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Two scale homogenization to determine effective parameters of thin metallic structured films

We present a homogenization method based on matched asymptotic expansion technique to derive effective transmission conditions of thin structured films. The method leads unambiguously to effective parameters of the interface which define jump conditions or boundary conditions at an equivalent zero thickness interface. The homogenized interface model is presented in the context of electromagnetic waves for metallic inclusions associated to Neumann or Dirichlet boundary conditions for transverse electric (TE) or transverse magnetic (TM) wave polarization. By comparison with full wave simulations, the model is shown to be valid for thin interfaces up to thicknesses close to the wavelength. We also compare our effective conditions to the two-sided impedance conditions obtained in transmission line theory and to the so-called Generalized Sheet Transition Conditions (GSTCs).

Introduction

Metamaterial devices composed of a periodic arrangement of subwavelength unit cells have been widely studied using classical homogenization, see e.g. [1][2][3]. Owing to the resolution of so-called cell problems, written in the static limit, the problem ends with effective permeability and effective permittivity of an equivalent homogeneous medium (being possibly anisotropic). More recently, frequency dependences in the cell problems have been introduced, which allow to account for possible resonances in the unit cell; these are the high frequency homogenization or resonant homogenization [4-10]. However, the classical homogenization being developed for infinite media, its validity for devices of small thickness is questionable. This is because one has to impose an artificial, and arbitrary, thickness to the device and nowadays, it is admitted that an equivalent zero thickness interface is more adapted to describe the behavior of devices with subwavelength thickness [11,12]. The transmission line theory is accurate to that aim when the equivalent impedances of each component of the device are known [13,14]. Alternatively, Kuester, Holloway and coworkers have developed the so called "generalized sheet transition conditions" (GSTCs) [15][16][17][START_REF] Kim | Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements Antennas and Propagation[END_REF], see also [START_REF] Morits | Electromagnetic characterization of planar and bulk metamaterials: A theoretical study[END_REF][START_REF] Morits | Erratum: Electromagnetic characterization of planar and bulk metamaterials: A theoretical study[END_REF]. Although powerful, the transmission line theory and the GSTCs are predictive for particular cases only, and in general, the effective parameters have to be retrieved from the scattering coefficients. Thus, if the problem of the artificial thickness is avoided, the problem of whether or not the model imposed to the device is adapted remains. Finally, although more incidental, these methods cannot be extended easily to other contexts of wave propagation, even when the Helmholtz equation applies. Indeed, they are intimately related to the notion of charges and currents, which do not have natural counterparts in acoustics and in elasticity.

In this paper, we present an homogenization method for structured interfaces, or structured films, with vanishing thicknesses, based on matched asymptotic expansions of the solution of the Helmholtz equation. The problem ends with effective conditions at an equivalent zero thickness surface involving parameters being wave independent, by construction. This is because, as in the classical homogenization, the parameters are determined by solving (analytically or numerically) elementary problems in the static case (that is for zero frequency). This approach has been developed in the context of the static elasticity, see [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF]22] for a complete description. The case of wave propagation has been less regarded. We mention the works of Capdeville and Marigo in the context of seismic waves [START_REF] Capdeville | Second order homogenization of the elastic wave equation for non-periodic layered media[END_REF][START_REF] Capdeville | 1-D non-periodic homogenization for the seismic wave equation[END_REF][START_REF] Guillot | 2-D non-periodic homogenization of the elastic wave equation[END_REF][START_REF] Capdeville | 2-d non-periodic homogenization to upscale elastic media for p-sv waves[END_REF][START_REF] Capdeville | A non-periodic two scale asymptotic method to take account of rough topographies for 2-D elastic wave propagation[END_REF], and similar works developed by the community of french applied mathematics in acoustics [START_REF] Bonnet-Bendhia | Simulation of muffler's transmission losses by a homogenized finite element method[END_REF] and in electromagnetism [START_REF] Delourme | Approximate models for wave propagation across thin periodic interfaces[END_REF][START_REF] Delourme | On the well-posedness, stability and accuracy of an asymptotic model for thin periodic interfaces in electromagnetic scattering problems[END_REF]. Note also works using alternative forms of homogenizations [START_REF] Holloway | A Homogenization Technique for Obtaining Generalized Sheet Transition Conditions for an Arbitrarily Shaped Coated-Wire Grating[END_REF][START_REF] Sanchez-Hubert | Acoustic fluid flow through holes and permeability of perforated walls[END_REF][START_REF] Martin | Scattering of long waves by cylindrical obstacles and gratings using matched asymptotic expansions[END_REF][START_REF] Kakuno | Scattering of water waves by vertical cylinders with a backwall[END_REF].

The method, directly inspired by [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF], is presented in Section 2 considering the Helmholtz equation for films composed of a periodic array of inclusions associated with Neumann or Dirichlet boundary conditions. In acoustics, this corresponds to sound hard or sound soft inclusions, respectively, and the method holds in three dimensions. In electromagnetism, the Helmholtz equation applies for waves being polarized; for a perfectly conducting metal, Neumann boundary conditions apply in transverse magnetic polarization (TM), and Dirichlet boundary conditions apply in transverse electric polarization (TE). It is shown that, at the dominant order, the wave does not see a film structured with Neumann inclusions and as a second order correction, jump conditions on the field and its normal derivatives are established, Eqs. (2.16). These jump conditions involve interface parameters (9 in three dimensions and 5 in two dimensions for non symmetrical inclusions), among which the surface (or volume) of the inclusions, and others, Eqs. (2.17), defined in the 3 elementary problems, Eqs. (2.13). The case of Dirichlet scatterers is very different. At the dominant order, the wave sees the array of scatterers as a perfectly reflecting wall. As a second order correction, we get boundary conditions for the electric fields on each side of the film, Eqs. (2.31); these boundary conditions involve 3 interface parameters defined in two elementary problems, Eqs. (2.28)-(2.30).

Validations of our homogenized interface model are presented in Section 3 in the case of an incident plane wave at oblique incidences on a film composed of a periodic array of rectangular they correspond to metallic inclusions (perfectly conducting) in two dimensions, say invariant along the X 3 -axis for waves for transverse magnetic waves (TM, the magnetic field H along e 3 ). In this context, the magnetic field is a scalar function satisfying the Helmholtz equation, with Neumann boundary conditions on the metallic inclusions

⎧ ⎨ ⎩ ∆H + k 2 H = 0, ∇H.n |∂D = 0, (2.1)
with k the wavevector in the free space and the inclusions occupying D. Note that this condition for a perfectly conducting metal has been regarded in detail when a thin structure is considered [START_REF] Bouchitté | On the concepts of a perfectly conducting material and of a perfectly conducting and infinitely thin screen[END_REF][START_REF] Petit | Diffraction by one-dimensional or twodimensional periodic arrays of conducting plates[END_REF]. The field H = (0, 0, H) being known, the electric field

E = (E 1 , E 2 , 0) can be deduced, if needed, with ∂H ∂X 1 = iωE 2 , and ∂H ∂X 2 = -iωE 1 .
In this section, we shall establish that the periodic array of Neumann inclusions can be replaced by an equivalent interface across which jump conditions apply, Eqs. (2.16). Specifically, it will be shown that at the first order, the Neumann inclusions are transparent for the waves, Eqs.

(2.10) and that their effects appear at the second order, Eqs. (2.14)-(2.15). Thus, in the equivalent homogenized problem, the field H and of its normal derivative are discontinuous across the interface.

(i) Asymptotic expansions and matching conditions

The natural small parameter is ε = kh ≪ 1 and to be consistent, we need to write the Helmholtz equation in a dimensionless form, with x = kX (and H(x) = H(X)). Next, the problem is reformulated introducing the vector field C = ∇xH

⎧ ⎨ ⎩ divxC + H = 0, C ≡ ∇xH, C.n |∂D = 0.
(2.2)

The solution can be expanded with respect to the small parameter ε, namely

H = H 0 (x) + εH 1 (x) + ε 2 H 2 (x) + . . . , C = C 0 (x) + εC 1 (x) + ε 2 C 2 (x) + . . . (2.3)
In principle, this expansion can be used in the whole space (see e.g. [START_REF] Martin | Scattering of long waves by cylindrical obstacles and gratings using matched asymptotic expansions[END_REF]). Nevertheless, the resolution may be involved if the spatial derivatives in Eq. (2.2) make ε to appear. This is avoided using two ingredients: first, a separation of the space into an inner and an outer regions, which correspond to the near and far fields, respectively. In the outer region, the natural coordinates x ≡ (x 1 , x 2 , x 3 ) are adapted and the expansions, Eq. (2.3), apply. In the near field, as in the classical homogenization, a new system of coordinates y = x/ε is introduced, able to account for the rapid variations of H, typically the variations with h (Fig. 2). Along x 2 and x 3 , the wavefield satisfies pseudo periodic conditions associated to slow variations. This is accounted for by keeping x ′ ≡ (x 2 , x 3 ) as additional coordinates. Accordingly, the expansions Eqs. (2.3) apply for the outer solution and, for the inner solution, we use the expansion

H = h 0 (y, x ′ ) + εh 1 (y, x ′ ) + ε 2 h 2 (y, x ′ ) + . . . , C = c 0 (y, x ′ ) + εc 1 (y, x ′ ) + ε 2 c 2 (y, x ′ ) + . . . (2.4)
Finally, both regions are connected in some boundary region, where the evanescent field is vanishing at small x 1 values corresponding to y 1 = x 1 /ε → ±∞. These matching conditions are obtained using Taylor expansions for small x 1 , H 0 (x 1 , x ′ ) = H 0 (0, x ′ ) + x 1 ∂x 1 H 0 (0, x ′ ) + • • • = H 0 (0, x ′ ) + εy 1 ∂x 1 H 0 (0, x ′ ) + . . . , same for C 0 , and identifying the terms in ε n in the inner and outer expansions, Eqs. (2.3)-(2.4). We get, at the first and second orders 

∇yh 0 = 0, (2.8a) divyc 0 = 0, (2.8b 
)

c 0 = ∇yh 1 + ∇ x ′ h 0 , (2.8c) divyc 1 + div x ′ c 0 + h 0 = 0. (2.8d)
The boundary conditions on the Neumann inclusions apply in the inner problem, namely

c 0 .n |∂D = c 1 .n |∂D = 0, (2.9)
while the boundary conditions for the outer problem are given by the matching conditions.

First, we shall show that the inclusions are not seen at the first order. The Eq. (2.8a) shows that h 0 does not depend on y and Eq. (2.8b) shows that dy

′ c 0 1 (-∞, y ′ , x ′ ) = dy ′ c 0 1 (+∞, y ′ , x ′ )
. This latter relation is obtained by integrating divyc 0 = 0 over Y∞\D (with Y∞ =] -∞, +∞[×[0, 1] 2 ) using the boundary condition, Eq. (2.9), and owing to the periodicity of c 0 with respect to y ′ . From Eqs (2.5), we get

H 0 (0 ± , x ′ ) = h 0 (x ′ ), and C 0 1 (0 ± , x ′ ) = dy 2 c 0 1 (±∞, y ′ , x ′
), whence the jump conditions at the first order read

H 0 = C 0 1 = 0.
(2.10)

The inclusions are transparent at the first order, with H 0 and C 0 being continuous across the equivalent interface. To capture the effect of the Neumann inclusions, we need to go at the second order. This second order involves h 1 and c 0 and it is easy to see that h 1 satisfies

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ divy ∇yh 1 + ∇ x ′ H 0 (0, x ′ ) = 0, ∇yh 1 + ∇ x ′ H 0 (0, x ′ ) .n |∂D = 0, lim y1→±∞ ∇yh 1 = ∂H 0 ∂x 1 (0, x ′ )e 1 .
(2.11)

The first equation in the above system comes from Eqs. (2.8b)-(2.8c), using H 0 (0, x ′ ) = h 0 (x ′ ).

The second equation corresponds to the boundary condition, Eq. (2.9) with

c 0 = ∇yh 1 + ∇ x ′ H 0 (0, x ′ ), from (2.8c) with h 0 (x) = H 0 (0, x ′ ).
The third equation corresponds to the matching conditions Eq. (2.5b), with C 0 = ∂x 1 H 0 e 1 + ∇ x ′ H 0 , and C 0 being continuous. By linearity of the above system, the problem can be divided into elementary problems being independent of x ′ . Specifically, h 1 can be written

h 1 (y, x ′ ) = ∂H 0 ∂x 1 (0, x ′ ) h (1) (y) + y 1 + ∂H 0 ∂xα (0, x ′ )h (α) (y) + h(x ′ ), (2.12) 
with α = 2, 3 and where the functions h (i) (y), i = 1, 2, 3, satisfy the elementary problems:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∆h (i) = 0, ∇h (i) .n |∂D = -e i .n |∂D lim y1→±∞ ∇h (i) = 0.
(2.13) ), but we will see that the equivalent conditions do not require h to be determined in Eq. (2.12).

F o r R e v i
(iii) The interface parameters and the jump conditions at the equivalent zero thickness interface

In this section, we derive the jump conditions appearing at the second order in ε. These jump conditions involve interface parameters coming from the elementary problems that we have defined in Eqs. (2.13).

First, the effective condition on H 1 is obtained using the matching condition Eq. (2.6a) (with ∂x i H 0 continuous at x 1 = 0) and the Eq. (2.12). We get

H 1 (0 ± , x ′ ) = ∂H 0 ∂x i (0, x ′ )h (i) (±∞, y ′ ).
from which the jump condition on H 1 is deduced

H 1 = ∂H 0 ∂x i (0, x ′ ) h (i) (+∞, y ′ ) -h (i) (-∞, y ′ ) . (2.14)
Next, we want the jump condition on C 1 . To that aim, we need the expression of c 0 and, from Eqs. (2.7a)-(2.7b), (2.8c) and (2.12), we get

c 0 (y, x ′ ) = C 0 (0, x ′ ) + C 0 i (0, x ′ )∇yh (i) (y). Now, Eq. (2.8d) reads divyc 1 (y, x ′ ) + ∂C 0 i ∂xα (0, x ′ ) ∂h (i) ∂yα (y) - ∂C 0 1 ∂x 1 (0, x ′ ) = 0.
Integrating the above relation over Y\D and owing to the periodicity of c 1 with respect to y ′ , we get

dy ′ c 1 1 (y m 1 , y ′ , x ′ ) -c 1 1 (-y m 1 , y ′ , x ′ ) - ∂C 0 1 ∂x 1 (0, x ′ ) 2y m 1 -S + ∂C 0 i ∂xα Y\D dy ∂h (i) ∂yα (y) = 0,
with α = 2, 3 and where S is the surface of D in the y coordinates. Taking the limit y m 1 → +∞ and using Eq. (2.6b), we get 

C 1 1 = - ∂C 0 1 ∂x 1 (0, x ′ ) S - ∂C 0 i ∂xα (0, x ′ ) Y∞\D dy ∂h (i) ∂yα . (2.15) It is now sufficient to remark that H = ε H 1 + O(ε 2 ) and ∂x 1 H = ∂x 1 H 0 + O(ε) (
Jump conditions ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ H = h B i ∂ H ∂X i (0, X ′ ), ∂H ∂X 1 = -h C ij ∂ 2 H ∂X i ∂X j (0, X ′ ).
(2.16)

with ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B i = h (i) (+∞, y ′ ) -h (i) (-∞, y ′ ), C 11 = S, C 1α = Y∞\D dy ∂h (1) ∂yα , C α1 = 0, C αβ = Y∞\D dy ∂h (α) ∂y β .
(2.17) (2.17) are characteristic of the interface independently of the scattering problem considered. Incidentally, this also means that the elementary problems will be solved once and for all.

F o r R e v i
The obtained jump conditions for H and its normal derivative involve 9 interface parameters in three dimensions, one of which being the surface of inclusion; in two dimensions, only 5 parameters are needed. Next, for inclusion shapes being symmetric with respect to y ′ , h (1) is symmetric w.r.t. y ′ , from which C 1α = Y\D dy ∂y α h (1) = 0. Then, h (α) (α = 2, 3) being antisymmetric w.r.t. y ′ in this case, we also have B i = 0 (h (α) (+∞, 0, 0) = h (α) (-∞, 0, 0) = 0); it follows that only 5 interface parameters in three dimensions and 3 interface parameters in two dimensions are needed for symmetrical inclusions.

(b) Inclusions associated to Dirichlet boundary conditions

In the context of electromagnetism, Dirichlet boundary conditions apply for a perfect conductor in transverse electric polarization (TE), which means that E = (0, 0, E) is transverse, and H = (H 1 , H 2 , 0) is an in-plane vector. The Helmholtz equation applies for the scalar electric field

E ⎧ ⎪ ⎨ ⎪ ⎩ ∆E + k 2 E = 0, E |∂D = 0, (2.18) afterwards H 1 = -i/ω ∂E/∂X 2 and H 2 = i/ω ∂E/∂X 1 can be deduced if they are needed.
In this section, we shall use the same approach as in the previous one, but the result for an array of Dirichlet inclusions significantly differ from the Neumann case. Indeed, we shall obtain boundary conditions at an equivalent, homogenized, flat surface instead of the jump conditions obtained for Neumann inclusions. These boundary conditions tell us that, at the first order, the array of Dirichlet inclusions is equivalent to a surface entirely associated to Dirichlet boundary condition (see Eq. (2.24)). Thus, imposing a vanishing electric field at periodic places along a surface is sufficient to cancel (at dominant order) the field over the whole surface. In the context of holes in elasticity, this has been entitled 'the principle of the dressmaker' [START_REF] Marigo | The effective behavior of elastic bodies containing microcracks or microholes localized on a surface[END_REF], that is to say, 'it is not necessary to sew entirely two pieces of fabrics in order to render invisible their relative opening, it is sufficient to sew them at a great number of points regularly spaced'.

At the dominant order, the inclusions are thus visible but not their structuration and this latter is captured at the second order only, leading to the final boundary conditions Eqs. (2.31).

As in Sec. 2.(a), we start by reformulating (2.18) in the rescaled space x = kX, with E(x) = E(X)

⎧ ⎨ ⎩ divxG + E = 0, G ≡ ∇xE, E |∂D = 0.
(2. [START_REF] Morits | Electromagnetic characterization of planar and bulk metamaterials: A theoretical study[END_REF] The expansions are then the same as in the TM case, with Outer exp. (2.21a)

⎧ ⎨ ⎩ E = E 0 (x) + εE 1 (x) + ε 2 E 2 (x) + . . . , G = G 0 (x) + εG 1 (x) + ε 2 G 2 (x) + . . . Inner exp. ⎧ ⎨ ⎩ E = e 0 (y, x ′ ) + εe 1 (y, x ′ ) + ε 2 e 2 (y, x ′ ) + . . . , G = g 0 (y, x ′ ) + εg 1 (y, x ′ ) + ε 2 g 2 (y, x ′ ) + . . .
G 0 (0 ± , x ′ ) = lim y1→±∞ g 0 (y, x ′ ), (2.21b) 
and at the second order At the first order, ∇ye 0 = 0 and this tells us that e 0 does not depend on y. Next, we have e 0 |∂D = 0; because this boundary condition is expressed in terms of the spatial coordinate y, and that e 0 does not depend on y, we conclude that e 0 = 0 everywhere. It follows that e 0 = E 0 (0, x ′ ) = 0, and

E 1 (0 ± , x ′ ) = lim y1→±∞ e 1 (y, x ′ ) -y 1 ∂E 0 ∂x 1 (0 ± , x ′ ) , ( 
∂E 0 ∂xα (0, x ′ ) = 0, (2.24) 
with α = 2, 3 (the second equation is simply a consequence of the first one). At the first order, we find E 0 (0, x ′ ) = 0 which means that the Dirichlet inclusions are visible, and they are equivalent to a flat surface associated to Dirichlet boundary conditions. Nevertheless, their structuration in array is not visible and to capture this structuration effect, we need to go up to the second order.

To go up to the second order, we start with the outer problem. With G 0 = ∇xE 0 , and using ∂x α E 0 (0, x ′ ) = 0 from (2.24), we get

G 0 (0 ± , x ′ ) = ∂E 0 ∂x 1 (0 ± , x ′ )e 1 , (2.25) 
and G 0 is not continuous a priori at x 1 = 0. Now, the goal is to determine E 1 (0 ± , x 2 ). In the inner problem, Eqs. (2.8b) and (2.8c) read divyg 0 = 0 and g 0 = ∇ye 1 + ∇ x ′ e 0 . As e 0 is constant, the latter equation simplifies in g 0 = ∇ye 1 . It follows that e 1 satisfies the Laplace equation associated to Dirichlet boundary condition on ∂D; finally, accounting for the matching condition Eq. (2.21b), with Eq. (2.25), e 1 satisfies

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∆e 1 = 0, lim y1→±∞ ∇ye 1 = ∂E 0 ∂x 1 (0 ± , x ′ )e 1 , e 1 |∂D = 0.
(2.26)

Owing to the linearity of the above system, we can write 

e 1 (y, x 2 ) = ∂E 0 ∂x 1 (0 + , x ′ )e (+) (y) + ∂E 0 ∂x 1 (0 -, x ′ )e (-) ( 
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ S = eℓ, B = eℓ h(h -ℓ) + B 0 , with B 0 ≡ 2 π log sin π (h -ℓ) 2h -1 , C = 1 0 dy ∂h (2) ∂y 2 , with h (2) solution of ∆h (2) = 0, ∇ h (2) + y 2 .n |∂D = 0, lim y1→±∞ ∇h (2) = 0,
(3.1) and they are involved in the jump conditions, Eqs. (2.16), which simplify to

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ H = hB ∂ H ∂X 1 (0, X ′ ), ∂H ∂X 1 = -hS ∂ 2 H ∂X 2 1 (0, X ′ ) -hC ∂ 2 H ∂X 2 2 (0, X ′ ).
(3.2)

The surface of the inclusion S is always known, here S = eℓ. For rectangular inclusions, the derivation of the so-called blockage coefficient B can be found in [START_REF] Flagg | Sway added-mass coefficients for rectangular profiles in shallow water[END_REF]. For flat plate (e = 0), B = B 0 has been derived independently in acoustics [START_REF] Morse | Theoretical acoustics[END_REF] and in electromagnetism [START_REF] Marcuvitz | Radiation Lab Series No[END_REF]. To our knowledge, no such explicit expression exists for C, which has been solved numerically using mode matching technique (typical behaviors of these parameters are reported in Figs. 10).

(ii) Validation for the scattering of an incident plane wave

Here, we consider a simple scattering problem, with an incident plane wave at incidence θ H(X 1 > 0, X 2 ) = e ik sin θX2 e ik cos θX1 + Re -ik cos θX1 , H(X 1 < 0, X 2 ) = e ik sin θX2 T e ik cos θX1 .

(3.3)

Applying the boundary conditions, Eqs. (3.2), to Eq. (3.3), we find

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ R = -i a + b (1 + ia)(1 -ib) , T = 1 -ab (1 + ia)(1 -ib) , with a ≡ kh 2 cos θ S + C tan 2 θ , b ≡ kh 2 cos θ B.
(3.4)

(and because all fields are discontinuous at X 1 = 0, we used the definition in (1.1)). The Figs. 4 and 5 illustrate the validity of the interface model. In Fig. 4, the H-field is calculated using full wave numerics and compared to the field given by Eqs. (3.3) with Eqs. (3.4); in the presented case, with e/h = 0.1 and ℓ/h = 0.95, the interface parameters are S = 0.095, B = 3.52 and C = -0.004. The fields are found to be in good agreement (5% discrepancy) although we have chosen a relatively high frequency kh = 1.

In Fig. 5, we reported the reflection coefficient calculated using full wave numerics (|R ex |, blue lines) and the reflection coefficient given by Eq. (3.4) (|R|, black dotted lines) as a function of e/h for kh = 1 and kh = 0.1. It is noticeable that |R| does not vanish for e/h → 0; this is expected since an array of flat inclusions (e = 0), or strips, are able to scatter a wave, and this is attributable to the parameter B = B 0 which does not vanish for vanishing inclusion thickness.

Inspecting higher values of kh would reveal that our prediction fails for kh > 1, as expected within homogenization theories. Next, from Fig. 5, it appears that the model is valid for ke < 1 and kh < 1; this is not very surprising and it confirms that the wavelength is the natural scale to discriminate between thin and thick films. • For TM polarization, the two sided impedance boundary condition reads

⎧ ⎨ ⎩ E 2 (0 + , X 2 ) = E 2 (0 -, X 2 ) = Z TM H , with Z TM = - i khB 0 . (4.1) 
• For TE polarization, the two sided impedance boundary condition reads

E(0 + , X 2 ) = E(0 -, X 2 ) = Z TE H 2 , with Z TE = ikhB 0 /4. (4.2)
Note that, in Ref.

[14], α = khB 0 /2 is used (α is called the grid parameter for an electrically dense array of ideally conducting strips and has been obtained in [13]), leading to the usual forms Z TM = -i/(2α) and Z TE = iα/2. Now, we show that the conditions (4.1) and (4.2) are in agreement with the conditions obtained in our equivalent interface/surface model. In the TM polarization, for e → 0 and owing to ∂H/∂X 1 = ikE 2 , our jump conditions, Eqs. (3.2), simplify since S, C → 0 and B → B 0 . It follows that ∂H/∂X 1 (or equivalently E 2 ) is continuous across the interface and

H = ikhB 0 E 2 (0, X 2 ), (4.3) 
in agreement with Eq. (4.1). In the TE polarization, e → 0 produces

C 1 ≃ C 2 . With ∂E/∂X 1 = -ikH 2 , our boundary conditions Eqs. (3.7) simplify in E(0, X 2 ) = -ikhC H 2 . (4.4) 
with E being continuous across the interface. This expression is in agreement with Eq. (4.2) if C 1 (w) ≃ 4B 0 (ℓ) (with w = h -ℓ). This property is valid; we have calculated numerically (C 1 , C 2 ) for w = h -ℓ and ℓ ∈ [0.01; 0.99], and e = 10 -3 h; we find C 1 = C 2 up to 0.1% and C 1 (w) = B 0 (ℓ)/4 up to 2%. In [14], this property is linked to the Babinet principle; a more definitive conclusion would require to introduce in our asymptotic model a scaling between our small parameter kh and the new small e/h.

(b) Comparison with the GSTCs

In a series of paper, Holloway and co workers presented the derivation of the so-called Generalized Sheet Transition Conditions (GSTCs) [12,[15][16][17][START_REF] Kim | Boundary effects on the determination of metamaterial parameters from normal incidence reflection and transmission measurements Antennas and Propagation[END_REF]. It is based on a formulation of the Maxwell equations in the sense of the distributions proposed in the 90s by Idemen [START_REF] Idemen | Universal boundary relations of the electromagnetic field[END_REF] (note that an alternative derivation of the GSTCs has been proposed by the same authors using an homogenization technique, see e.g. [START_REF] Holloway | A Homogenization Technique for Obtaining Generalized Sheet Transition Conditions for an Arbitrarily Shaped Coated-Wire Grating[END_REF]). Introducing fictitious magnetic charges and currents being described by Dirac delta functions concentrated on an interface, Idemen established jump conditions of the electric and magnetic fields across the interface expressed in terms of surface magnetic and electric polarization densities. In [15], these polarization densities are shown to be related to the mean value of the electric and magnetic fields at the interface, owing to the knowledge of two dyadics, called effective electric and magnetic polarizability densities χ m and χ e . The generalized transition conditions read

e 1 × H = -iωχ e E av t -e 1 × ∇ x ′ [χ m 1 H av 1 ] , E × e 1 = -iωχ m H av t + e 1 × ∇ x ′ [χ e 1 E av 1 ] .
(4.5)

The quantities (E av , H av ) corresponds to our definition ( Ē, H), and we keep this latter notation in the following. In [12], the convention e iωt while we use the convention e -iωt ; this is why our Eq. (4.5) has -iω instead of iω in the Eqs. (1-2) of [12]. Also, we have simplified the notations (χ e stands for χ ES ,χ m stands for χ MS ) and (χ e 2 , χ e 3 , χ e 1 ) stand for (χ xx ES , χ yy ES , χ zz ES ) according to the direction of polarization of (H along e 3 in the present paper, along y in these papers) and to the direction of the normal to the interface (along e 1 in the present paper, along z in these papers).

As previously, we inspect the TM and TE cases. • In TM polarization, H = (0, 0, H) and ∂H/∂X 1 = iωE 2 (and E t = E 2 ). The GSTCs simplify in

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ H = χ e 2 ∂ H ∂X 1 (0, X 2 ), ∂H ∂X 1 = χ m 3 ∂ 2 H ∂X 2 1 (0, X 2 ) + χ m 3 + χ e 1 ∂ 2 H ∂X 2 2 (0, X 2 ), (4.6) 
where we have used that ∂ 2 H/∂X 2 1 + ∂ 2 H/∂X 2 2 = -k 2 H (the Helmholtz equation). These conditions are less general that our Eqs. (2.16), but in agreement with the simplified forms Eqs. (3.2), written for inclusions being symmetric with respect to X 1 . This is consistent with the assertion in [15] that the dyadics χ e and χ m are diagonal if the inclusions have sufficient symmetries. Our interface parameters are in this case simply linked to 3 of the 6 terms in χ e and χ m

⎧ ⎪ ⎨ ⎪ ⎩ χ e 1 = -hC + hS, χ e 2 = hB, χ m 3 = -hS.
(4.7)

• For TE polarization, the transition conditions, Eqs. (4.5), end up with

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ E = χ m 2 ∂ Ē ∂X 1 (0, X 2 ), ∂E ∂X 1 = χ e 3 ∂ 2 Ē ∂X 2 1 (0, X 2 ) + χ e 3 + χ m 1 ∂ 2 Ē ∂X 2 2 (0, X 2 ), (4.8) 
which have the same forms as for TM polarization, by symmetry of the initial transition conditions for (E, H) in Eqs. (4.5). We have used that E = (0, 0, E) and the relations iωH 1 = ∂E/∂X 2 , iωH 2 = -∂E/∂X 1 (here H t = H 2 ). It is a fundamental difference that the transition conditions are thought in the form of a discontinuity in the fields across the sheet since it does not allows easily to recover a boundary conditions, as in our Eqs.

(2.31). Nevertheless, it is possible to find an equivalence. Specifically, if we impose

χ e 3 = - 2 k 2 h(C 1 + C 2 ) , χ m 1 = 0, χ m 2 = 2h(C 2 -C 1 ), (4.9) 
the second equation in Eqs.(4.8) simplifies to ∂ X1 E = -k 2 χ e 3 Ē(0, X 2 ). Next, using Ē(0, X 2 ) = 1/2 E(0 + , X 2 ) + E(0 -, X 2 ) , Eqs. (4.8) can be written

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ E(0 + , X 2 ) = χ m 2 4 - 1 k 2 χ e 3 ∂E ∂X 1 (0 + , X 2 ) + χ m 2 4 + 1 k 2 χ e 3 ∂E ∂X 1 (0 -, X 2 ), E(0 -, X 2 ) = - χ m 2 4 - 1 k 2 χ e 3 ∂E ∂X 1 (0 + , X 2 ) - χ m 2 4 - 1 k 2 χ e 3 ∂E ∂X 1 (0 -, X 2 ),
(4.10) and together with (4.9), we recover our effective boundary conditions Eqs. (2.31). Thus, our approach recovers the GSTCs based on Idemen's formulation both in TM and TE polarizations in a simple geometry, and we have established the relations between the polarization densities and our interface parameters. We end this section with a remark concerning the GSTCs. The formulation of the GSTCs is fixed once and for all in the form of (4.5), and it is to our opinion the weakness of this formulation. Indeed, (4.5) is non adapted to some wave problems, and adapted is meant here robust to an inversion procedure as often used to retrieve the effective parameters. We illustrate this fact for Dirichlet inclusions (in TE polarization) comparing the results of retrieval procedures applied to the GSTCs and to our boundary conditions. In the 

Conclusion

We have presented a two scale asymptotic method to derive effective boundary conditions of thin structured films. The problems ends with effective parameters characteristic of the film and which enter in boundary or jump conditions across an equivalent zero thickness interface. As in the classical homogenization, these parameters are obtained by the solutions of elementary problems. The method has been presented in the case of inclusions periodically located on a surface and associated to Neumann and Dirichlet boundary conditions. In electromagnetism, this corresponds to ideally conducting metallic inclusions in TM or TE polarization and it applies for two dimensional problems. In acoustics, this corresponds to sound hard or sound soft inclusions in three dimensional problems. The model has been validated in a simple scattering problem, an incident plane wave at oblique incidence on the film and it has been shown to be valid in the limit kh, ke < 1. While the former limit kh < 1 is expected for any homogenization theory, the condition ke < 1 defines a limiting thickness above which the classical homogenization should be efficient. In other words, classical homogenization applies for thick interfaces and our interface homogenization for thin interfaces, and thick and thin are measured by the wavelength.

We have shown that our interface conditions recovers the impedance boundary condition given by the transmission line theory for capacitive and inductive strips (that is for vanishing thickness inclusions and respectively large or small inclusions in the unit cell). Also, we have shown that the generalized sheet transition conditions are identical to our interface conditions for Neumann inclusions but significantly differ for Dirichlet inclusions. In this latter case, the formulation of the GSTCs is correct but it is not adapted to a retrieval procedure (the robustness of our interface conditions in a retrieval procedure is further discussed in Appendix A).

Direct extensions of the present study concern the case of penetrable inclusions (typically dielectric inclusions) and structured surfaces. Also, we have considered here the Helmholtz equation but more involved wave equations can be treated within the same formalism; we have in mind the Maxwell equations or the equations of elastodynamics. Finally, structurations involving resonances in the unit cell have been disregarded in the present paper. However, it is possible to adapt the method to account for them, as it has been done in classical homogenization.
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  It is essential that the elementary problems, Eqs. (2.13), do not depend on the incident wave (as the former problem Eqs. (2.11) does, through H 0 ). This ensures that the parameters in Eqs.
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  2.22)(the matching condition on G 1 is not needed). The equations in the inner and outer problems are the same as in Eqs. (2.7)-(2.8) owing to B n → E n , C n → G n (and b n → e n , c n → g n ), while boundary conditions in the inner problem now read

	e 0 |∂D = e 1 |∂D = 0.	(2.23)

  , B 2 , C 11 = S, C 12 , C 22 ); as previously said, for symmetric inclusions, only 3 do not vanish, and we note B ≡ B 1 and C ≡ C 22 . These parameters are
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