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Abstract

“Dynamic compensation” is a robustness property where a perturbed biological

circuit maintains a suitable output [Karin O., Swisa A., Glaser B., Dor Y., Alon

U. (2016). Mol. Syst. Biol., 12: 886]. In spite of several attempts, no fully

convincing analysis seems now to be on hand. This communication suggests an

explanation via “model-free control” and the corresponding “intelligent” con-

trollers [Fliess M., Join C. (2013). Int. J. Contr., 86, 2228-2252], which are

already successfully applied in many concrete situations. As a byproduct this

setting provides also a slightly different presentation of homeostasis, or “exact

adaptation,” where the working conditions are assumed to be “mild.” Several

convincing, but academic, computer simulations are provided and discussed.

Keywords: Systems biology, homeostasis, exact adaptation, dynamic

compensation, integral feedback control, PID, model-free control, intelligent

proportional controller.
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1. Introduction1

In systems biology, i.e., an approach of growing importance to theoretical2

biology (see, e.g., Alon (2006); Klipp et al. (2016); Kremling (2012)), basic3

control notions, like feedback loops, are becoming more and more popular (see,4

e.g., Åström et al. (2008); Cowan et al. (2014); Cosentino et al. (2011); Del5

Vecchio et al. (2015)). This communication intends to show that a peculiar6

feedback loop permits to clarify the concept of dynamic compensation (DC ) of7

biological circuits, which was recently introduced by Karin et al. (2016). DC is8

a robustness property. It implies, roughly speaking, that biological systems are9

able of maintaining a suitable output despite environmental fluctuations. As10

noticed by Karin et al. (2016) such a property arises naturally in physiological11

systems. The DC of blood glucose, for instance, with respect to variation in12

insulin sensitivity and insulin secretion is obtained by controlling the functional13

mass of pancreatic beta cells.14

The already existing and more restricted homeostasis, or exact adaptation,15

deals only with constant reference trajectories, i.e., setpoints. It is achievable16

via an integral feedback (see, e.g., Alon et al. (1999); Briat et al. (2016); Miao17

et al. (2011); Stelling et al. (2004); Yi et al. (2000))18

Remark 1.1. PIDs (see, e.g., Åström et al. (2008); O’Dwyer (2009)) read:

u = KP e+KI

∫
e+KD ė (1)

where19

• u, y, y? are respectively the control and output variables, and the reference20

trajectory.21

• e = y − y? is the tracking error,22

• KP ,KI ,KD ∈ R are the tuning gains.23

To the best of our knowledge, they are, strangely enough, more or less missing24
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in the literature on theoretical biology,1 although they lead to the most widely25

used control strategies in industry.26

From KP = KD = 0 in Equation (1), the following integral feedback is

deduced:

u = KI

∫
e (2)

Compare Equation (2) with the references above on homeostasis, and Somvanshi27

et al. (2015). See Abouäıssa et al. (2017b), and the references therein, for an28

application to ramp metering on freeways in order to avoid traffic congestion.29

Conditions for DC have already been investigated by several authors: Karin30

et al. (2017a,b); Sontag (2017); Villaverde et al. (2017). Parameter identifica-31

tion, which plays a key rôle in most of those studies, leads, according to the32

own words of Karin et al. (2017b), to some kind of “discrepancy,” which is33

perhaps not yet fully cleared up. We suggest therefore another roadmap, i.e.,34

intelligent feedback controllers as defined by Fliess et al. (2013). Many con-35

crete applications have already been developed all over the world. Some have36

been patented. The bibliography contains for obvious reasons only recent works37

in biotechnology: Bara et al. (2016); Join et al. (2017a); Lafont et al. (2015);38

MohammadRidha et al. (2018); Tebbani et al. (2016).239

An unexpected byproduct is derived from Remark 1.1 and the comparison in40

Abouäıssa et al. (2017b) between Equation (2) and our intelligent proportional41

controller (Fliess et al. (2013)). Exact adaptation means now a “satisfactory”42

behavior thanks to the feedback loop defined by Equation (2) when the working43

conditions are “mild.” The result by Karin et al. (2016) via a mechanism for DC44

based on known hormonal circuit reactions, which states that exact adaptation45

does not guarantee dynamical compensation, remains therefore valid in this new46

context.47

1This is of course less the case in synthetic biology, i.e., a blending between biology and

engineering (see, e.g., Del Vecchio et al. (2016) and the references therein).
2A rather comprehensive bibliography of concrete applications is provided by Abouäıssa et

al. (2017a).
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This exploratory research report is organized as follows. Intelligent con-48

trollers are summarized in Section 2, where the connection between classic PIs49

and intelligent proportional controllers is also presented. Section 3, which is50

hevily influenced by Abouäıssa et al. (2017b), defines dynamic compensation51

and exact adaptation. Section 4 displays various convincing, but academic,52

computer experiments. Some concluding remarks may be found in Section 5.53

2. Model-free control and intelligent controllers54

See Fliess et al. (2013) for full details.55

2.1. Generalities56

2.1.1. The ultra-local model57

The poorly known global description of the plant, which is assumed for

simplicity’s sake to be SISO (single-input single output),3 is replaced by the

ultra-local model :

y(ν) = F + αu (3)

where:58

• the control and output variables are respectively u and y;59

• the derivation order ν is often equal to 1, sometimes to 2; in practice ν ≥ 360

has never been encountered;61

• the constant α ∈ R is chosen by the practitioner such that αu and y(ν)62

are of the same magnitude; therefore α does not need to be precisely63

estimated.64

The following comments might be useful:65

• Equation (3) is only valid during a short time lapse and must be continu-66

ously updated;67

3For a multivariable extension, see, e.g., Lafont et al. (2015); Menhour et al. (2017).

4



• F is estimated via the knowledge of the control and output variables u68

and y;69

• F subsumes not only the system structure, which most of the time will be70

nonlinear, but also any external disturbance.71

2.1.2. Intelligent controllers72

Set ν = 2. Close the loop with the following intelligent proportional-integral-

derivative controller, or iPID,

u = −
F − ẏ∗ +KP e+KI

∫
e+KD ė

α
(4)

where:73

• e = y − y? is the tracking error,74

• KP ,KI ,KD ∈ R are the tuning gains.75

When KI = 0, we obtain the intelligent proportional-derivative controller, or

iPD,

u = −F − ẏ
∗ +KP e+KD ė

α
(5)

When ν = 1 and KI = KD = 0, we obtain the intelligent proportional controller,

or iP, which is the most important one,

u = −F − ẏ
∗ +KP e

α
(6)

Combining Equations (3) and (6) yields:

ė+KP e = 0 (7)

where F does not appear anymore. The tuning of KP is therefore straightfor-76

ward.77

Remark 2.1. See Join et al. (2017b) for a comment on those various con-78

trollers.79

5



2.1.3. Estimation of F80

Assume that F in Equation (3) is “well” approximated by a piecewise con-81

stant function Fest.
4 The estimation techniques below are borrowed from Fliess82

et al. (2003, 2008) and Sira-Ramı́rez et al. (2014). Let us summarize two types83

of computations:84

1. Rewrite Equation (3) in the operational domain (see, e.g., Erdélyi (1962)):

sY =
Φ

s
+ αU + y(0)

where Φ is a constant. We get rid of the initial condition y(0) by multi-

plying both sides on the left by d
ds :

Y + s
dY

ds
= − Φ

s2
+ α

dU

ds

Noise attenuation is achieved by multiplying both sides on the left by s−2,

since integration with respect to time is a lowpass filter. It yields in the

time domain the realtime estimate, thanks to the equivalence between d
ds

and the multiplication by −t,

Fest(t) = −
6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ (8)

where τ > 0 might be quite small. This integral may of course be replaced85

in practice by a classic digital filter.86

2. Close the loop with the iP (6). It yields:

Fest(t) =
1

τ

[∫ t

t−τ
(ẏ? − αu−KP e) dσ

]
Remark 2.2. From a hardware standpoint, a real-time implementation of our87

intelligent controllers is also cheap and easy (Join et al. (2013)).88

2.2. PI and iP89

Consider the classic continuous-time PI controller

u(t) = kpe(t) + ki

∫
e(τ)dτ (9)

4This is a weak assumption (see, e.g., Bourbaki (1976)).
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A crude sampling of the integral
∫
e(τ)dτ through a Riemann sum I(t) leads to∫

e(τ)dτ ' I(t) = I(t− h) + he(t)

where h is the sampling interval. The corresponding discrete form of Equation

(9) reads:

u(t) = kpe(t) + kiI(t) = kpe(t) + kiI(t− h) + kihe(t)

Combining the above equation with

u(t− h) = kpe(t− h) + kiI(t− h)

yields

u(t) = u(t− h) + kp (e(t)− e(t− h)) + kihe(t) (10)

Remark 2.3. A trivial sampling of the “velocity form” of Equation (9)

u̇(t) = kpė(t) + kie(t) (11)

yields
u(t)− u(t− h)

h
= kp

(
e(t)− e(t− h)

h

)
+ kie(t)

which is equivalent to Equation (10).90

Replace in Equation (6) F by ẏ(t)− αu(t− h) and therefore by

y(t)− y(t− h)

h
− αu(t− h)

It yields

u(t) = u(t− h)− e(t)− e(t− h)

hα
− KP

α
e(t) (12)

FACT.- Equations (10) and (12) become identical if we set

kp = − 1

αh
, ki = −KP

αh
(13)

91

Remark 2.4. This path breaking result was first stated by d’Andréa-Novel et92

al. (2010):93
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• It is straightforward to extend it to the same type of equivalence between94

PIDs and iPDs.95

• It explains apparently for the first time the ubiquity of PIs and PIDs in96

the industrial world.97

3. Exact adaptation and dynamic compensation98

Equation (11) shows that integral and proportional-integral controllers are99

close when100

1. ė remains small,101

2. the reference trajectory y∗ starts at the initial condition y(0) or, at least,102

at a point in a neighborhood,103

3. the measurement noise corruption is low.104

The following conditions might be helpful:105

• the reference trajectory y∗ is “slowly” varying, and starts at the initial106

condition y(0) or, at least, at a point in its neighborhood,5107

• the disturbances and the corrupting noises are rather mild.108

Then the performances of the integral controller should be decent: this is ex-109

act adaptation, or homeostasis. When the above conditions are not satisfied,110

dynamic compensation means that one at least of the feedback loops in Sec-111

tion 2.1 is negative, i.e., fluctuations around the reference trajectory due to112

perturbations and input changes are attenuated.6113

5Setpoints are therefore recovered.
6The wording “negative feedback” is today common in biology, but, to some extent, ne-

glected in engineering, where it was quite popular long time ago (see, e.g., Küpfmüller et al.

(2017)). Historical details are given by Zeron (2008) and Del Vecchio et al. (2015).
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4. Two computer experiments114

The two academic examples below provide easily implementable numerical115

examples. They are characterized by the following features:116

• KI = 0.5 (resp. KI = 1) for the integral feedback in the linear (resp.117

nonlinear) case.118

• α = KP = 1 for the the iP (6) in both cases.119

• The sampling period is 10ms.120

• In order to be more realistic, the output is corrupted additively by a zero-121

mean white Gaussian noise of standard deviation 0.01.122

4.1. Linear case123

Consider the input-output system defined by the transfer function

2(s+ 1)

s2 + s+ 1

Several reference trajectories are examined:124

(i) Setpoint and 50% efficiency loss of the actuator: see Figures 1 see 2.125

(ii) Slow connection between two setpoints: see Figures 3 and 4.126

(iii) Fast connection: see Figures 5 and 6.127

(iv) Complex reference trajectory: see Figures 7 and 8.128

In the first scenario, the control efficiency loss is attenuated much faster by the129

iP than by the integral feedback. The behaviors of the integral feedback and130

the iP with respect to a slow connection are both good and cannot be really131

distinguished. The situation change drastically with a fast connection and a132

complex reference trajectory: the iP becomes vastly superior to the integral133

feedback. Exact adaptation works well only in the second scenario, whereas134

dynamic compensation yields always excellent results.135

9



0 5 10 15 20 25 30 35 40 45 50

Time(s)

0

0.2

0.4

0.6

0.8

1

1.2

(a) Control

0 5 10 15 20 25 30 35 40 45 50

Time(s)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Output

Reference trajectory

Reference

(b) Output

Figure 1: Integral feedback, constant reference trajectory, control efficiency loss
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Figure 2: iP, constant reference trajectory, control efficiency loss
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Figure 3: Integral feedback, slow connection
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Figure 4: iP, slow connection
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Figure 5: Integral feedback, fast connection
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Figure 6: iP, fast connection
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Figure 7: Integral connection, complex reference trajectory
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Figure 8: iP, complex reference trajectory
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4.2. Nonlinear case136

Consider

ẏ + y = u3 + Ppert

where Ppert is a perturbation. Introduce three scenarios:137

(i) Setpoint without any perturbation, i.e., Ppert = 0: see Figures 9 and 10.138

(ii) Setpoint with a sine wave perturbation which starts at t = 25s, i.e.,139

Ppert(t) = 0.2 sin( 2π
5 (t − 25)) if t ≥ 25s, and Ppert(t) = 0 if t ≤ 25s:140

see Figures 11 and 12.141

(iii) Non-constant reference trajectory without any perturbation, i.e., Ppert =142

0: see Figures 13 and 14.143

A clear-cut superiority of the iP with respect to the integral feedback is indis-144

putable. The behavior of dynamic compensation (resp. exact adaptation) is145

always (resp. never) satisfactory.146

Remark 4.1. Do not believe that integral feedbacks are never adequate if non-147

linearities occur. See148

• an example related to ramp metering in Abouäıssa et al. (2017b),149

• theoretical investigations in Sontag (2010).150

5. Conclusion151

In order to be fully convincing, this preliminary annoucement on homeostasis152

extensions needs of course to exhibit true biological examples. In our context153

noise corruption is also a hot topic (see, e.g., Briat et al. (2016); Sun et al.154

(2010)). The estimation and identification techniques sketched in Section 2.1155

might lead to a better understanding (see also Fliess (2006, 2008)).156
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Figure 9: Integral feedback, constant reference trajectory, without any perturbation
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Figure 10: iP, constant reference trajectory, without any perturbation
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Figure 11: Integral feedback, constant reference trajectory, with perturbation
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Figure 12: iP, constant reference trajectory, with perturbation
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Figure 13: Integral feedback, non-constant reference trajectory, without any perturbation
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Figure 14: iP, non-constant reference trajectory, without any perturbation
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Rocher V. (2017a). A simple and efficient feedback control strategy for207

wastewater denitrification. 20th World Congr. Int. Feder. Automat. Contr.,208

Toulouse. https://hal.archives-ouvertes.fr/hal-01488199/en/209

19



Join C., Chaxel F., Fliess M. (2013). “Intelligent” controllers on cheap and small210

programmable devices. 2nd Int. Conf. Contr. Fault-Tolerant Syst., Nice.211

https://hal.archives-ouvertes.fr/hal-00845795/en/212

Join C., Delaleau E., Fliess M., Moog C.H. (2017b). Un résultat intrigant en213
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