

Finally, from (6), (aε, bε) can be specified with in the outer regions146

(9)


outer region x1 > 0, aε(x) = 1, bε(x) = 1,

outer region x1 < 0, aε(x) = a
(
x2

ε

)
, bε(x) = b

(
x2

ε

)
,

147

and in the inner region aε(x) = ã(x/ε) and bε(x) = b̃(x/ε) with148

(10) ã(y) =

{
a(y2), y1 < 0,
1, y1 > 0,

b̃(y) =

{
b(y2), y1 < 0,
1, y1 > 0,

149

with a(y2), b(y2) 1-periodic and piecewise constant.150
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6 JEAN-JACQUES MARIGO AND AGNÈS MAUREL

2.1.2. The boundary conditions and the matching conditions. The inner151

and outer problems have to be associated with boundary conditions or radiation152

conditions which ensure that the problems are well-posed. For the inner solution, the153

continuities of the displacement and of the normal stress apply at the boundaries154

between two layers within the stratified medium and at the boundaries between the155

layers and the substrate at y1 = 0, whence156

(11) vn, τn · n are continuous everywhere, n = 0, 1 . . . ,157

but the conditions at infinity are unknown a priori. Reversely, since the outer expan-158

sions hold true only far away from the interface, the outer terms satisfy the radiation159

condition (once defined) but they do not have to satisfy the continuity conditions at160

x1 = 0 ; only the conditions of continuity of un and σn · n at the boundaries between161

the layers within the stratified medium apply for x1 < 0 (thus, with n = e2).162

The missing conditions for the inner and outer terms are provided simultaneously163

by the matching conditions (see the discussion on alternative matching in [1]), at164

leading order165

u0(0−, x2, y2) = lim
y1→−∞

v0(x2,y),(12a)166

u0(0+, x2) = lim
y1→+∞

v0(x2,y),(12b)167

σ0(0−, x2, y2) = lim
y1→−∞

τ 0(x2,y),(12c)168

σ0(0+, x2) = lim
y1→+∞

τ 0(x2,y),(12d)169
170

and at order ε171

u1(0−, x2, y2) = lim
y1→−∞

[
v1(x2,y)− y1

∂u0

∂x1
(0−, x2, y2)

]
,(13a)172

u1(0+, x2) = lim
y1→+∞

[
v1(x2,y)− y1

∂u0

∂x1
(0+, x2)

]
,(13b)173

σ1(0−, x2, y2) = lim
y1→−∞

[
τ 1(x2,y)− y1

∂σ0

∂x1
(0−, x2, y2)

]
,(13c)174

σ1(0+, x2) = lim
y1→+∞

[
τ 1(x2,y)− y1

∂σ0

∂x1
(0+, x2)

]
.(13d)175

176

At order ε, the conditions are obtained using the Taylor expansions of (u0,σ0), for177

instance for x1 > 0, u0(x) = u0(0+, x2) + x1∂x1
u0(0+, x2) + · · · = u0(0+, x2) +178

εy1∂x1u
0(0+, x2) + . . . .179

2.2. The homogenized wave equation. We want to establish the wave equa-180

tion, up to second-order, satisfied by the mean fields (u(x),σ(x)) with181

(14) u ≡ 〈u0〉+ ε〈u1〉, σ ≡ 〈σ0〉+ ε〈σ1〉.182

We have defined the average over y2 ∈ Y for any function f183

(15) 〈f〉(x) ≡
∫
Y

dy2 f(x, y2),184

and obviously, if f does not depend on y2, 〈f〉 = f .185

This manuscript is for review purposes only.



HOMOGENIZATION OF FINITE SIZE STRATIFIED MEDIA 7

The homogenized wave equation is sought for x1 < 0 only. For x1 > 0, from (5)186

along with (9), the wave equation is187

(16) divxσ
n + un = 0, σn = ∇xu

n, (n = 0, 1), for x1 > 0,188

being the same at each order, and the fields being independent of y2 equal their189

averages.190

2.2.1. The homogenized wave equation in x1 < 0 at first order. For191

x1 < 0, the Eqs. (5), at leading order (1/ε), read ∂y2σ
0
2 = 0 = ∂y2u

0, whence we can192

note193

(17) u0(x, y2) = u0(x), σ0
2(x, y2) = σ0

2(x),194

and u0, σ0
2 equal their averages. Now, we establish the relation between 〈σ0〉 and u0.195

The Eqs. (5) at order ε0 in the outer problems x1 < 0 give196

(18) σ0(x, y2) = a(y2)

[
∇xu

0(x) +
∂u1

∂y2
(x, y2) e2

]
,197

and198

(19) divxσ
0(x, y2) +

∂σ1
2

∂y2
(x, y2) + b(y2)u0(x) = 0.199

Averaging both equations, with σ0(x, y2) = σ0
1(x, y2) e1 +σ0

2(x) e2, and owing to the200

periodicity of u1 and of σ1
2 w.r.t. y2 (thus, 〈∂y2u1〉 = 0 = 〈∂y2σ1

2〉), we easily get the201

wave equation at the first order202

〈σ0〉(x) = 〈a〉 ∂u
0

∂x1
(x) e1 + 〈1/a〉−1 ∂u

0

∂x2
(x) e2,(20a)203

divx〈σ0〉+ 〈b〉u0 = 0.(20b)204205

2.2.2. Second-order - useful relations. Before going to the next order, we206

shall establish the relations (22) for u1 and (24) for σ1
2 , that we shall use later. Both207

relations use the same property : consider a piecewise differentiable function g(y), with208

g′(y) even ; then (g − 〈g〉) is odd and, for any function f(y) being even, f(g − 〈g〉) is209

odd. Thus, the integral over y ∈ Y vanishes, from which 〈fg〉 = 〈f〉〈g〉.210

First, from (18), we have211

(21)
∂u1

∂y2
(x, y2) =

1/a(y2)− 〈1/a〉
〈1/a〉

∂u0

∂x2
(x),212

and we used that σ0
2(x) = 〈1/a〉−1∂x2

u0(x) from (20a). Because a(y2) is even, ∂y2u
1213

is even too, so the property on the average applies and214

(22) 〈f(·)u1(x, ·)〉 = 〈f〉〈u1〉(x), for any even f.215

Integrating (21), we also have216

(23) u1(x, y2) = A(y2)
∂u0

∂x2
(x) + 〈u1〉(x), A(y2) ≡

∫ y2

−1/2
dy

1/a(y)− 〈1/a〉
〈1/a〉 .217

In the above expression, we have used that 〈A〉 = 0, by construction.218
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8 JEAN-JACQUES MARIGO AND AGNÈS MAUREL

Next, we use that σ0
1(x, y2) = a(y2)∂x1

u0(x) from (18), and thus 〈σ0
1〉(x) =219

〈a〉∂x1
u0(x). Inserting the resulting relation σ0

1(x, y2) = a(y2)/〈a〉〈σ0
1〉(x) in (19),220

we get221

∂σ1
2

∂y2
(x, y2) = −a(y2)

〈a〉
∂〈σ0

1〉
∂x1

(x)− ∂σ0
2

∂x2
(x)− b(y2)u0(x).222

(a, b) being even, ∂y2σ
1
2 is even w.r.t. y2, from which the property on the average223

applies and224

(24) 〈f(·)σ1
2(x, ·)〉 = 〈f〉〈σ1

2〉(x), for any even f.225

2.2.3. The homogenized wave equation in x1 < 0 at second-order. Now,226

we shall establish the relation between 〈u1〉 and 〈σ1〉 (for x1 < 0). Eq. (5b) at order227

ε reads228

σ1(x, y2) = a(y2)

[
∇xu

1(x, y2) +
∂u2

∂y2
(x, y2) e2

]
.229

To average the above equation, it is sufficient to use (22) and (24), with a(y2) being230

even. We get231

(25)


σ1
1(x, y2) = a(y2)

∂u1

∂x1
(x, y2) → 〈σ1

1〉(x) = 〈a〉 ∂〈u
1〉

∂x1
(x),

1

a(y2)
σ1
2(x, y2) =

∂u1

∂x2
(x, y2) +

∂u2

∂y2
(x, y2) → 〈1/a〉 〈σ1

2〉(x) =
∂〈u1〉
∂x2

(x),

232

where the arrow indicates the average process. Next, (5a) at order ε reads233

divxσ
1(x, y2) +

∂σ2
2

∂y2
(x, y2) + b(y2) u1(x, y2) = 0,234

whose average leads to235

(26) divx〈σ1〉(x) + 〈b〉〈u1〉(x) = 0,236

and we have used 〈bu1〉 = 〈b〉〈u1〉 from (22) and 〈∂y2σ2
2〉 = 0 because σ2

2 is periodic237

w.r.t. y2.238

2.2.4. Up to second-order homogenized wave equation. It is now suffi-239

cient to gather (20) and (25)-(26) to get the homogenized wave equation up to second240

order for (u(x),σ(x)) in (14)241

(27) divσ + 〈b〉u = 0, σ =

(
〈a〉 0
0 〈1/a〉−1

)
∇u, for x1 < 0,242

which coincides, when coming back to the real space, to (3).243

2.3. Jump conditions. To the homogenized wave equation (27), we have to244

associate jump conditions at the interface x1 = 0. In this section, we will show that245

the usual continuities of the displacement and of the normal stress are obtained at246

leading order, while the second order makes discontinuities of these two fields to247

appear. To that aim, we have to consider the inner solution and its matching with248

the two outer solutions. We are looking for the jumps of (u, σ1) defined in (14),249

(28) JuK =
q
u0

y
+ ε

q
〈u1〉

y
, Jσ1K =

q
〈σ0

1〉
y

+ ε
q
〈σ1

1〉
y
,250
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and their expressions in terms of u± and σ±, the values of u and σ on both sides of251

the interface (at this stage, we have to distinguish the values on both sides, the fields252

being discontinuous).253

2.3.1. The jump conditions at the first order. Eq. (5b) for the inner pro-254

blem at the leading order in 1/ε tells us that ∇yv
0 = 0 from which v0 does not depend255

on y. From the previous section, we already know that u0(x) does not depend on y2,256

from which the matching conditions, (12a) and (12b), give257

(29) u0(0−, x2) = u0(0+, x2) = v0(x2), and
q
u0

y
= 0.258

Next, (5a) in the inner region gives at the leading order divyτ
0 = 0 ; by integrating

this equation on R× Y , we get∫
Y

dy2
[
τ01 (x2,+∞, y2)− τ01 (x2,−∞, y2)

]
= 0,

(we have used the periodicity of τ 0 w.r.t. y2 and the continuity of τ 0 · n between the259

layers along y2). From the matching conditions (12c)-(12d) integrated over Y , we get260

(30) 〈σ0
1〉(0−, x2) = σ0

1(0+, x2), and
q
〈σ0

1〉
y

= 0.261

At first order, the usual continuities of the displacement and of the normal stress are262

obtained. To capture the effect of the boundary layers in the neighborhood of x1 = 0,263

we have to go up to the second order.264

2.3.2. The elementary problems. Before going to the second order, we need265

to inspect further the inner solution. There, the variations of ã(y) and b̃(y) in (5) are266

more involved than the simple forms a(y2) and b(y2) considered until now for x1 < 0,267

see (10). The difference between ã(y) and a(y2) will constitute the whole story. From268

(5a) at order ε−1 and (5b) at order ε0, we have269

(31) divyτ
0 = 0, τ 0(x2,y) = ã(y)

[
∂u0

∂x2
(0, x2) e2 + ∇yv

1(x2,y)

]
,270

where we used that ∂x2
u0(x) is continuous at x1 = 0 as u0 does from (29). The271

matching conditions (12c)-(12d) yield272 

τ 0(x2,−∞, y2) =
a(y2)

〈a〉 〈σ
0
1〉(0, x2) e1 + 〈1/a〉−1 ∂u

0

∂x2
(0, x2) e2

= a(y2)
∂u0

∂x2
(0, x2) e2 + a(y2)∇yv

1(x2,−∞, y2).

τ 0(x2,+∞, y2) = 〈σ0
1〉(0, x2) e1 +

∂u0

∂x2
(0, x2) e2

=
∂u0

∂x2
(0, x2) e2 + ∇yv

1(x2,+∞, y2).

273

For both limits above, the first line is given by the matching conditions with σ0274

expressed as a function of 〈σ0
1〉 and ∂x2

u0 ; it is obvious for x1 > 0, and for x1 < 0,275

we used (18) and (20a) (with σ0
2 = 〈σ0

2〉 from (17)). The second line is given by276

the expression of τ 0 in (31) along with (10). It follows that the system satisfied by277
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v1(x2,y) can be written278

(32)

divyτ
0 = 0, with τ 0 = ã(y)

[
∂u0

∂x2
(0, x2) e2 + ∇yv

1(x2,y)

]
,

v1 and τ 0 · n continuous,

lim
y1→−∞

∇yv
1(x2,y) = 〈a〉−1〈σ0

1〉(0, x2) e1 +
1/a(y2)− 〈1/a〉

〈1/a〉
∂u0

∂x2
(0, x2) e2,

lim
y1→+∞

∇yv
1(x2,y) = 〈σ0

1〉(0, x2) e1,

279

with v1 and τ 0 periodic w.r.t y2, and we have used (11). The system (32) is linear280

w.r.t 〈σ0
1〉(0, x2) and ∂x2

u0(0, x2). Thus, we define V (1)(y) and V (2)(y) such that281

(33)


v1(x2,y) = 〈σ0

1〉(0, x2)V (1)(y) +
∂u0

∂x2
(0, x2) [A(y2) + V (2)(y)] + v̂(x2),

τ 0(x2,y) = 〈σ0
1〉(0, x2)T(1)(y) +

∂u0

∂x2
(0, x2)

[
ã(y)/a(y2)

〈1/a〉 e2 + T(2)(y)

]
,

282

with T(1)(y) ≡ ã(y)∇V (1)(y) and T(2)(y) ≡ ã(y)∇V (2)(y) (and A(y2) defined in283

(23)). Note that the field v1 in (32) is defined up to a function of x2, and it is denoted284

v̂(x2) in (33) ; we shall see that the determination of v̂(x2) is not needed. It is easy to285

see that if (V (i),T(i)) satisfy the elementary problems286

(34)



divT(1) = 0, with T(1)(y) = ã(y)∇V (1)(y)

V (1) and T(1) · n continuous,

V (1),T(1) periodic w.r.t. y2

lim
y1→−∞

∇V (1)(y) =
e1

〈a〉 , lim
y1→+∞

∇V (1)(y) = e1,

287

and288

(35)



div

[
T(2) +

ã(y)/a(y2)

〈1/a〉 e2

]
= 0, with T(2)(y) = ã(y)∇V (2)(y),

V (2) and

[
T(2) +

ã(y)/a(y2)

〈1/a〉 e2

]
· n continuous,

V (2),T(2) periodic w.r.t. y2

lim
y1→−∞

∇V (2)(y) = 0, lim
y1→+∞

∇V (2)(y) = −1/a(y2)− 〈1/a〉
〈1/a〉 e2,

289

then v1(x2,y) satisfies (32). The elementary solutions V (1,2) satisfy290

(36)


lim

y1→−∞

[
V (1) − y1

〈a〉

]
= −B,

lim
y1→+∞

[V (1) − y1] = 0,

 lim
y1→−∞

V (2) = −B′,
lim

y1→+∞
V (2) = −A(y2).

291

The above limits are obtained by integrating the limits of ∇V (i), i = 1, 2, thus with292

unknown constants being a priori different at y1 → ±∞. Next, because V (i) are defined293
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in (34)-(35) up to a constant, we can set the constant equal to zero at y1 → +∞ ;294

for V (1), we denote −B the constant at y1 → −∞ (it is the first interface parameter).295

For V (2), it is denoted −B′ ; next, V (2) being odd w.r.t. y2, we have B′ = 0. It is296

important to stress that the elementary problems, as the unit cell problems in the297

classical homogenization, can be solved once and for all, being written in the static298

limit. The relations between the elementary solutions V (1,2) and the evanescent fields299

in the actual problem (for a given scattering problem) are illustrated in Appendix A.300

y1

y2

0

1/2

�1/2

ym
1�ym

1

Y+
Y�

a(y2), b(y2) a = 1, b = 1

Figure 4. The domain Y = Y-∪Y+, with Y- = (−ym1 , 0)×Y , Y+ = (0,+ym1 )×Y . ã(y) = a(y2)

and b̃(y) = b(y2) in Y-, and a = 1 = b in Y+.

2.3.3. Jump conditions at second-order. Once the elementary problems are301

solved, it is possible to determine the jump conditions.302

Jump of 〈u1〉 – To get the jump of 〈u1〉, it is sufficient to use the matching conditions303

(13a)-(13b) and we want v1(x2,±∞, y2). From (33) along with (36), we have304 
v1(x2,−∞, y2) = lim

y1→−∞

[(
y1
〈a〉 − B

)
〈σ0

1〉(0, x2) +A(y2)
∂u0

∂x2
(0, x2) + v̂(x2)

]
,

v1(x2,+∞, y2) = lim
y1→+∞

[
y1〈σ0

1〉(0, x2) + v̂(x2)
]
.

305

Now, we have 〈σ0
1〉(0, x2) = 〈a〉∂x1

u0(0−, x2) from (20a) and 〈σ0
1〉(0, x2) = ∂x1

u0(0+, x2)306

from (16) and (30). Averaging
q
u1

y
= u1(0+, x2) − u1(0−, x2, y2) over Y and owing307

to 〈A〉 = 0, we get308

(37)
q
〈u1〉

y
= B 〈σ0

1〉(0, x2).309

Jump of 〈σ1
1〉 – The derivation of the jump of σ1

1 is more tricky, or at least longer. First,310

we define Y ≡ (−ym1 , ym1 ) × Y (Figure 4) and we shall use the matching conditions311

(13c)-(13d) integrated over Y and written in terms of ym1312

(38)


〈σ1

1〉(0−, x2) = lim
ym1 →+∞

[
〈τ11 〉(x2,−ym1 ) + ym1

∂〈σ0
1〉

∂x1
(0−, x2)

]
,

〈σ1
1〉(0+, x2) = lim

ym1 →+∞

[
〈τ11 〉(x2, ym1 )− ym1

∂〈σ0
1〉

∂x1
(0+, x2)

]
.

313

Integrating over Y the Eq. (5a) written at order ε0 for the inner problem, we get314

(39)

∫
Y

dy

[
divyτ

1(x2,y) +
∂τ02
∂x2

(x2,y) + b̃(y)u0(0, x2)

]
= 0.315
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Two of the three integrals above are easily obtained, namely316

(40)


∫
Y

dy divyτ
1(x2,y) = 〈τ11 〉(x2, ym1 )− 〈τ11 〉(x2,−ym1 ),∫

Y

dy b̃(y)u0(0, x2) = ym1 [1 + 〈b〉]u0(0, x2).

317

We used, for the first integral, the continuity of τ 1 ·n and the periodicity of τ 1 w.r.t.318

y2. Note that the first integral of (40) corresponds to the first term in
q
〈σ1

1〉
y
, from319

(38). For the second integral, we used (10).320

Now, let us consider the second integral in (39). First, from (33), we have321

(41)
∂τ02
∂x2

(x2,y) =
∂〈σ0

1〉
∂x2

(0, x2)T (1)

2 (y) +
∂2u0

∂x22
(0, x2)

[
ã(y)/a(y2)

〈1/a〉 + T (2)

2 (y)

]
.322

Next, defining Y- = (−ym1 , 0)× Y , Y+ = (0,+ym1 )× Y , and using (10), we get323

(42)


∫
Y-

dy
ã(y)/a(y2)

〈1/a〉
∂2u0

∂x22
(0, x2) = ym1 〈1/a〉−1

∂2u0

∂x22
(0, x2),∫

Y+

dy
ã(y)/a(y2)

〈1/a〉
∂2u0

∂x22
(0, x2) = ym1

∂2u0

∂x22
(0, x2),

324

In (42), we want ∂x1
〈σ0

1〉 to appear, in order to absorb the (diverging) terms in ym1325

in the matching condition (38). Do do so, we use (20) for x1 < 0 and (16) for x1 > 0326

and we get327

(43)


−∂〈σ

0
1〉

∂x1
(0−, x2) = 〈1/a〉−1 ∂

2u0

∂x22
(0, x2) + 〈b〉u0(0, x2),

−∂〈σ
0
1〉

∂x1
(0+, x2) =

∂2u0

∂x22
(0, x2) + u0(0, x2),

328

whence329

(44)∫
Y

dy

[
∂2u0

∂x22
(0, x2)

ã(y)/a(y2)

〈1/a〉 + b̃(y)u0(0, x2)

]
= −ym1

[
∂〈σ0

1〉
∂x1

(0+, x2) +
∂〈σ0

1〉
∂x1

(0−, x2)

]
.330

It is now sufficient to use (40), (41) and (44) in (39), to get the jump condition331

(45)
q
〈σ1

1〉
y

= −C ∂
2u0

∂x22
(0, x2), with C ≡

∫
Y

dy T (2)

2 (y),332

and we used that
∫
Y

dy T (1)

2 (y) = 0 since V (1) is symmetric w.r.t. y2. The constant C333

is the second interface parameters entering in the jump conditions.334

2.3.4. Jump conditions and final homogenized problem. The jump condi-335

tions on (u,σ) are deduced from (28), with (29),(30) and (37),(45), and read336

(46) JuK = εB 〈σ0
1〉(0, x2), Jσ1K = −εC ∂

2u0

∂x22
(0, x2).337

The above jump conditions define a homogenized problem which can be solved itera-338

tively : first compute (u0, 〈σ0〉) satisfying (16), (20) with (29) and (30) (compute also339
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B and C) and use the results to get the right hand-side term in (46) ; then, compute340

(u,σ) which approximate (uε,σε) up to O(ε2). As discussed in [4], it is preferable to341

handle a unique problem and this is done by defining the fields (ũ, σ̃) satisfying the342

following homogenized problem343

(47)



divσ̃ + 〈b〉ũ = 0, σ̃ =

(
〈a〉 0
0 〈1/a〉−1

)
∇ũ, x1 < 0

divσ̃ + ũ = 0, σ̃ = ∇ũ, x1 > 0

JũK =
εB
2

[
σ̃1(0−, x2) + σ̃1(0+, x2)

]
,

Jσ̃1K = −εC
2

[
∂2ũ

∂x22
(0−, x2) +

∂2ũ

∂x22
(0+, x2)

]
,

344

and it is easy to see from (16), (27) and (46) that ũ, σ̃ admit the expansions 〈u0〉+345

ε〈u1〉, 〈σ0〉 + ε〈σ1〉 up to O(ε2), thus the same expansion as (uε,σε) up to O(ε2).346

Finally, coming back to the real space, in X = x/k coordinate and with U(X) = ũ(x),347

Σ(X) = kσ̃(x), (47) take the form348

(48)



divΣ + 〈b〉k2U = 0, Σ =

(
〈a〉 0
0 〈1/a〉−1

)
∇U, X1 < 0

divΣ + k2U = 0, Σ = ∇U, X1 > 0

JUK =
hB
2

[
Σ1(0−, X2) + Σ1(0+, X2)

]
,

JΣ1K = −hC
2

[
∂2U

∂X2
2

(0−, X2) +
∂2U

∂X2
2

(0+, X2)

]
.

349

The above problem, written for a single interface at X1 = 0, correspond to the system350

(3)-(4) when two interfaces at X1 = ±e/2 are considered.351

3. Scattering by an array of rectangular voids. In this section, we apply352

the previous analysis to rectangular voids or cracks, free of stresses (with Neumann353

conditions on their boundaries), periodically spaced in a homogeneous matrix being354

composed of the same elastic material than the substrate. In electromagnetism, this355

corresponds to a (perfect conducting) metallic array in a dielectric or in the air ; in356

acoustics to an array of sound hard material in a fluid. We consider the scattering of357

an incident plane wave U inc arriving from X1 < 0 and hitting the array at oblique358

incidence θ (Figure 5), whence359

(49) U inc(X) = eik(X1+e/2) cos θ+ikX2 sin θ.360

In the actual problem, the solution is sought in the substrate where the Helmholtz361

equation apply with Neumann boundary conditions on the boundaries of the voids362

occupying the subdomains Ωi, i = 1 . . . Nv and Ωv = ∪
i

Ωi. The problem is solved in363
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0
X1

X2

e

H
U inc(X)0

X1

X2

e
h

H

actual problem homogenized problem

U inc(X)

⌦

✓✓

Figure 5. Actual problem of the scattering of a plane wave at oblique incidence θ on an array
of rectangular voids ; the problem is solved numerically. The homogenized problem involves a slab
of same thickness e filled with a homogeneous anisotropic material (the wave equation being (51)) ;
jump conditions (4) apply at X1 = ±e/2.

Ω\Ωv with Ω = {(X1, X2) ∈ R× (−H/2, H/2)} and reads364

(50)



∆U + k2U = 0, in Ω\Ωv,
∇U · n = 0, on ∂Ωi, i = 1 . . . Nv,

lim
X1→±∞

[
∂

∂X1
(U − U inc)∓ ik cos θ(U − U inc)

]
= 0,

U

(
X1,

H

2

)
= eikH sin θU

(
X1,−

H

2

)
, X1 ∈ R,

∂U

∂X2

(
X1,

H

2

)
= eikH sin θ ∂U

∂X2

(
X1,−

H

2

)
, X1 ∈ R.

365

The conditions at X1 → ±∞ are the radiation conditions required to select an out-366

going scattered waves (U −U inc) in the low frequency regime, namely for k < 2π/h (if367

not the case, the radiation condition should to be modified, see [2]). In the case where368

H = nh, with n an integer (and we shall consider that this is the case), the last condi-369

tion is referred to as the condition of pseudo-periodicity or the Floquet condition,370

which applies for the incident wave and for the total field [13]. The actual problem is371

solved numerically using a multimodal method which reduces to the determination of372

a set of scalar coefficients for |X1| < e/2 and for |X1| > e/2 (see subsection S2.2.1).373

In the following, the computed solution Unum is the reference solution.374

3.1. Solutions of the homogenized problems at the first and at the375

second orders. We shall see that the homogenized problems at the first two orders376

can be solved exactly. Voids or cracks correspond to the limiting case a = 0 = b377

(leading to Neumann boundary condition at the boundary with any other material).378

Next, with a = 1 = b in the substrate, and with ϕ the filling fraction of the substrate in379

the layers, the equivalent medium has bulk parameters 〈a〉 = 〈b〉 = ϕ and 〈1/a〉−1 = 0,380

whence the homogenized wave equation (3) becomes381

(51) divΣ + ϕk2U = 0, Σ =

(
ϕ 0
0 0

)
∇U.382
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It follows that the homogenized problems read383

(52)



∂2U

∂X2
1

+ k2U = 0, for |X1| <
e

2
,

∆U + k2U = 0, for |X1| >
e

2
,

Jump conditions (4), at X1 = ±e
2
,

lim
X1→±∞

[
∂

∂X1
(U − U inc)∓ ik cos θ(U − U inc)

]
= 0,

U

(
X1,

H

2

)
= eikH sin θ

(
X1,−

H

2

)
, X1 ∈ R,

∂U

∂X2

(
X1,

H

2

)
= eikH sin θ ∂U

∂X2

(
X1,−

H

2

)
, X1 ∈ R.

384

In the following, we refer to the homogenized problems at first and at second orders for385

the values of (B, C) entering in the jump conditions (4) ; at first order, (B, C) = (0, 0)386

and at second order,387

(53) B = − 1

π
log sin

(πϕ
2

)
, C ' π

16
ϕ2,388

(see subsection S2.1).389

The solution of (52) with (49) is of the form390

(54)


X1 < −

e

2
, U(X) =

[
eik(X1+e/2) cos θ +Re−ik(X1+e/2) cos θ

]
eikX2 sin θ,

|X1| <
e

2
, U(X) =

[
aeikX1 + be−ikX1

]
eikX2 sin θ,

X1 >
e

2
, U(X) = Teik(X1−e/2) cos θ+ikX2 sin θ,

391

with (R, T, a, b) given by the jump conditions (4). Indeed, applying (4) to (54), we392

find, for any (k, θ) values characterizing the incident wave, a set (R, T, a, b) such that393

U is solution of the homogenized problems. In particular, the scattering coefficients394

(R, T ) read395

(55)


R = −z1

∗z2∗eike − z1z2e−ike
z1∗2eike − z22e−ike

,

T =
|z1|2 − |z2|2

z1∗2eike − z22e−ike
,

396

397
(56)

z1 ≡
(

1− cos θ

ϕ

)
+ ikh

(
B cos θ + C sin2 θ

ϕ

)
− (kh)2 sin2 θ

BC
4

(
1 +

cos θ

ϕ

)
,

z2 ≡
(

1 +
cos θ

ϕ

)
− ikh

(
B cos θ − C sin2 θ

ϕ

)
+ (kh)2 sin2 θ

BC
4

(
1 +

cos θ

ϕ

)
.

398

Obviously, for B = C = 0, the jump conditions (4) simplify to the continuities of U399

and Σ · n and we recover the usual expressions of the scattering coefficients given by400

the homogenization at the first order, with cos θ/ϕ the effective impedance mismatch401

between the two media [12]. Finally, the derivation of (a, b) is straightforward and402

together with (R, T ) can be used in (54) to calculate the homogenized wavefield U(X).403
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3.2. Numerical validation of the homogenized solutions. We shall inspect404

the validity of the homogenized solution up to the first and second orders for an405

incident plane wave at normal and at oblique incidences. To begin with, we report the406

fields Unum calculated numerically and the fields U of the homogenized solutions, (54),407

with (55)-(56), for ϕ = 0.5 (Figure 6) and ϕ = 0.9 (Figure 7) ; in both cases, kh = 1,408

e/h = 10 and θ = π/3. The improvement in the solutions given by the homogenization409

at the second order, compared to the ones given by the first order, is visible to the410

naked eye. Defining ∆U ≡ |U − Unum|/|Unum| (for |X1| > e/2 and with |.| the L2411

norm), we get a discrepancy of 10% (ϕ = 0.5) and 20% (ϕ = 0.9) for the first order412

homogenization, and of 0.7%-0.6% for the second order homogenization. It is worth413

noting that a very small error is found even at this relatively large kh = 1 value.

actual pb

first order homog.

second order homog.

Figure 6. Scattering of a plane wave at incidence θ = π/3 and kh = 1 on a array made of
rectangular voids (e/h = 10 and ϕ = 0.5). The solution Unum in the actual problem is calculated
numerically ; on the right, the fields U given by the homogenization at the first and at the second
orders.

actual pb

second order homog.

first order homog.

Figure 7. Same representation as in Figure 6 with ϕ = 0.9.

414

3.2.1. Waves at normal incidence. We first inspect the case θ = 0, for which415

the homogenizations, at first and second orders, impose JΣK·n = 0 in (4) (because from416

(52), U(X1, X2) = U(X1, 0) does not depend onX2), thus only the influence of B in the417

jump condition for the displacement is regarded (see also (55) with (56)). We report418

in Figure 8 the spectra of the transmission as a function of kh and e/h (with ϕ = 0.1419

and θ = 0) and in Figure 9 the corresponding errors ∆T = |T num − T |/|T num| (for the420

homogenizations at the first and at the second orders). We considered kh ∈ [0, 2π],421

kh = 2π corresponding to the cut-off frequency above which a second propagating422

mode exists in the actual problem.423

In Figure 9, errors smaller than 1% appear in dark blue and errors grater than424
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actual pb

second order homog.

first order homog.

kh

0 4

2⇡

0

1

C1 C2

C3

e/h

Figure 8. Transmission coefficient as a function of e/h and of the frequency kh ; ϕ = 0.1 and
θ = 0 have been considered. On the left, in the actual problem, |T num| calculated numerically, and
on the right, |T | given by the first and second order homogenizations, (55), with (56).

100% in dark red. The range of validity of the homogenized solution is significantly425

increased when using the second order homogenization ; on the one hand, intermediate426

frequencies become accessible (the error is smaller than 4% for kh < π in the whole427

range of e/h at second order, it is of 50% on average at first order) ; on the other hand,428

the first order homogenization predicts erroneously perfect transmissions for vanishing429

thicknesses e/h, while going up to the second order restores the actual scattering430

properties of an array of flat voids. This is related to the discussion presented in Ref.431

[7] in the context of electromagnetic waves. In this reference, an effective medium432

approach at second order is presented assuming the continuities of the displacement433

and of the normal stress (instead of our jump conditions) ; the analysis concludes that434

the effective bulk parameter a has to be dependent on the thickness (in this reference,435

a denotes the effective permittivity for electromagnetic waves).

kh

0

2⇡

e/h
40

1%

50%

100%second order homog.first order homog.

e/h
40

Figure 9. Errors ∆T on the transmission coefficient in the homogenization problems (at first
and at second orders) as a function of e/h and kh (ϕ = 0.1 and θ = 0). Errors below 1% appear in
dark blue and errors larger than 100% appear in dark red.

436
More specifically, we inspect (i) the profiles of |T num| (blue symbols) and its ho-437

mogenized counterparts |T | at first order (grey lines) and at second order (black lines)438

as a function of kh for e/h = 0.05 and e/h = 4 (Figure 10). For a small thickness439

(C1 profile from Figure 8), the homogenization at first order largely overestimates440

the transmission while including the jump conditions (4) at second order recovers441
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the actual transmission of the array ; for larger array (C2 profile) the first order ho-442

mogenization is valid for small kh and going up to the second order allows us to443

increase the range of validity of the homogenized solution. This is because T num is444

not periodic w.r.t. kh (the kh-distance between two perfect transmissions decreases445

as kh increases) ; from (55), this tendency is correctly captured by T at second order,446

while T at first order appears to be erroneously periodic, with 2πh/e period. Finally,447

as expected, the errors ∆T vary as kh at the first order and as (kh)2 at the second448

order.

�
T

(%
)

�
T

(%
)

0

|T
|

0

1

⇡ 2⇡
kh kh

10�1 1

0.01

1

100

100

1

|T
|

0

1

C1

C2

Figure 10. Transmission coefficients |T num| and |T | as a function of kh and corresponding
error ∆T of the homogenized predictions. C1 profile for e/h = 0.05 and C2 for e/h = 4 (|T num| :
blue symbols and |T | : grey lines at first order and black lines at second order). ∆T are shown in
%, dotted lines are guidelines with slopes kh (grey) and (kh)2 (black).

449

C3

e/h

�
T

(%
)

|T
|

0

1

1

10

100

0 2 4

Figure 11. Transmission coefficient and errors as a function of e/h for kh = π (C3 profile
from Figure 8). Same representation as in Figure 10.

(ii) the variations of |T num| and |T | (and the corresponding errors ∆T ) as a func-450

tion of e/h for kh = π are reported in Figure 11 (C3 profile from Figure 8). Amusingly,451

the large error in the first order homogenization appears to be a direct consequence452

of the “initial” error for vanishing e/h ; there, |T | = 1 is erroneously found at the453

first order, and the periodicity of T w.r.t e/h imposes the same error to occur for any454

e/h (the periodicity of T w.r.t. e/h is, from (55), 2π/kh, thus equals 2 in the present455

case).456
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3.2.2. The case of oblique incidence. In the case of oblique incidence (θ =457

π/3 is considered in this section), the difference between the homogenized solutions458

at first and second orders involves the two interface parameters (B, C). We report459

the same sequence of figures as for the normal incidence ; with kh ∈ [0, 2π], the460

frequency range includes kh > 2π/(1+sin θ) ' 1.07π where two modes are propagating461

(complete extinction of the first mode is observed at this cut-off frequency, Figure 12462

and Figure 14, corresponding to the Wood anomaly [10]). This range is outside the463

range of validity of any homogenization approach since mode coupling is not possible464

at an equivalent flat boundary [10].

actual pb

second order homog.

first order homog.

kh

0
e/h 4

2⇡

0

1

C1 C2

C3

Figure 12. Same representation as Figure 8 for θ = π/3.

kh

0

2⇡

1%

50%

100%second order homog.first order homog.

e/h
40

e/h
40

Figure 13. Same representation as Figure 9 for θ = π/3.

465
Inspecting Figure 12 to Figure 15, we recover in general the same tendencies466

as those observed at normal incidence. On average, for kh < π/2, the error in the467

transmission coefficient is smaller than 1% in the whole range of e/h at second order, it468

is of 40% on average at first order. Also, the first order homogenization underestimates469

the scattering properties of the structure when e/h goes to zero (C1 profile in Figure 14470

and Figure 15). Reversely for larger e/h, and this is more surprising, it overestimates471

the scattering properties (with |T | significantly smaller than |T num| ) even for small472

kh value (from Figure 12 and the C2 profile in Figure 14). Thus, in general, the473

improvement in the second order homogenized solution is even more significant at an474

oblique incidence.475
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�
T

(%
)

�
T

(%
)

0

|T
|

0

1

⇡ 2⇡
kh kh

10�1 1

0.01

100

100

1|T
|

0

1

C1

C2

0.01

1

Figure 14. Same representation as Figure 10 for θ = π/3.

C3

e/h

�
T

(%
)

|T
|

0

1

1

100

0 2 4

Figure 15. Transmission coefficient and errors as a function of e/h for kh = 0.6π (C3 profile
from Figure 12). Same representation as in Figure 10.

4. Concluding remarks. The homogenization that we have presented expli-476

citly accounts for the finite size e/h of stratified structures. At first and at second477

orders, this makes effective bulk parameters to appear which are simply averages of478

the bulk parameters in each layer and these effective bulk parameters enter in the479

homogenized wave equation. Note the simplicity happening in the case of stratified480

media : (i) the bulk parameters are found without solving cell problems, and this is481

well known, (ii) the same effective wave equation is found at first and at second or-482

ders, and this is less known. Note also that this simplicity would be lost in the case of483

periodic media with a more complex unit cell. Finally, the most significant improve-484

ment in the presented approach is the derivation of jump conditions involving effective485

interface parameters when accounting for the finite thickness of the structure. More486

usually, the continuity of the displacement and of the normal stress are assumed, and487

this is what we recover at first order. Going up to second order allows us to establish488

jump conditions for these fields and the improvement in the homogenized result has489

been exemplified.490
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Annexe A. The case of vanishing slab thicknesses. The validity of the532

homogenization of stratified media with finite size has been exemplified in this paper533

for varying e/h. In fact, the case of vanishing thicknesses has to be inspected more534

carefully. Indeed, we end with jump conditions reflecting the behavior of the evanes-535

cent field at each boundary of the equivalent slab, and these boundary layers have536

been assumed to be independent. In fact, for very small thicknesses, the two boundary537

layers may interact. In this case, the bulk problem is meaningless and the elementary538

problems have to include the whole structure ; doing so, jump conditions across an539

equivalent interface are found (and the bulk behavior is disregarded), see [9, 11]. We540

obtained in this case541

(57)


Rint = −1

2

[
Z∗1
Z1

+
Z∗2
Z2

]
,

T int =
1

2

[
Z∗1
Z1
− Z∗2
Z2

]
,

542

543

(58)


Z1 = 1− ikh cos θ

(
B +

e

2ϕ

)
,

Z2 = −i cos θ − kh
(eϕ

2h
+ C sin2 θ

)
,

544

with (B, C) in (53). Here, we illustrate the limitation of the present homogenization545

in the light of the size of the boundary layers in the actual problem.

e/
h

=
0
.2

5
e/

h
=

0.
5

e/
h

=
1

evanescent fields in the actual problemfields of the elementary problems

Pb 1

Pb 2

Figure 16. Boundary layers in the static elementary problems and evanescent fields in the
actual problems for ϕ = 0.5. In the actual problem, we considered kh = 1 and θ = π/4.

546

In Figure 16, we reported (i) the elementary solutions V (1,2) of (S9) and (S17) for547

ϕ = 0.5 (for V (1), the external load is (y1) and it has been removed to exhibit the548

resulting boundary layer), (ii) the evanescent fields in the actual problem for kh = 1549

and varying e/h = 1, 0.5 and 0.25 (the total wavefields are continuous but the eva-550

nescent fields are not). Qualitatively, for e/h = 1, it is visible that the evanescent551
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fields in the actual problem ressemble (by parts) to the fields in the elementary pro-552

blems. This is quite natural if one remembers that the evanescent field in the actual553

problem can be decomposed in modes with y1 dependance being of the form e±ikny1 ,554

and kn =
√
k2 − (nπ/h)2 ∼ i(nπ/h) for y1 > 0, kn =

√
k2 − (nπ/hϕ)2 ' i(nπ/hϕ)555

for y1 < 0, thus involving at the dominant order the same y1 dependences as in the556

static problems (see subsection S2.2.1). Decreasing e result in the interaction of the557

evanescent fields within the array, or in other words the whole array is concerned by558

the boundary layer effects.559

Quantitatively, Figure 17 shows T num and T (at second order) and the resulting560

error ∆T as a function of e/h in logscale up to e/h = 10−2 (and ϕ = 0.1, 0.5 and561

0.9). It is visible that the error significantly increases for e/h < 1, and the increase is562

more significant for larger ϕ ; to estimate more carefully the critical thickness below563

which the present homogenization is not valid anymore (or say less accurate), one564

should consider the influence of ϕ (ϕ being a measure of the size of boundary layer,565

to be compared to e/h the array thickness in y-coordinates). We report in dotted566

lines the transmission coefficient T int given by the interface homogenization (57)-(58)567

(from [9]. As expected, this homogenization which accounts for the boundary layers568

in the whole array, is more accurate for vanishing thickness.569

10

e/h
10�2 10�1 101

e/h
10�2 110�1 10

' = 0.5' = 0.5

' = 0.9 ' = 0.9�
T
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�
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|T
|(a

.u
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|T
|(a
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Figure 17. Transmission coefficient |T num| (blue symbols) and |T | at second order (black lines)
as a function of e/h for ϕ = 0.9 and 0.5, and corresponding errors ∆T . The errors increase signi-
ficantly for roughly e/h < 1. Dotted orange lines show the transmission coefficient |T int| obtained
using interface homogenization (57)-(58) (from [9]).
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