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We present a homogenization method based on
matched asymptotic expansion technique to derive
effective transmission conditions of thin structured
films. The method leads unambiguously to effective
parameters of the interface which define jump
conditions or boundary conditions at an equivalent
zero thickness interface. The homogenized interface
model is presented in the context of electromagnetic
waves for metallic inclusions associated to Neumann
or Dirichlet boundary conditions for transverse
electric (TE) or transverse magnetic (TM) wave
polarization. By comparison with full wave simulations,
the model is shown to be valid for thin interfaces up to
thicknesses close to the wavelength. We also compare
our effective conditions to the two-sided impedance
conditions obtained in transmission line theory and to
the so-called Generalized Sheet Transition Conditions
(GSTCs).
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1. Introduction

Metamaterial devices composed of a periodic arrangement of subwavelength unit cells have
been widely studied using classical homogenization, see e.g. [1–3]. Owing to the resolution of
so-called cell problems, written in the static limit, the problem ends with effective permeability
and effective permittivity of an equivalent homogeneous medium (being possibly anisotropic).
More recently, frequency dependences in the cell problems have been introduced, which allow
to account for possible resonances in the unit cell; these are the high frequency homogenization
or resonant homogenization [4–10]. However, the classical homogenization being developed for
infinite media, its validity for devices of small thickness is questionable. This is because one
has to impose an artificial, and arbitrary, thickness to the device and nowadays, it is admitted
that an equivalent zero thickness interface is more adapted to describe the behavior of devices
with subwavelength thickness [11,12]. The transmission line theory is accurate to that aim when
the equivalent impedances of each component of the device are known [13,14]. Alternatively,
Kuester, Holloway and coworkers have developed the so called "generalized sheet transition
conditions" (GSTCs) [15–18], see also [19,20]. Although powerful, the transmission line theory
and the GSTCs are predictive for particular cases only, and in general, the effective parameters
have to be retrieved from the scattering coefficients. Thus, if the problem of the artificial thickness
is avoided, the problem of whether or not the model imposed to the device is adapted remains.
Finally, although more incidental, these methods cannot be extended easily to other contexts of
wave propagation, even when the Helmholtz equation applies. Indeed, they are intimately related
to the notion of charges and currents, which do not have natural counterparts in acoustics and in
elasticity.

In this paper, we present an homogenization method for structured interfaces, or structured
films, with vanishing thicknesses, based on matched asymptotic expansions of the solution of the
Helmholtz equation. The problem ends with effective conditions at an equivalent zero thickness
surface involving parameters being wave independent, by construction. This is because, as in the
classical homogenization, the parameters are determined by solving (analytically or numerically)
elementary problems in the static case (that is for zero frequency). This approach has been
developed in the context of the static elasticity, see [21,22] for a complete description. The case
of wave propagation has been less regarded. We mention the works of Capdeville and Marigo in
the context of seismic waves [23–27], and similar works developed by the community of french
applied mathematics in acoustics [28] and in electromagnetism [29,30]. Note also works using
alternative forms of homogenizations [31–34].

The method, directly inspired by [21], is presented in Section 2 considering the Helmholtz
equation for films composed of a periodic array of inclusions associated with Neumann or
Dirichlet boundary conditions. In acoustics, this corresponds to sound hard or sound soft
inclusions, respectively, and the method holds in three dimensions. In electromagnetism, the
Helmholtz equation applies for waves being polarized; for a perfectly conducting metal,
Neumann boundary conditions apply in transverse magnetic polarization (TM), and Dirichlet
boundary conditions apply in transverse electric polarization (TE). It is shown that, at the
dominant order, the wave does not see a film structured with Neumann inclusions and as a
second order correction, jump conditions on the field and its normal derivatives are established,
Eqs. (2.16). These jump conditions involve interface parameters (9 in three dimensions and 5 in
two dimensions for non symmetrical inclusions), among which the surface (or volume) of the
inclusions, and others, Eqs. (2.17), defined in the 3 elementary problems, Eqs. (2.13). The case of
Dirichlet scatterers is very different. At the dominant order, the wave sees the array of scatterers
as a perfectly reflecting wall. As a second order correction, we get boundary conditions for the
electric fields on each side of the film, Eqs. (2.31); these boundary conditions involve 3 interface
parameters defined in two elementary problems, Eqs. (2.28)-(2.30).

Validations of our homogenized interface model are presented in Section 3 in the case of an
incident plane wave at oblique incidences on a film composed of a periodic array of rectangular
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they correspond to metallic inclusions (perfectly conducting) in two dimensions, say invariant
along the X3-axis for waves for transverse magnetic waves (TM, the magnetic field H along e3).
In this context, the magnetic field is a scalar function satisfying the Helmholtz equation, with
Neumann boundary conditions on the metallic inclusions

⎧

⎨

⎩

∆H + k2H = 0,

∇H.n|∂D = 0,
(2.1)

with k the wavevector in the free space and the inclusions occupying D. Note that this condition
for a perfectly conducting metal has been regarded in detail when a thin structure is considered
[35,36]. The field H= (0, 0, H) being known, the electric field E= (E1, E2, 0) can be deduced, if
needed, with

∂H
∂X1

= iωE2, and
∂H
∂X2

=−iωE1.

In this section, we shall establish that the periodic array of Neumann inclusions can be replaced
by an equivalent interface across which jump conditions apply, Eqs. (2.16). Specifically, it will
be shown that at the first order, the Neumann inclusions are transparent for the waves, Eqs.
(2.10) and that their effects appear at the second order, Eqs. (2.14)-(2.15). Thus, in the equivalent
homogenized problem, the field H and of its normal derivative are discontinuous across the
interface.

(i) Asymptotic expansions and matching conditions

The natural small parameter is ε= kh≪ 1 and to be consistent, we need to write the Helmholtz
equation in a dimensionless form, with x= kX (and H(x) =H(X)). Next, the problem is
reformulated introducing the vector field C =∇xH

⎧

⎨

⎩

divxC +H = 0, C ≡∇xH,

C.n|∂D = 0.
(2.2)

The solution can be expanded with respect to the small parameter ε, namely

H =H0(x) + εH1(x) + ε2H2(x) + . . . ,

C =C0(x) + εC1(x) + ε2C2(x) + . . .

(2.3)

In principle, this expansion can be used in the whole space (see e.g. [33]). Nevertheless, the
resolution may be involved if the spatial derivatives in Eq. (2.2) make ε to appear. This is avoided
using two ingredients: first, a separation of the space into an inner and an outer regions, which
correspond to the near and far fields, respectively. In the outer region, the natural coordinates
x≡ (x1, x2, x3) are adapted and the expansions, Eq. (2.3), apply. In the near field, as in the
classical homogenization, a new system of coordinates y= x/ε is introduced, able to account
for the rapid variations of H , typically the variations with h (Fig. 2). Along x2 and x3, the
wavefield satisfies pseudo periodic conditions associated to slow variations. This is accounted for
by keeping x′ ≡ (x2, x3) as additional coordinates. Accordingly, the expansions Eqs. (2.3) apply
for the outer solution and, for the inner solution, we use the expansion

H = h0(y,x′) + εh1(y,x′) + ε2h2(y,x′) + . . . ,

C = c0(y,x′) + εc1(y,x′) + ε2c2(y,x′) + . . .
(2.4)

Finally, both regions are connected in some boundary region, where the evanescent field is
vanishing at small x1 values corresponding to y1 = x1/ε→±∞. These matching conditions are
obtained using Taylor expansions for small x1, H0(x1,x

′) =H0(0,x′) + x1∂x1
H0(0,x′) + · · ·=

H0(0,x′) + εy1∂x1
H0(0,x′) + . . . , same for C0, and identifying the terms in εn in the inner and

outer expansions, Eqs. (2.3)-(2.4). We get, at the first and second orders
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and for the inner problem

∇yh
0 = 0, (2.8a)

divyc
0 = 0, (2.8b)

c0 =∇yh
1 +∇x′h0, (2.8c)

divyc
1 + divx′c0 + h0 = 0. (2.8d)

The boundary conditions on the Neumann inclusions apply in the inner problem, namely

c0.n|∂D = c1.n|∂D = 0, (2.9)

while the boundary conditions for the outer problem are given by the matching conditions.

First, we shall show that the inclusions are not seen at the first order. The Eq. (2.8a)
shows that h0 does not depend on y and Eq. (2.8b) shows that

∫
dy′ c01(−∞,y′,x′) =∫

dy′ c01(+∞,y′,x′). This latter relation is obtained by integrating divyc
0 = 0 over Y∞\D

(with Y∞ =]−∞,+∞[×[0, 1]2) using the boundary condition, Eq. (2.9), and owing to the
periodicity of c0 with respect to y′. From Eqs (2.5), we get H0(0±,x′) = h0(x′), and C0

1 (0
±,x′) =∫

dy2 c
0
1(±∞,y′,x′), whence the jump conditions at the first order read

!
H0

"
=

!
C0
1

"
= 0. (2.10)

The inclusions are transparent at the first order, with H0 and C0 being continuous across the
equivalent interface. To capture the effect of the Neumann inclusions, we need to go at the second
order. This second order involves h1 and c0 and it is easy to see that h1 satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

divy

[

∇yh
1 +∇x′H0(0,x′)

]

= 0,

[

∇yh
1 +∇x′H0(0,x′)

]

.n|∂D = 0,

lim
y1→±∞

∇yh
1 =

∂H0

∂x1
(0,x′)e1.

(2.11)

The first equation in the above system comes from Eqs. (2.8b)-(2.8c), using H0(0,x′) = h0(x′).
The second equation corresponds to the boundary condition, Eq. (2.9) with c0 =∇yh

1 +

∇x′H0(0,x′), from (2.8c) with h0(x) =H0(0,x′). The third equation corresponds to the matching
conditions Eq. (2.5b), with C0 = ∂x1

H0e1 +∇x′H0, and C0 being continuous. By linearity of the
above system, the problem can be divided into elementary problems being independent of x′.
Specifically, h1 can be written

h1(y,x′) =
∂H0

∂x1
(0,x′)

[

h(1)(y) + y1
]

+
∂H0

∂xα
(0,x′)h(α)(y) + h̃(x′), (2.12)

with α= 2, 3 and where the functions h(i)(y), i= 1, 2, 3, satisfy the

elementary problems:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∆h(i) = 0,

∇h(i).n|∂D =−ei.n|∂D

lim
y1→±∞

∇h(i) = 0.

(2.13)
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The field h1 in Eqs. (2.11) is defined up to the function h̃(x′), but we will see that the equivalent

conditions do not require h̃ to be determined in Eq. (2.12).

(iii) The interface parameters and the jump conditions at the equivalent zero thickness

interface

In this section, we derive the jump conditions appearing at the second order in ε. These jump
conditions involve interface parameters coming from the elementary problems that we have
defined in Eqs. (2.13).

First, the effective condition on H1 is obtained using the matching condition Eq. (2.6a) (with
∂xi

H0 continuous at x1 = 0) and the Eq. (2.12). We get

H1(0±,x′) =
∂H0

∂xi
(0,x′)h(i)(±∞,y′).

from which the jump condition on H1 is deduced

!
H1

"
=

∂H0

∂xi
(0,x′)

(

h(i)(+∞,y′)− h(i)(−∞,y′)
)

. (2.14)

Next, we want the jump condition on C1. To that aim, we need the expression of c0 and, from
Eqs. (2.7a)-(2.7b), (2.8c) and (2.12), we get

c0(y,x′) =C0(0,x′) + C0
i (0,x

′)∇yh
(i)(y).

Now, Eq. (2.8d) reads

divyc
1(y,x′) +

∂C0
i

∂xα
(0,x′)

∂h(i)

∂yα
(y)−

∂C0
1

∂x1
(0,x′) = 0.

Integrating the above relation over Y\D and owing to the periodicity of c1 with respect to y′, we
get

∫
dy′

[

c11(y
m
1 ,y′,x′)− c11(−ym1 ,y′,x′)

]

−
∂C0

1

∂x1
(0,x′)

(

2ym1 − S
)

+
∂C0

i

∂xα

∫
Y\D

dy
∂h(i)

∂yα
(y) = 0,

with α= 2, 3 and where S is the surface of D in the y coordinates. Taking the limit ym1 →+∞ and
using Eq. (2.6b), we get

!
C1
1

"
=−

∂C0
1

∂x1
(0,x′) S −

∂C0
i

∂xα
(0,x′)

∫
Y∞\D

dy
∂h(i)

∂yα
. (2.15)

It is now sufficient to remark that #H$= ε
!
H1

"
+O(ε2) and ∂x1

H = ∂x1
H0 +O(ε) (and the

same for C) to get the jump conditions in the real space, equivalent to Eqs. (2.14)-(2.15) up to
O(ε2)

Jump conditions

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

#H$= hBi
∂H̄
∂Xi

(0,X′),

%
∂H
∂X1

&
=−h Cij

∂2H̄
∂Xi∂Xj

(0,X′).

(2.16)

with
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Bi = h(i)(+∞,y′)− h(i)(−∞,y′),

C11 = S, C1α =

∫
Y∞\D

dy
∂h(1)

∂yα
,

Cα1 = 0, Cαβ =

∫
Y∞\D

dy
∂h(α)

∂yβ
.

(2.17)
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It is essential that the elementary problems, Eqs. (2.13), do not depend on the incident wave

(as the former problem Eqs. (2.11) does, through H0). This ensures that the parameters in Eqs.
(2.17) are characteristic of the interface independently of the scattering problem considered.
Incidentally, this also means that the elementary problems will be solved once and for all.

The obtained jump conditions for H and its normal derivative involve 9 interface parameters
in three dimensions, one of which being the surface of inclusion; in two dimensions, only
5 parameters are needed. Next, for inclusion shapes being symmetric with respect to y′,
h(1) is symmetric w.r.t. y′, from which C1α =

∫
Y\D dy ∂yα

h(1) = 0. Then, h(α) (α= 2, 3) being

antisymmetric w.r.t. y′ in this case, we also have Bi = 0 (h(α)(+∞, 0, 0) = h(α)(−∞, 0, 0) = 0); it
follows that only 5 interface parameters in three dimensions and 3 interface parameters in two
dimensions are needed for symmetrical inclusions.

(b) Inclusions associated to Dirichlet boundary conditions

In the context of electromagnetism, Dirichlet boundary conditions apply for a perfect conductor
in transverse electric polarization (TE), which means that E= (0, 0, E) is transverse, and H=

(H1, H2, 0) is an in-plane vector. The Helmholtz equation applies for the scalar electric field E

⎧

⎪

⎨

⎪

⎩

∆E + k2E = 0,

E|∂D = 0,

(2.18)

afterwards H1 =−i/ω ∂E/∂X2 and H2 = i/ω ∂E/∂X1 can be deduced if they are needed.

In this section, we shall use the same approach as in the previous one, but the result for an
array of Dirichlet inclusions significantly differ from the Neumann case. Indeed, we shall obtain
boundary conditions at an equivalent, homogenized, flat surface instead of the jump conditions
obtained for Neumann inclusions. These boundary conditions tell us that, at the first order, the
array of Dirichlet inclusions is equivalent to a surface entirely associated to Dirichlet boundary
condition (see Eq. (2.24)). Thus, imposing a vanishing electric field at periodic places along a
surface is sufficient to cancel (at dominant order) the field over the whole surface. In the context
of holes in elasticity, this has been entitled ’the principle of the dressmaker’ [21], that is to say,
’it is not necessary to sew entirely two pieces of fabrics in order to render invisible their relative
opening, it is sufficient to sew them at a great number of points regularly spaced’.

At the dominant order, the inclusions are thus visible but not their structuration and this latter
is captured at the second order only, leading to the final boundary conditions Eqs. (2.31).

As in Sec. 2.(a), we start by reformulating (2.18) in the rescaled space x= kX, with E(x) =

E(X)

⎧

⎨

⎩

divxG+ E = 0, G≡∇xE,

E|∂D = 0.
(2.19)

The expansions are then the same as in the TM case, with

Outer exp.

⎧

⎨

⎩

E =E0(x) + εE1(x) + ε2E2(x) + . . . ,

G=G0(x) + εG1(x) + ε2G2(x) + . . .

Inner exp.

⎧

⎨

⎩

E = e0(y,x′) + εe1(y,x′) + ε2e2(y,x′) + . . . ,

G= g0(y,x′) + εg1(y,x′) + ε2g2(y,x′) + . . .

(2.20)
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and the matching conditions read, at the first order

E0(0±,x′) = lim
y1→±∞

e0(y,x′), (2.21a)

G0(0±,x′) = lim
y1→±∞

g0(y,x′), (2.21b)

and at the second order

E1(0±,x′) = lim
y1→±∞

[

e1(y,x′)− y1
∂E0

∂x1
(0±,x′)

]

, (2.22)

(the matching condition on G1 is not needed). The equations in the inner and outer problems
are the same as in Eqs. (2.7)-(2.8) owing to Bn →En, Cn →Gn (and bn → en, cn → gn), while
boundary conditions in the inner problem now read

e0|∂D = e1|∂D = 0. (2.23)

At the first order, ∇ye
0 = 0 and this tells us that e0 does not depend on y. Next, we have

e0|∂D = 0; because this boundary condition is expressed in terms of the spatial coordinate y, and

that e0 does not depend on y, we conclude that e0 = 0 everywhere. It follows that

e0 =E0(0,x′) = 0, and
∂E0

∂xα
(0,x′) = 0, (2.24)

with α= 2, 3 (the second equation is simply a consequence of the first one). At the first order, we
find E0(0,x′) = 0 which means that the Dirichlet inclusions are visible, and they are equivalent
to a flat surface associated to Dirichlet boundary conditions. Nevertheless, their structuration in
array is not visible and to capture this structuration effect, we need to go up to the second order.

To go up to the second order, we start with the outer problem. With G0 =∇xE
0, and using

∂xα
E0(0,x′) = 0 from (2.24), we get

G0(0±,x′) =
∂E0

∂x1
(0±,x′)e1, (2.25)

and G0 is not continuous a priori at x1 = 0. Now, the goal is to determine E1(0±, x2). In the inner
problem, Eqs. (2.8b) and (2.8c) read divyg

0 = 0 and g0 =∇ye
1 +∇x′e0. As e0 is constant, the

latter equation simplifies in g0 =∇ye
1. It follows that e1 satisfies the Laplace equation associated

to Dirichlet boundary condition on ∂D; finally, accounting for the matching condition Eq. (2.21b),
with Eq. (2.25), e1 satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∆e1 = 0,

lim
y1→±∞

∇ye
1 =

∂E0

∂x1
(0±,x′)e1,

e1|∂D = 0.

(2.26)

Owing to the linearity of the above system, we can write

e1(y, x2) =
∂E0

∂x1
(0+,x′)e(+)(y) +

∂E0

∂x1
(0−,x′)e(−)(y), (2.27)
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(a) The case of transverse magnetic polarization

(i) The interface parameters for 2D rectangular inclusions

In 2 dimensions, the elementary problems, for i= 1, 2, have to been solved, Eqs. (2.13), which
makes in general 5 interface parameters to determine (B1,B2, C11 = S, C12, C22); as previously
said, for symmetric inclusions, only 3 do not vanish, and we note B≡B1 and C ≡ C22. These
parameters are

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

S = eℓ,

B=
eℓ

h(h− ℓ)
+ B0, with B0 ≡

2
π
log

(

sinπ
(h− ℓ)
2h

)−1

,

C =

∫1
0

dy
∂h(2)

∂y2
, with h(2) solution of ∆h(2) = 0, ∇

(

h(2) + y2
)

.n|∂D = 0, lim
y1→±∞

∇h(2) = 0,

(3.1)
and they are involved in the jump conditions, Eqs. (2.16), which simplify to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

#H$= hB
∂H̄
∂X1

(0,X′),

%
∂H
∂X1

&
=−hS

∂2H̄

∂X2
1

(0,X′)− hC
∂2H̄

∂X2
2

(0,X′).

(3.2)

The surface of the inclusion S is always known, here S = eℓ. For rectangular inclusions, the
derivation of the so-called blockage coefficient B can be found in [38]. For flat plate (e= 0), B=B0

has been derived independently in acoustics [39] and in electromagnetism [40]. To our knowledge,
no such explicit expression exists for C, which has been solved numerically using mode matching
technique (typical behaviors of these parameters are reported in Figs. 10).

(ii) Validation for the scattering of an incident plane wave

Here, we consider a simple scattering problem, with an incident plane wave at incidence θ
{

H(X1 > 0, X2) = eik sin θX2

[

eik cos θX1 +Re−ik cos θX1

]

,

H(X1 < 0, X2) = eik sin θX2 Teik cos θX1 .
(3.3)

Applying the boundary conditions, Eqs. (3.2), to Eq. (3.3), we find
⎧

⎪

⎪

⎨

⎪

⎪

⎩

R=−i
a+ b

(1 + ia)(1− ib)
, T =

1− ab
(1 + ia)(1− ib)

,

with a≡
kh
2

cos θ
(

S + C tan2 θ
)

, b≡
kh
2

cos θ B.

(3.4)

(and because all fields are discontinuous at X1 = 0, we used the definition in (1.1)).
The Figs. 4 and 5 illustrate the validity of the interface model. In Fig. 4, the H-field is calculated

using full wave numerics and compared to the field given by Eqs. (3.3) with Eqs. (3.4); in the
presented case, with e/h= 0.1 and ℓ/h= 0.95, the interface parameters are S = 0.095, B= 3.52

and C =−0.004. The fields are found to be in good agreement (5% discrepancy) although we
have chosen a relatively high frequency kh= 1.

In Fig. 5, we reported the reflection coefficient calculated using full wave numerics (|Rex|, blue
lines) and the reflection coefficient given by Eq. (3.4) (|R|, black dotted lines) as a function of e/h
for kh= 1 and kh= 0.1. It is noticeable that |R| does not vanish for e/h→ 0; this is expected since
an array of flat inclusions (e= 0), or strips, are able to scatter a wave, and this is attributable to
the parameter B=B0 which does not vanish for vanishing inclusion thickness.

Inspecting higher values of kh would reveal that our prediction fails for kh> 1, as expected
within homogenization theories. Next, from Fig. 5, it appears that the model is valid for ke < 1

and kh< 1; this is not very surprising and it confirms that the wavelength is the natural scale to
discriminate between thin and thick films.
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• For TM polarization, the two sided impedance boundary condition reads

⎧

⎨

⎩

E2(0
+, X2) =E2(0

−, X2) =ZTM #H$ ,

with ZTM =−
i

khB0
.

(4.1)

• For TE polarization, the two sided impedance boundary condition reads
{

E(0+, X2) =E(0−, X2) =ZTE #H2$ ,
with ZTE = ikhB0/4.

(4.2)

Note that, in Ref. [14], α= khB0/2 is used (α is called the grid parameter for an electrically dense
array of ideally conducting strips and has been obtained in [13]), leading to the usual forms ZTM =

−i/(2α) and ZTE = iα/2.

Now, we show that the conditions (4.1) and (4.2) are in agreement with the conditions obtained
in our equivalent interface/surface model. In the TM polarization, for e→ 0 and owing to
∂H/∂X1 = ikE2, our jump conditions, Eqs. (3.2), simplify since S, C → 0 and B→B0. It follows
that ∂H/∂X1 (or equivalently E2) is continuous across the interface and

#H$= ikhB0E2(0, X2), (4.3)

in agreement with Eq. (4.1). In the TE polarization, e→ 0 produces C1 ≃ C2. With ∂E/∂X1 =

−ikH2, our boundary conditions Eqs. (3.7) simplify in

E(0, X2) =−ikhC #H2$ . (4.4)

with E being continuous across the interface. This expression is in agreement with Eq. (4.2) if
C1(w)≃ 4B0(ℓ) (with w= h− ℓ). This property is valid; we have calculated numerically (C1, C2)

for w= h− ℓ and ℓ∈ [0.01; 0.99], and e= 10−3h; we find C1 = C2 up to 0.1% and C1(w) =B0(ℓ)/4

up to 2%. In [14], this property is linked to the Babinet principle; a more definitive conclusion
would require to introduce in our asymptotic model a scaling between our small parameter kh

and the new small e/h.

(b) Comparison with the GSTCs

In a series of paper, Holloway and co workers presented the derivation of the so-called
Generalized Sheet Transition Conditions (GSTCs) [12,15–18]. It is based on a formulation of the
Maxwell equations in the sense of the distributions proposed in the 90s by Idemen [41] (note
that an alternative derivation of the GSTCs has been proposed by the same authors using an
homogenization technique, see e.g. [31]). Introducing fictitious magnetic charges and currents
being described by Dirac delta functions concentrated on an interface, Idemen established jump
conditions of the electric and magnetic fields across the interface expressed in terms of surface
magnetic and electric polarization densities. In [15], these polarization densities are shown to
be related to the mean value of the electric and magnetic fields at the interface, owing to the
knowledge of two dyadics, called effective electric and magnetic polarizability densities χm and
χe. The generalized transition conditions read

{

e1 × #H$=−iωχeEav
t − e1 ×∇x′ [χm

1 Hav
1 ] ,

#E$ × e1 =−iωχmHav
t + e1 ×∇x′ [χe

1E
av
1 ] .

(4.5)

The quantities (Eav, Hav) corresponds to our definition (Ē, H̄), and we keep this latter notation
in the following. In [12], the convention eiωt while we use the convention e−iωt; this is why our
Eq. (4.5) has −iω instead of iω in the Eqs. (1-2) of [12]. Also, we have simplified the notations (χe

stands for χES ,χm stands for χMS) and (χe
2,χ

e
3,χ

e
1) stand for (χxx

ES ,χ
yy
ES ,χ

zz
ES) according to the

direction of polarization of (H along e3 in the present paper, along y in these papers) and to the
direction of the normal to the interface (along e1 in the present paper, along z in these papers).

As previously, we inspect the TM and TE cases.
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• In TM polarization, H= (0, 0, H) and ∂H/∂X1 = iωE2 (and Et =E2). The GSTCs

simplify in

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

#H$= χe
2
∂H̄
∂X1

(0, X2),

%
∂H
∂X1

&
= χm

3
∂2H̄

∂X2
1

(0, X2) +
(

χm
3 + χe

1
) ∂2H̄

∂X2
2

(0, X2),

(4.6)

where we have used that ∂2H/∂X2
1 + ∂2H/∂X2

2 =−k2H (the Helmholtz equation).
These conditions are less general that our Eqs. (2.16), but in agreement with the simplified
forms Eqs. (3.2), written for inclusions being symmetric with respect to X1. This is
consistent with the assertion in [15] that the dyadics χe and χm are diagonal if the
inclusions have sufficient symmetries. Our interface parameters are in this case simply
linked to 3 of the 6 terms in χe and χm

⎧

⎪

⎨

⎪

⎩

χe
1 =−hC + hS,

χe
2 = hB,

χm
3 =−hS.

(4.7)

• For TE polarization, the transition conditions, Eqs. (4.5), end up with

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

#E$= χm
2

∂Ē
∂X1

(0, X2),

%
∂E
∂X1

&
= χe

3
∂2Ē

∂X2
1

(0, X2) +
(

χe
3 + χm

1
) ∂2Ē

∂X2
2

(0, X2),

(4.8)

which have the same forms as for TM polarization, by symmetry of the initial transition
conditions for (E,H) in Eqs. (4.5). We have used that E= (0, 0, E) and the relations
iωH1 = ∂E/∂X2, iωH2 =−∂E/∂X1 (here Ht =H2). It is a fundamental difference that
the transition conditions are thought in the form of a discontinuity in the fields across
the sheet since it does not allows easily to recover a boundary conditions, as in our Eqs.
(2.31). Nevertheless, it is possible to find an equivalence. Specifically, if we impose

χe
3 =−

2

k2h(C1 + C2)
, χm

1 = 0, χm
2 = 2h(C2 − C1), (4.9)

the second equation in Eqs.(4.8) simplifies to #∂X1
E$=−k2χe

3Ē(0, X2). Next, using
Ē(0, X2) = 1/2

[

E(0+, X2) + E(0−, X2)
]

, Eqs. (4.8) can be written

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

E(0+, X2) =

[

χm
2

4
−

1

k2χe
3

]

∂E
∂X1

(0+, X2) +

[

χm
2

4
+

1

k2χe
3

]

∂E
∂X1

(0−, X2),

E(0−, X2) =−

[

χm
2

4
−

1

k2χe
3

]

∂E
∂X1

(0+, X2)−

[

χm
2

4
−

1

k2χe
3

]

∂E
∂X1

(0−, X2),

(4.10)
and together with (4.9), we recover our effective boundary conditions Eqs. (2.31).

Thus, our approach recovers the GSTCs based on Idemen’s formulation both in TM and
TE polarizations in a simple geometry, and we have established the relations between the
polarization densities and our interface parameters. We end this section with a remark concerning
the GSTCs. The formulation of the GSTCs is fixed once and for all in the form of (4.5), and it
is to our opinion the weakness of this formulation. Indeed, (4.5) is non adapted to some wave
problems, and adapted is meant here robust to an inversion procedure as often used to retrieve the
effective parameters. We illustrate this fact for Dirichlet inclusions (in TE polarization) comparing
the results of retrieval procedures applied to the GSTCs and to our boundary conditions. In the
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5. Conclusion

We have presented a two scale asymptotic method to derive effective boundary conditions of
thin structured films. The problems ends with effective parameters characteristic of the film and
which enter in boundary or jump conditions across an equivalent zero thickness interface. As
in the classical homogenization, these parameters are obtained by the solutions of elementary
problems. The method has been presented in the case of inclusions periodically located on a
surface and associated to Neumann and Dirichlet boundary conditions. In electromagnetism, this
corresponds to ideally conducting metallic inclusions in TM or TE polarization and it applies for
two dimensional problems. In acoustics, this corresponds to sound hard or sound soft inclusions
in three dimensional problems. The model has been validated in a simple scattering problem, an
incident plane wave at oblique incidence on the film and it has been shown to be valid in the
limit kh, ke < 1. While the former limit kh< 1 is expected for any homogenization theory, the
condition ke < 1 defines a limiting thickness above which the classical homogenization should be
efficient. In other words, classical homogenization applies for thick interfaces and our interface
homogenization for thin interfaces, and thick and thin are measured by the wavelength.

We have shown that our interface conditions recovers the impedance boundary condition
given by the transmission line theory for capacitive and inductive strips (that is for vanishing
thickness inclusions and respectively large or small inclusions in the unit cell). Also, we have
shown that the generalized sheet transition conditions are identical to our interface conditions
for Neumann inclusions but significantly differ for Dirichlet inclusions. In this latter case, the
formulation of the GSTCs is correct but it is not adapted to a retrieval procedure (the robustness
of our interface conditions in a retrieval procedure is further discussed in Appendix A).

Direct extensions of the present study concern the case of penetrable inclusions (typically
dielectric inclusions) and structured surfaces. Also, we have considered here the Helmholtz
equation but more involved wave equations can be treated within the same formalism; we have in
mind the Maxwell equations or the equations of elastodynamics. Finally, structurations involving
resonances in the unit cell have been disregarded in the present paper. However, it is possible to
adapt the method to account for them, as it has been done in classical homogenization.
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A. Interface parameters - Comparison with retrieved parameters

(a) Neumann boundary conditions for TM polarization

In an inverse procedure, as used in retrieval methods, (R, T ) are measured experimentally or
numerically, afterwards the retrieved parameters are deduced. To do that, from Eqs. (3.4), the
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