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We present a homogenization method based on
matched asymptotic expansion technique to derive
effective transmission conditions of thin structured
films. The method leads unambiguously to effective
parameters of the interface which define jump
conditions or boundary conditions at an equivalent
zero thickness interface. The homogenized interface
model is presented in the context of electromagnetic
waves for metallic inclusions associated to Neumann
or Dirichlet boundary conditions for transverse
electric (TE) or transverse magnetic (TM) wave
polarization. By comparison with full wave simulations,
the model is shown to be valid for thin interfaces up to
thicknesses close to the wavelength. We also compare
our effective conditions to the two-sided impedance
conditions obtained in transmission line theory and to
the so-called Generalized Sheet Transition Conditions
(GSTCs).
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1. Introduction

Metamaterial devices composed of a periodic arrangement of subwavelength unit cells have
been widely studied using classical homogenization, see e.g. [1-3]. Owing to the resolution of
so-called cell problems, written in the static limit, the problem ends with effective permeability
and effective permittivity of an equivalent homogeneous medium (being possibly anisotropic).
More recently, frequency dependences in the cell problems have been introduced, which allow
to account for possible resonances in the unit cell; these are the high frequency homogenization
or resonant homogenization [4-10]. However, the classical homogenization being developed for
infinite media, its validity for devices of small thickness is questionable. This is because one
has to impose an artificial, and arbitrary, thickness to the device and nowadays, it is admitted
that an equivalent zero thickness interface is more adapted to describe the behavior of devices
with subwavelength thickness [11,12]. The transmission line theory is accurate to that aim when
the equivalent impedances of each component of the device are known [13,14]. Alternatively,
Kuester, Holloway and coworkers have developed the so called "generalized sheet transition
conditions" (GSTCs) [15-18], see also [19,20]. Although powerful, the transmission line theory
and the GSTCs are predictive for particular cases only, and in general, the effective parameters
have to be retrieved from the scattering coefficients. Thus, if the problem of the artificial thickness
is avoided, the problem of whether or not the model imposed to the device is adapted remains.
Finally, although more incidental, these methods cannot be extended easily to other contexts of
wave propagation, even when the Helmholtz equation applies. Indeed, they are intimately related
to the notion of charges and currents, which do not have natural counterparts in acoustics and in
elasticity.

In this paper, we present an homogenization method for structured interfaces, or structured
films, with vanishing thicknesses, based on matched asymptotic expansions of the solution of the
Helmholtz equation. The problem ends with effective conditions at an equivalent zero thickness
surface involving parameters being wave independent, by construction. This is because, as in the
classical homogenization, the parameters are determined by solving (analytically or numerically)
elementary problems in the static case (that is for zero frequency). This approach has been
developed in the context of the static elasticity, see [21,22] for a complete description. The case
of wave propagation has been less regarded. We mention the works of Capdeville and Marigo in
the context of seismic waves [23-27], and similar works developed by the community of french
applied mathematics in acoustics [28] and in electromagnetism [29,30]. Note also works using
alternative forms of homogenizations [31-34].

The method, directly inspired by [21], is presented in Section 2 considering the Helmholtz
equation for films composed of a periodic array of inclusions associated with Neumann or
Dirichlet boundary conditions. In acoustics, this corresponds to sound hard or sound soft
inclusions, respectively, and the method holds in three dimensions. In electromagnetism, the
Helmholtz equation applies for waves being polarized; for a perfectly conducting metal,
Neumann boundary conditions apply in transverse magnetic polarization (TM), and Dirichlet
boundary conditions apply in transverse electric polarization (TE). It is shown that, at the
dominant order, the wave does not see a film structured with Neumann inclusions and as a
second order correction, jump conditions on the field and its normal derivatives are established,
Egs. (2.16). These jump conditions involve interface parameters (9 in three dimensions and 5 in
two dimensions for non symmetrical inclusions), among which the surface (or volume) of the
inclusions, and others, Egs. (2.17), defined in the 3 elementary problems, Egs. (2.13). The case of
Dirichlet scatterers is very different. At the dominant order, the wave sees the array of scatterers
as a perfectly reflecting wall. As a second order correction, we get boundary conditions for the
electric fields on each side of the film, Egs. (2.31); these boundary conditions involve 3 interface
parameters defined in two elementary problems, Egs. (2.28)-(2.30).

Validations of our homogenized interface model are presented in Section 3 in the case of an
incident plane wave at oblique incidences on a film composed of a periodic array of rectangular
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metallic inclusions in two dimensions. In TM and TE polarizations, the model is shown to be valid
for a film thickness e smaller than the wavelength (with typical validity range ke < 1, and & is the
free space wavenumber).

In Section 4, we compare the effective conditions given by our model with the so-called two-
sided impedance conditions obtained in the transmission line model and with the generalized
sheet transition conditions. Correspondances are obtained and discussed for simple geometries
corresponding to a planar array of capacitive or inductive strips (¢ — 0 and the inclusions occupy
a large or a small fraction of the unit cell, for TM or TE polarizations, respectively).

In the Appendix, the robustness of the method is shown by comparing the effective parameters
calculated in the elementary problems to those obtained by means of retrieval methods.

Throughout the paper, time dependence is e ™%, with w the frequency and ¢ the time. Also,
for a function being discontinuous at 0, we use

{ JO) =35 [F(01) + £(07)],
1.1)

[T=r0%) = f(07).

2. Homogenized interface model

We consider an array of inclusions, or scatterers, periodically located on a surface with spacing
h, and thickness e, Fig. 1(a). The goal is to replace this structured interface by an equivalent zero
thickness interface (Fig. 1(b}), associated to jump or boundary conditions, with the same scattering
properties than the actual interface for any scattering problem. The model relies on a separation
of scales, a micro scale associated to the small scatterer size and a macro scale associated to the
wavelength, and ¢ is the small parameter that measures the ratio of the two scales. Each scale
is associated to a system of coordinates which is relevant or not to describe the variations of
the wavefields whether we are close to the film or far from it. Thus, a separation of the space is
used, into an outer region, typically the far field, where only the macro scale makes sense and an
inner region, the near field, where both the micro and the macro scales are needed. Expansions of
the fields in power of ¢ are performed in both regions and finally, matching conditions are used
between the two regions. These matching conditions are the boundary conditions for the outer
solution and they encapsulate the effect of the inclusions in interface parameters which are wave
independent by construction.

= x L x5

X;// X3 .//

(a) (b)

Figure 1. Typical configuration of (a) the actual microstructured film and (b) the equivalent zero thickness interface.

(a) Inclusions associated to Neumann boundary conditions

In acoustics, inclusions associated to Neumann boundary conditions correspond to sound hard
inclusions, and the Helmholtz equation applies in two or three dimensions. In electromagnetism,
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they correspond to metallic inclusions (perfectly conducting) in two dimensions, say invariant
along the X3-axis for waves for transverse magnetic waves (TM, the magnetic field H along e3).
In this context, the magnetic field is a scalar function satisfying the Helmholtz equation, with
Neumann boundary conditions on the metallic inclusions

AH 4+ K*H =0,
(2.1)

VH.I’llap = O,

with k the wavevector in the free space and the inclusions occupying D. Note that this condition
for a perfectly conducting metal has been regarded in detail when a thin structure is considered
[35,36]. The field H = (0,0, H) being known, the electric field E = (E1, E2, 0) can be deduced, if

needed, with

H H
g—Xl =iwFsy, and 687)(2 = —iwk;.

In this section, we shall establish that the periodic array of Neumann inclusions can be replaced
by an equivalent interface across which jump conditions apply, Eqs. (2.16). Specifically, it will
be shown that at the first order, the Neumann inclusions are transparent for the waves, Egs.
(2.10) and that their effects appear at the second order, Egs. (2.14)-(2.15). Thus, in the equivalent
homogenized problem, the field H and of its normal derivative are discontinuous across the
interface.

(i) Asymptotic expansions and matching conditions

The natural small parameter is € = kh < 1 and to be consistent, we need to write the Helmholtz
equation in a dimensionless form, with x=kX (and H(x)= H(X)). Next, the problem is
reformulated introducing the vector field C' = VxH

divxC + H=0, C=VxH,
(2:2)
C.nwD =0.
The solution can be expanded with respect to the small parameter €, namely
H=Hx)+eH' (x) +2H*(x) + ...,
(2.3)

C=C"x)+eC'x) +2C%(x) + ...

In principle, this expansion can be used in the whole space (see e.g. [33]). Nevertheless, the
resolution may be involved if the spatial derivatives in Eq. (2.2) make ¢ to appear. This is avoided
using two ingredients: first, a separation of the space into an inner and an outer regions, which
correspond to the near and far fields, respectively. In the outer region, the natural coordinates
x = (x1, 22, x3) are adapted and the expansions, Eq. (2.3), apply. In the near field, as in the
classical homogenization, a new system of coordinates y = x/¢ is introduced, able to account
for the rapid variations of H, typically the variations with h (Fig. 2). Along z2 and z3, the
wavefield satisfies pseudo periodic conditions associated to slow variations. This is accounted for
by keeping x’ = (z2,z3) as additional coordinates. Accordingly, the expansions Egs. (2.3) apply
for the outer solution and, for the inner solution, we use the expansion

H=10(y,x') + ehl(y, x') + e2h2(y, %) + ..,
(2.4)
Cc=%y,x)+ scl(y7 x') + 22 (y, x)+...

Finally, both regions are connected in some boundary region, where the evanescent field is
vanishing at small x; values corresponding to y; = z1 /¢ — £00. These matching conditions are
obtained using Taylor expansions for small 21, HO(z1,x") = H°(0,x") + 218, H*(0,x') + - -- =
HO(0,x") + ey102, H°(0,%x") + ..., same for C?, and identifying the terms in &” in the inner and
outer expansions, Egs. (2.3)-(2.4). We get, at the first and second orders
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Figure 2. (a) Geometry of the array in non dimensional coordinates x = (21, 22, x3); (b) The inner problem in y =

(y1,y2,ys3) coordinates; Y = [—y1?, y*] x [0, 1]2; we define Yoo =] — 00, 00[x [0,1]2 and x’ = (z2,z3) and y’ =
(y2,3).
O/t o7y : 0 ’
H (O y X ) - ylgmioo h (y7 X )7 (25ﬂ)
O/t Iy . 0 v
C (O y X ) - ylgmioo c (y7 X )7 (25b)
1/t Iy . 1 / 6HO R
YO0 )=t (1) - G0, (.60
l/at Iy . 1 ’ 600 R
05 )=t (e yx) - G0, ). 2s6t)

As in classical homogenization, the functions ™ and ¢" are periodic with respect to y' =
(y2,y3). This is not meaningless in the present context if we have in mind the condition of
pseudo periodicity. This condition is handled by the variable x’, for instance H"(y,zs +¢) =
eik?hH"(y7 x2) in two dimensions, see Eqs. (2.5) and (2.6) for n =0, 1 (the condition of pseudo
periodicity applies for the outer solution (H™, C™)). If one thinks to the H™ in terms of separable
functions (and this will be the case) H"(y,xz2) = f(y)g(z2), we recover the form of a Floquet
solution, with g(xz2) = ikaz2/k and f periodic with respect to ys.

(i) Equations governing the inner and outer solutions - The elementary problems

The equations in the outer and inner problems can be written, from Egs. (2.2), owing to

V — Vx, in the outer problem,
VvV — lVy + Vy, in the inner problem.
e

(and we report only the equations that will be needed). We get for the outer problem

divxC® + H® =0, (2.70)
C’=vyH", (2.7b)
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and for the inner problem

vyh' =0, (2.8a)

divyc” =0, (2.8b)

& =Vyh! + v, h?, (2.80)
divyc! 4 divye c? + h’ =0. (2.84)

The boundary conditions on the Neumann inclusions apply in the inner problem, namely
co'n\BD =Cl.n‘5D =0, (2.9)
while the boundary conditions for the outer problem are given by the matching conditions.

First, we shall show that the inclusions are not seen at the first order. The Eq. (2.8a)
shows that h° does not depend on y and Eq. (2.8b) shows that [dy’c}(—o0,y’,x')=
[dy’ ¢ (+00,y’,x'). This latter relation is obtained by integrating divyc’ =0 over Yoc\D
(with Yoo =] — 00, +00[x[0,1]?) using the boundary condition, Eq. (2.9), and owing to the
periodicity of ¢® with respect to y’. From Egs (2.5), we get HO(0F, x') = h%(x'), and CP (0%, x') =
[dy2 c(l)(ioo, y’,x"), whence the jump conditions at the first order read

[[HO]] - [[c{’]] —0. (2.10)

The inclusions are transparent at the first order, with H° and C° being continuous across the
equivalent interface. To capture the effect of the Neumann inclusions, we need to go at the second
order. This second order involves k' and ¢ and it is easy to see that h! satisfies

divy [Vyhl 4 VX/HO(O,x')] —o,

[Vyhl + Vi HO(0, X/)] Aj9p =0, 2.11)
. 1 0H®
ylgriw Vyh = o (0,x")e;.

The first equation in the above system comes from Egs. (2.8b)-(2.8¢), using H°(0,x’) = h%(x').
The second equation corresponds to the boundary condition, Eq. (2.9) with * =WVyh! +
Vo H(0,x"), from (2.8¢) with h0(x) = H°(0, x). The third equation corresponds to the matching
conditions Eq. (2.5b), with C° = 8,,, H'e1 + V- H?, and C° being continuous. By linearity of the
above system, the problem can be divided into elementary problems being independent of x’.
Specifically, h* can be written

oH° oH° o -
Wy x') = 5 0) [ (y) ] + G0, x)R D ) + A, 212)

with a = 2, 3 and where the functions R (y),i=1,2,3, satisfy the

AR =0,
elementary problems: Vi) Ngp = —€;-Npp (2.13)
lim VA" =o.
y1—+oo

http:/mc.manuscriptcentral.com/prsa

10000000 V¥ 908 4 001d B10-BuiysiandAieios|ekos eds)

Page 7 of 22



Page 8 of 22

O©oOoONOOPAWN =

Submitted to Proceedings A

The field A! in Egs. (2.11) is defined up to the function h(x’), but we will see that the equivalent
conditions do not require h to be determined in Eq. (2.12).

(iii) The interface parameters and the jump conditions at the equivalent zero thickness
interface

In this section, we derive the jump conditions appearing at the second order in e. These jump
conditions involve interface parameters coming from the elementary problems that we have
defined in Egs. (2.13).

First, the effective condition on H' is obtained using the matching condition Eq. (2.6a) (with
9z, H® continuous at 1 = 0) and the Eq. (2.12). We get

oH"

HY (0%, %) = 67(0, x/)h(i) (F00,y").

k2

from which the jump condition on H' is deduced
1 _OH® (@) NG Y
[#'] = B %) (h (ho0,y) = D (—00,5)) @14)

Next, we want the jump condition on C*. To that aim, we need the expression of ¢’ and, from
Eqgs. (2.7a)-(2.7b), (2.8c) and (2.12), we get
(y,x) =0%(0.x) + €7 (0,x) vy h ().

Now, Eq. (2.84d) reads

. acy o acy
divye! (y,x) + o (0.%) 5 —(y) = 50 (0.x) = 0.

Integrating the above relation over Y\D and owing to the periodicity of ¢! with respect to y’, we
get
0
1

m m ac m
de' [C%(m ¥ %) = el (—yf 7y'7X')] - 371(07#) (291" = S) +

ac? J on
d =0,
3ze oo Y By )

with a = 2,3 and where S is the surface of D in the y coordinates. Taking the limit y* — 400 and
using Eq. (2.6b), we get

i ocY oo 9Cy IJ on
[e1] = G (0.X)8 = 5 (0,x) Ym\Ddy b (2.15)

It is now sufficient to remark that [H] =¢ [[Hl]] +0(e?) and 0z, H = 0z, H® + O(¢) (and the

same for C) to get the jump conditions in the real space, equivalent to Egs. (2.14)-(2.15) up to
0(e?)

_ng 9H o x/
ump conditions _ .
P OH T _ O*H 0.%)
ox, |~ T axax; T
with
Bi =h"(+o00,y") = h(—00,y"),
onM)
Cii=85, C :J d .
H = ya 2.17)
oh(®)
Ca1 =0, Co :J dy .
of ? Yoo\ D Oyg

http:/mc.manuscriptcentral.com/prsa

H

10000000 ¥ 908 4 001d BioBuIysiandAieioosiedoseds



O©oOoONOOPAWN =

Submitted to Proceedings A

It is essential that the elementary problems, Egs. (2.13), do not depend on the incident wave
(as the former problem Eqs. (2.11) does, through H?). This ensures that the parameters in Egs.
(2.17) are characteristic of the interface independently of the scattering problem considered.
Incidentally, this also means that the elementary problems will be solved once and for all.

The obtained jump conditions for H and its normal derivative involve 9 interface parameters
in three dimensions, one of which being the surface of inclusion; in two dimensions, only
5 parameters are needed. Next, for inclusion shapes being symmetric with respect to y’,
r (D) is symmetric w.r.t. y’, from which Cyo = IY\D dy 9y, K" = 0. Then, h(®) (o =2,3) being
antisymmetric w.r.t. y’ in this case, we also have 5; =0 (h("‘)(—l—oo7 0,0)= h(o‘)(—oo, 0,0) =0); it
follows that only 5 interface parameters in three dimensions and 3 interface parameters in two
dimensions are needed for symmetrical inclusions.

(b) Inclusions associated to Dirichlet boundary conditions

In the context of electromagnetism, Dirichlet boundary conditions apply for a perfect conductor
in transverse electric polarization (TE), which means that E = (0,0, E) is transverse, and H=
(Hy, H2,0) is an in-plane vector. The Helmholtz equation applies for the scalar electric field £

AE + K*E =0,
(2.18)
E|6D =0,

afterwards Hy = —i/w OE /80X and Hy =i/w JE/0X1 can be deduced if they are needed.

In this section, we shall use the same approach as in the previous one, but the result for an
array of Dirichlet inclusions significantly differ from the Neumann case. Indeed, we shall obtain
boundary conditions at an equivalent, homogenized, flat surface instead of the jump conditions
obtained for Neumann inclusions. These boundary conditions tell us that, at the first order, the
array of Dirichlet inclusions is equivalent to a surface entirely associated to Dirichlet boundary
condition (see Eq. (2.24)). Thus, imposing a vanishing electric field at periodic places along a
surface is sufficient to cancel (at dominant order) the field over the whole surface. In the context
of holes in elasticity, this has been entitled 'the principle of the dressmaker’ [21], that is to say,
‘it is not necessary to sew entirely two pieces of fabrics in order to render invisible their relative
opening, it is sufficient to sew them at a great number of points regularly spaced’.

At the dominant order, the inclusions are thus visible but not their structuration and this latter
is captured at the second order only, leading to the final boundary conditions Eqs. (2.31).

As in Sec. 2.(a), we start by reformulating (2.18) in the rescaled space x = kX, with E(x) =
E(X)

diviG+ E=0, G=VxFE,
(2.19)
The expansions are then the same as in the TM case, with
E=E%x)+eB'(x) + ?E?(x) + ...,
Outer exp.
G=G"(x) + G '(x) + 2G2%(x) + ...
(2.20

B=e(y,x') + e (y,x) + % (y,x') + ...,
Inner exp.

G=g"y,x) +eg'(y,x) +%g*(y,x) +...
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and the matching conditions read, at the first order

0/nEt L/ . 0 /
E (0 » X ) - ylgn:éoo € (y7 X )7 (22111)
0/nE 7\ . 0 !
G (0 7X ) - 1/11—1>r:rltoog (y7 X )7 (22117)
and at the second order
0
E'0%,x) = lim e (y.x) - 51 2 (0%, %) | 222)
y1—Fo0 ox1

(the matching condition on G* is not needed). The equations in the inner and outer problems
are the same as in Egs. (2.7)-(2.8) owing to B" — E", C" — G" (and b" — €™, ¢* — g"), while
boundary conditions in the inner problem now read

elyp = efop =0. (2.23)

At the first order, Vye” =0 and this tells us that ¢ does not depend on y. Next, we have
6?61) = 0; because this boundary condition is expressed in terms of the spatial coordinate y, and

that ¢” does not depend on y, we conclude that e’ = 0 everywhere. It follows that

0_ 070 o oE° /
e =FE"(0,x)=0, and 7(0, x)=0, (2.24)
[e3

with a = 2, 3 (the second equation is simply a consequence of the first one). At the first order, we
find E°(0,x’) = 0 which means that the Dirichlet inclusions are visible, and they are equivalent
to a flat surface associated to Dirichlet boundary conditions. Nevertheless, their structuration in
array is not visible and to capture this structuration effect, we need to go up to the second order.

To go up to the second order, we start with the outer problem. With G° = Vx E?, and using
Az E°(0,x") = 0 from (2.24), we get

_9E°

= For (0F,x)er, (2.25)

G°(0%,x")
and G is not continuous a priori at z:; = 0. Now, the goal is to determine E* (0%, z2). In the inner
problem, Egs. (2.8b) and (2.8¢) read divy g°=0and g° = Vyel + Vel As €V is constant, the
latter equation simplifies in g° = Vyel. It follows that e! satisfies the Laplace equation associated
to Dirichlet boundary condition on 9D; finally, accounting for the matching condition Eq. (2.21b),
with Eq. (2.25), el satisfies

Ae' =0,

lim Vye' *8—E0(0:E x')e (2.26)
y1—+oo y - 6271 ’ b

1
e‘OD =0.

Owing to the linearity of the above system, we can write

oEY

o, 07, x"e 7 (y), (2.27)

B
e (y,2) = 5 (07, x)e P y) +
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with e{*) solutions of the elementary problems:

Agel®) Zo,
lim Vye(+) =0, lim Vye(+) =ey,
Y1 —>—00 y1—++oo
(2.28)
i (=) — i (=) =
yll_l)II_lOOVye ey, yll_l)nioovye 0,
() _
€jap = 0-

These elementary problems correspond to the electrostatic problems of an infinite periodic
row of line charges, with a unitary electric field being imposed at y; — —oo (potential (™)) or
imposed at y; — +oo (potential e(*)). This problem has been revisited recently in the context of
the Faraday cage problem [37]. The general solution e{*) is of the form

() ot ot
e(+)(y1 <0)=C; + e (229
ey >0)=y1+Cy +ea,
and
(=) — - -
6(_) (yl < O) y1_+ CZ_ + 6eV7 (230)
€ (y1>0):61 +eev7

with e} are evanescent fields vanishing at y; — +o0. Integrating (™) Ael™) =0 and (™) Aelt) =
0 over Yoo\ D, it is easy to see that jdy Ve wel-) = C; = —CfL and we denote C; = Cf.

It is now sufficient to use the matching condition, Eq. (2.22), and coming back to the real space
E(x) = E(X), we get the equivalent boundary condition at the zero thickness interface

+ OF OE

+ x/ = OF iyt !y _ O — gt
E(O 7X)_hc2 axl(o 7X) hclaXl(O 7X)7 (231)
- e 2B o x4 nes PP o x |
| BO7.X)=hei 550" X) +he5 5507, X)),

where we have used E = e E! + O(c2) and 8E/8z1 = HE® /81 + O(c). The boundary conditions
involve 3 interface parameters both in 2D and 3D. For inclusions being symmetrical with respect
to w1, e() ()= —eP) (—y1) from which C; = —C;L, leading to 2 interface parameters.

3. Validation of the effective interface conditions for 2D
rectangular inclusions

We inspect the validity of our model for a plane wave at oblique incidence on an array of
rectangular metallic inclusions (Fig. 3). Once the interface parameters have been calculated,
the jump conditions in TM, Egs. (2.16), or the boundary conditions in TE, Egs. (2.31), can
be applied leading to explicit expression of the solution. We compare our solutions with the
solutions obtained with full wave calculations and we discuss the range of validity of the interface
homogenization in terms of the small parameters ke and kh.

Figure 3. Unit cell of the array of rectangular inclusion in the 2D problem.
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(a) The case of transverse magnetic polarization

() The interface parameters for 2D rectangular inclusions

In 2 dimensions, the elementary problems, for i =1, 2, have to been solved, Egs. (2.13), which
makes in general 5 interface parameters to determine (81, B2,C11 =S, C12,C22); as previously
said, for symmetric inclusions, only 3 do not vanish, and we note B=B; and C = Ca2. These
parameters are

S=el,
__ e B = 2 loe (s =)
th(h_g)—}—Bo, WlthBO_ﬂlog(smrr o ) R
Looon®? 2 2 2 2
C:J dy , with h? solution of AR =0, ¥ (h( ) +y2> npp=0, lm va® =
o =~ Oy y1 oo
(3.1)
and they are involved in the jump conditions, Egs. (2.16), which simplify to
8[:[ /
H] = — (0, X
[H] = hB 5 (0.X), .
oH OFPH FPH '
TN = —hs T2 0, X)) — he 22 (0, X)).
[[c‘mﬂ axz O %) ~hC 5rr (0. X

The surface of the inclusion S is always known, here S = el. For rectangular inclusions, the
derivation of the so-called blockage coefficient 3 can be found in [38]. For flat plate (e = 0), B = By
has been derived independently in acoustics [39] and in electromagnetism [40]. To our knowledge,
no such explicit expression exists for C, which has been solved numerically using mode matching
technique (typical behaviors of these parameters are reported in Figs. 10).

(i) Validation for the scattering of an incident plane wave

Here, we consider a simple scattering problem, with an incident plane wave at incidence

__ _iksin0X5 | ikcos 06X —ik cos 60X
H(X: >0,X2)7e') | e ee=0%1 4 Re ] 53
H(Xl < O7 Xz) — elk sin 0 X o Telk cos X )
Applying the boundary conditions, Egs. (3.2), to Eq. (3.3), we find
R—_i a+b _ 1—ab
(1+1ia)(1 —ib) (14ia)(1 —1ib) (3.4)

withaz%cos@ <S+Ctan20> , bE%cos@B,

(and because all fields are discontinuous at X1 =0, we used the definition in (1.1)).

The Figs. 4 and 5 illustrate the validity of the interface model. In Fig. 4, the H-field is calculated
using full wave numerics and compared to the field given by Eqs. (3.3) with Egs. (3.4); in the
presented case, with e/h = 0.1 and ¢/h = 0.95, the interface parameters are S = 0.095, B = 3.52
and C = —0.004. The fields are found to be in good agreement (5% discrepancy) although we
have chosen a relatively high frequency kh = 1.

In Fig. 5, we reported the reflection coefficient calculated using full wave numerics (|R**|, blue
lines) and the reflection coefficient given by Eq. (3.4) (| R|, black dotted lines) as a function of e/h
for kh =1 and kh = 0.1. It is noticeable that | R| does not vanish for e/h — 0; this is expected since
an array of flat inclusions (e = 0), or strips, are able to scatter a wave, and this is attributable to
the parameter B = By which does not vanish for vanishing inclusion thickness.

Inspecting higher values of kh would reveal that our prediction fails for kh > 1, as expected
within homogenization theories. Next, from Fig. 5, it appears that the model is valid for ke < 1
and kh < 1; this is not very surprising and it confirms that the wavelength is the natural scale to
discriminate between thin and thick films.
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Figure 4. Wavefields in the (X1, X2) plane for kh =1 with rectangular inclusions e/h =0.1 and ¢/h =0.95. (a)
He=(X) calculated numerically and (b) H(X) coming from the homogenized interface model, Eq. (3.3), with Egs.
(3.4). The interface parameters are S = 0.095, B = 3.52 and C = —0.004.
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Figure 5. Variations of the reflection coefficients |R*| calculated numerically (blue lines), and of |R| given by the
homogenized interface model, Eq. (3.4) (black dotted lines) as a function of e/h for (a) kh =1 and (b) kh =101,
Otherwise, { = 0.9h and 6 = /3.

(b) The case of transverse electric polarization

Rectangular inclusions being symmetric, only 2 interface parameters have to be determined, (C; =
CfL =—C1,Co = C;L = —(5 ) in the elementary problem Eqs. (2.28)-(2.29), namely

Ci= lim (e(+)—y1), Co= lim e

Y1 —>t+oo Yy1—>—0o0

with e(Jr)(yl7 y2) solution of: Al = 0, et = S lim Vet = 0, lim Vet = el.
|oD Y1——00 y1—++oo
(3.5)

For e # 0, explicit expressions of (Cy,C2) defined in the elementary problems Eqgs. (2.28)-
(2.29) are not available in the literature and they have been calculated solving numerically the
elementary problem for (1), Egs. (2.28)-(2.29), see Figs. 11. However, an explicit expression for
e =0 is available [13,40], see Section 4.(a); in this case

fore=0, C;=C *zlo sin7ri - (3.6)
S b 1_ 2_7r g 2h * '
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Thus, we get simplified effective boundary conditions, from Egs. (2.31),

or oF

+ AN e + A RN 5 12
E(07, X) =hCa g (07, X) = W1 55 (07, X0), 67
e OB p o . OB '
E(07,X") = hC1 52— (07, X") = hCy 73 (07, X).

As for the TM case, we consider the simple scattering problem of an incident plane wave at
oblique incidence 8, for which the solution takes the form

E(X1 >O7X2):eiksin9Xg 6ikcos@Xl +R6—icos(9X1 ,
E(X1 <0 Xz) _ eiksin 09X Tﬁi cos 90X (38)
Applying the boundary conditions Egs. (3.7), we get (R, T)
L 1+c—c2 L 2icy
14—0%—0%—21027 14—0%—03—21027 (3.9)

with ¢; = khcos8Cq, cog = khcos8Cs.

Figs. 6 show the electric field E°* calculated in full wave numerics compared to the field E in
the homogenized problem, Egs. (3.8)-(3.9). In the presented case ¢/h = 0.1, £/h = 0.05 (leading to
C1=0.209, C2 =0.201) and kh =1, and we have |E — E**|/|E®*| ~ 6% (the agreement becomes
better for smaller kh value).

Next, in Figs. 7, we report the variations of |R** + 1| as a function of e/h for kh =1 and kh =
1071 (with |R| ~ 1 in the whole range of e/h, the variations of R are essentially encapsulated in
its phase, which is regarded here in |R + 1| as the shift to a phase equal 7). The conclusion is the
same as in the TM case, namely that the interface homogenization is valid for ke < 1 (note that, in
this case, no result exists in classical homogenization).

r ¥
- -— EHI(Xth) - -— E(Xi,XQ)

22 2 2 J
2 A N
2 2 2 2 -
L LS '.e

—10h X 10h
(a) (b)

Figure 6. Wavefields in the (X1, X2) plane for kh =1 with rectangular inclusions e/h =0.1 and ¢/h =0.95. (a)
E*®(X) calculated numerically and (b) E(X) coming from the homogenized interface model, Eq. (3.8), with Egs. (3.9).
The interface parameters are C; = 0.209, C2 = 0.201.
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Figure 7. Variations of the reflection coefficients | R** + 1] calculated numerically (blue lines) and of | R + 1| given by
the homogenized interface model, Eq. (3.4) (black dotted lines) as a function of e/h for kh =1 and 10—1. Otherwise,
¢=0.9hand § =mx/3.

4. Comparison with existing models

(a) Comparison with the impedance surface theory

The transmission line theory is the most classical model to deal with devices composed of metallic
screens and dielectric slabs. For the metallic parts, it is based on the relations voltage/electric field
and current/magnetic field which can be written explicitly in some simplified cases (typically
parallel plates), and which lead to the notion of effective impedances calculated in the quasi-static
limit (and in general for particular polarizations of the wave, TM or TE). As soon as the effective
impedances of each component of a device are known, an equivalent circuit can be explicitly built,
from which boundary conditions are obtained. Probably the most important limitation of this
model is that it it is restricted to specific geometries of the metallic screens in order to recognize
inductances and capacitances. Also, explicit expressions being obtained for a host medium being
identical on both sides of the metallic screen, the case of two different host media are deduced
heuristically, using averaged permittivity.

Here, we inspect the simple cases of capacitive and inductive strips in free space, Fig. 8 (more
involved geometries can be found in [13,14]). Following [14], the array of capacitive strips, Fig.
8(a), is considered in TM polarization for e — 0 and large £ = h — w values while the array of
inductive strips, Fig. 8(b), is considered in TE polarization for e -0 and small ¢ =w values
(namely, w < k in both cases).

Figure 8. (a) Capacitive strips in TM polarization and (b) Inductive strips in TE polarization.

Results coming from transmission line theory in [14] give
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e For TM polarization, the two sided impedance boundary condition reads

with 2™ = —— h‘B . 1)
0

o For TE polarization, the two sided impedance boundary condition reads

{ Ey(07, Xa) = E2(07, X2) = 2™ [H],

{ E(0F, X2) =E(0™, X) = 2" [Ha], @2)

with Z™ = ikhBy /4.

Note that, in Ref. [14], o = khBg/2 is used (« is called the grid parameter for an electrically dense
array of ideally conducting strips and has been obtained in [13]), leading to the usual forms Z™ =
—i/(2a) and Z™ =ia/2.

Now, we show that the conditions (4.1) and (4.2) are in agreement with the conditions obtained
in our equivalent interface/surface model. In the TM polarization, for e — 0 and owing to
OH/0X, =ikFE3, our jump conditions, Egs. (3.2), simplify since S,C — 0 and B — By. It follows
that 9H/0X (or equivalently E») is continuous across the interface and

in agreement with Eq. (4.1). In the TE polarization, e — 0 produces C; ~Cy. With 0E/0X1 =
—ikH>, our boundary conditions Egs. (3.7) simplify in

E(0, Xo) = —ikhC [Ha] . (4.4)

with E being continuous across the interface. This expression is in agreement with Eq. (4.2) if
Ci1(w) ~ 4By (¢) (with w = h — £). This property is valid; we have calculated numerically (C1,C2)
forw=h — £and £ € [0.01; 0.99], and e = 10~ h; we find C; = C3 up t0 0.1% and C} (w) = By (£) /4
up to 2%. In [14], this property is linked to the Babinet principle; a more definitive conclusion
would require to introduce in our asymptotic model a scaling between our small parameter kh
and the new small e/h.

(b) Comparison with the GSTCs

In a series of paper, Holloway and co workers presented the derivation of the so-called
Generalized Sheet Transition Conditions (GSTCs) [12,15-18]. It is based on a formulation of the
Maxwell equations in the sense of the distributions proposed in the 90s by Idemen [41] (note
that an alternative derivation of the GSTCs has been proposed by the same authors using an
homogenization technique, see e.g. [31]). Introducing fictitious magnetic charges and currents
being described by Dirac delta functions concentrated on an interface, Idemen established jump
conditions of the electric and magnetic fields across the interface expressed in terms of surface
magnetic and electric polarization densities. In [15], these polarization densities are shown to
be related to the mean value of the electric and magnetic fields at the interface, owing to the
knowledge of two dyadics, called effective electric and magnetic polarizability densities x"™ and
X¢. The generalized transition conditions read

4.5)

e1 x [H] = —iwx“E{" —e1 x Vo [XT"H"],
[E] x e1 = —iwx™H{" + €1 x Vy [XTETY].

The quantities (E*V, H*") corresponds to our definition (£, ), and we keep this latter notation
in the following. In [12], the convention ¢“* while we use the convention e *’%; this is why our
Eq. (4.5) has —iw instead of iw in the Egs. (1-2) of [12]. Also, we have simplified the notations (x*
stands for x gs,x"* stands for x ars) and (x5, x5, x1) stand for (x%%, x%’s, X%#<g) according to the
direction of polarization of (H along e3 in the present paper, along y in these papers) and to the
direction of the normal to the interface (along e; in the present paper, along z in these papers).

As previously, we inspect the TM and TE cases.
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In TM polarization, H= (0,0, H) and 0H/0X{ =iwFE> (and E;= F»). The GSTCs
simplify in

[H] = anX (0, X2),
- (4.6)
OH m 021 82H
HTXI}] =x3" 8X2 (0, X2) + (X3 +X1) 8X2 (0, X3),

where we have used that 8°H/0X? + 02H/0X3 = —k*>H (the Helmholtz equation).
These conditions are less general that our Egs. (2.16), but in agreement with the simplified
forms Egs. (3.2), written for inclusions being symmetric with respect to X. This is
consistent with the assertion in [15] that the dyadics x® and x"™ are diagonal if the
inclusions have sufficient symmetries. Our interface parameters are in this case simply
linked to 3 of the 6 terms in x© and x™

xi=—hC + hS,
X5 = hB, 4.7)
X3 =—hS

For TE polarization, the transition conditions, Egs. (4.5), end up with

m OF
[E]=x2" E>el (0, X2),
. (4.8)

X2 (0, X2),

B
o5 ] =355 0 %21+ (35 )
which have the same forms as for TM polarization, by symmetry of the initial transition
conditions for (E,H) in Egs. (4.5). We have used that E= (0,0, E) and the relations
iwH; =0E/0X3, iwHo = —0E/0X1 (here Hy = H»). It is a fundamental difference that
the transition conditions are thought in the form of a discontinuity in the fields across
the sheet since it does not allows easily to recover a boundary conditions, as in our Egs.

(2.31). Nevertheless, it is possible to find an equivalence. Specifically, if we impose

e 2

- 7= 5 =2h(Cy — 4.
X3 k2h(C1+C2)7 X1 0, x2 (C2 01)7 ( 9)

the second equation in Egs.(4.8) simplifies to [dx, E] = —k*x§F(0, X2). Next, using
E(0,X2)=1/2[E(0", X2) + E(0~, X2)], Egs. (4.8) can be written

1 1 oE , _
B0* 30 = [ M - o | S0 )+ M4 | S0 ),
2X3 k2 0X
— Xz 1 BE + X2 1 OE
B0 X0) == [ o | 220 ) - M ] S0 ),

(4.10)
and together with (4.9), we recover our effective boundary conditions Egs. (2.31).

Thus, our approach recovers the GSTCs based on Idemen’s formulation both in TM and
TE polarizations in a simple geometry, and we have established the relations between the
polarization densities and our interface parameters. We end this section with a remark concerning
the GSTCs. The formulation of the GSTCs is fixed once and for all in the form of (4.5), and it
is to our opinion the weakness of this formulation. Indeed, (4.5) is non adapted to some wave
problems, and adapted is meant here robust to an inversion procedure as often used to retrieve the
effective parameters. We illustrate this fact for Dirichlet inclusions (in TE polarization) comparing
the results of retrieval procedures applied to the GSTCs and to our boundary conditions. In the
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1

2

3

4

5

6 GSTCs, retrieval relations are established using Eqs. (3.9) and (4.9)

7

8 FL0, ) = o D o (0 05) ten®,

9 0 To1_R (4.11)
- m

1? POk = s T iR X2

12 These relations allow us to deduce (x7", x5", x5) from (R, T) being calculated numerically for

13 various (8, k). We checked that F} is linear in tan? 6 and that F; is independent of ¢; we also

14 found that x% is frequency independent and that x§ varies as 1/k? as expected from (4.9).

15 However, when reporting the retrieved parameters (x§, x1°, X2'), we observe divergences of x§

16 and x7* (Fig. 9(a)). Obviously, these divergences correspond to R + T + 1 = 0, where the retrieval

17 procedure applied to the GSTCs fails; unfortunately, Dirichlet inclusions produce R~ —1 and

18 T ~0 at the dominant order, thus vanishing values of (R+ T + 1) are rather usual (in fact,

19 the unusual situation is R =1 and T =0 which is accessible for High Impedance Surfaces, sece

20 e.g. [14]).

21 To the opposite, our effective boundary conditions (2.31) are robust to a retrieval method. With

20 (R,T) given by Egs. (3.9), the effective parameters (C1, C2) can be deduced using

23 0 L 2T

24 " ikhcos0T? — (1 - R)2’

25 oL 1+ A, *12)

26 ikhcos8 T2 — (1 — R)?’

27 and with R~ —1, T ~ 0 at the dominant order, we can anticipate that the inversion will be safe.

28 From (R, T) calculated numerically, we checked that the two quantities in (4.12) are independent

29 of 6 and kh; next reporting the retrieved parameters (C;,Cs) (Fig. 9(b)), we observe that the

30 retrieved parameters do not suffer from divergence. Besides, we also checked that the retrieved

31 (C1,C9) are in good agreement with the values given by the resolution of the elementary

32 problems, Egs. (2.29)-(2.30).

33

34

. -

37 X3 h—

38 0% | e/ =05 e/h = 0.1

39 10*

40 -

41 Y |

42 0
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50 Figure 9. (a) Retrieved (x©, x™) for Dirichlet rectangular inclusions as a function of £/h using a retrieval procedure on

51 the GSTGs for e/h=0.1 and e /h = 0.5; divergences of x§ and x]™ are observed (b) Retrieved (C1, C2) (open symbols)

52 in the same conditions using a retrieval procedure on our jump conditions, (2.31); black lines show (C1,C2) given by the

53 direct resolution of the cell problems, Egs. (2.29)-(2.30).
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5. Conclusion

We have presented a two scale asymptotic method to derive effective boundary conditions of
thin structured films. The problems ends with effective parameters characteristic of the film and
which enter in boundary or jump conditions across an equivalent zero thickness interface. As
in the classical homogenization, these parameters are obtained by the solutions of elementary
problems. The method has been presented in the case of inclusions periodically located on a
surface and associated to Neumann and Dirichlet boundary conditions. In electromagnetism, this
corresponds to ideally conducting metallic inclusions in TM or TE polarization and it applies for
two dimensional problems. In acoustics, this corresponds to sound hard or sound soft inclusions
in three dimensional problems. The model has been validated in a simple scattering problem, an
incident plane wave at oblique incidence on the film and it has been shown to be valid in the
limit kh, ke < 1. While the former limit kh < 1 is expected for any homogenization theory, the
condition ke < 1 defines a limiting thickness above which the classical homogenization should be
efficient. In other words, classical homogenization applies for thick interfaces and our interface
homogenization for thin interfaces, and thick and thin are measured by the wavelength.

We have shown that our interface conditions recovers the impedance boundary condition
given by the transmission line theory for capacitive and inductive strips (that is for vanishing
thickness inclusions and respectively large or small inclusions in the unit cell). Also, we have
shown that the generalized sheet transition conditions are identical to our interface conditions
for Neumann inclusions but significantly differ for Dirichlet inclusions. In this latter case, the
formulation of the GSTCs is correct but it is not adapted to a retrieval procedure (the robustness
of our interface conditions in a retrieval procedure is further discussed in Appendix A).

Direct extensions of the present study concern the case of penetrable inclusions (typically
dielectric inclusions) and structured surfaces. Also, we have considered here the Helmholtz
equation but more involved wave equations can be treated within the same formalism; we have in
mind the Maxwell equations or the equations of elastodynamics. Finally, structurations involving
resonances in the unit cell have been disregarded in the present paper. However, it is possible to
adapt the method to account for them, as it has been done in classical homogenization.
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A. Interface parameters - Comparison with retrieved parameters

(a) Neumann boundary conditions for TM polarization

In an inverse procedure, as used in retrieval methods, (R,T) are measured experimentally or
numerically, afterwards the retrieved parameters are deduced. To do that, from Egs. (3.4), the
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simplest procedure is to calculate

2 T_14+R )
B0k = - resa Ty R S FC Y, "
BOK =t 1

T ikhcos0 T +1-R
for (R, T) calculated for various 8 and k (with kh, ke < 1), to check that F} is linear with tan? 6
and F» constant. If the case, then (S, 5, () can be deduced. Fig. 10 show the results S, 5 and C as
a function of £/h for various e/h. We get a good agreement between the retrieved parameters and
the interface parameters coming from the elementary problems.

0
-0.27
0.4
-0.6 c
02 04 0.6 0.8 1 777::5 0.8 1 -0'80 02 04 0.6 0‘8 1
2t t/n © n
@ ®) ©

Figure 10. Effective parameters of rectangular Neumann inclusions S, 3 and C as a function of £/h for e/h = 0.1, 0.5
and 1. Black lines show the interface parameters given by homogenization, Egs. (3.1) and symbols show the parameters
obtained by retrieval method on (R, T').

The limit £ — h produces a divergence in B3, according to Eq. (3.1). This leads in Egs. (3.4) to
b — oo while @ remains finite, thus, R —1/(1 + ia) and T'— —ia/(1 + ia). Obviously, one would
expect R=1and T =0 in this case of reflecting wall. It is a classical problem in homogenization
theories when a new small parameter is introduced, here ¢’ =1 — £/h, and appropriate treatment
should be done to treat this double limit. Amusingly, the problem does not appear if ¢ =0 in
which case ¢ = 0.

(b) Dirichlet boundary conditions for TE polarization
In terms of a retrieval procedure, C; and C» can be obtained owing to the inversion

1 2T 1 T2+ (1-R?

O s TP = (1= B2’ 2~ ihheos6 T2 — (1= R)2

(A2)

The behavior of the retrieved parameters are reported in Figs. 11, together with the interface
parameters calculated in the elementary problem, Egs. (3.5), and again a good agreement is
observed.

For e— 0 and £ — 0, C1 and Cz diverge (the divergence has logarithm behavior) with C; —
C2 — 0. This implies R — 0 and T'— 1, as expected. In this case, although this limit is outside the
validity expected within the present analysis (¢; and cg have been assumed small), we do not find
unphysical limit.

For £ —h, C; =0 and Cy — —e/2; this is expected since the elementary problem for e{*)
essentially reduces to a wall associated to Dirichlet boundary condition e(+)(e/ 2,y2) =0, for
which an exact solution is e{*) (y1 > 0) = y1 — ¢/2. We get T — O and |R| — 1 with R ~ —¢¥ ©3 %,
which is expected for a Dirichlet wall at y; = e/2. This limit does not suffer incompatibility with
the assumption of small ¢; and c».
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Figure 11. Effective parameters of rectangular Dirichlet inclusions C; and C2 as a function of ¢/h for e/h =0.1, 0.5
and 2. Black lines show the interface parameters given by homogenization, Egs. (3.5) and symbols show the retrieved
parameters, Egs. (A 2).
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