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Dynamic compensation" is a robustness property where a perturbed biological circuit maintains a suitable output [Karin O., 

Introduction

In systems biology, i.e., an approach of growing importance to theoretical biology (see, e.g., [START_REF] Alon | An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF]; [START_REF] Klipp | Systems Biology[END_REF]; [START_REF] Kremling | Kompendium Systembiologie -Mathematische Modellierung und Modellanalyse[END_REF]), basic control notions, like feedback loops, are becoming more and more popular (see, e.g., Åström et al. (2008); [START_REF] Cowan | Feedback control as a framework for understanding tradeoffs in biology[END_REF]; [START_REF] Cosentino | An Introduction to Feedback Control in Systems Biology[END_REF]; Del [START_REF] Vecchio | Biomolecular Feedback Systems[END_REF]). This communication intends to show that a peculiar feedback loop permits to clarify the concept of dynamic compensation (DC ) of biological circuits, which was recently introduced by Karin et al. (2016). DC is a robustness property. It implies, roughly speaking, that biological systems are able of maintaining a suitable output despite environmental fluctuations. As noticed by [START_REF] Swisa | Dynamical compensation in physiological circuits[END_REF] such a property arises naturally in physiological systems. The DC of blood glucose, for instance, with respect to variation in insulin sensitivity and insulin secretion is obtained by controlling the functional mass of pancreatic beta cells.

The already existing and more restricted homeostasis, or exact adaptation, deals only with constant reference trajectories, i.e., setpoints. It is achievable via an integral feedback (see, e.g., [START_REF] Alon | Robustness in bacterial chemotaxis[END_REF]; [START_REF] Briat | Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks[END_REF]; [START_REF] Miao | On identifiability of nonlinear ODE models and applications in viral dynamics[END_REF]; [START_REF] Stelling | Robustness of cellular functions[END_REF]; [START_REF] Yi | Robust perfect adaptation in bacterial chemotaxis through integral feedback control[END_REF])

Remark 1.1. PIDs (see, e.g., Åström et al. (2008); [START_REF] O'dwyer | Handbook of PI and PID Controller Tuning Rules[END_REF]) read:

u = K P e + K I e + K D ė (1)
where

• u, y, y are respectively the control and output variables, and the reference trajectory.

• e = y -y is the tracking error,

• K P , K I , K D ∈ R are the tuning gains.

To the best of our knowledge, they are, strangely enough, more or less missing in the literature on theoretical biology, 1 although they lead to the most widely used control strategies in industry.

From K P = K D = 0 in Equation (1), the following integral feedback is deduced:

u = K I e (2)
Compare Equation (2) with the references above on homeostasis, and [START_REF] Somvanshi | Implementation of integral feedback control in biological systems[END_REF]. See [START_REF] Abouaïssa | On ramp metering: Towards a better understanding of ALINEA via model-free control[END_REF], and the references therein, for an application to ramp metering on freeways in order to avoid traffic congestion. This exploratory research report is organized as follows. Intelligent controllers are summarized in Section 2, where the connection between classic PIs and intelligent proportional controllers is also presented. Section 3, which is hevily influenced by [START_REF] Abouaïssa | On ramp metering: Towards a better understanding of ALINEA via model-free control[END_REF], defines dynamic compensation and exact adaptation. Section 4 displays various convincing, but academic, computer experiments. Some concluding remarks may be found in Section 5.

Model-free control and intelligent controllers

See [START_REF] Fliess | Model-free control[END_REF] for full details.

Generalities

The ultra-local model

The poorly known global description of the plant, which is assumed for simplicity's sake to be SISO (single-input single output),3 is replaced by the ultra-local model :

y (ν) = F + αu (3) 
where:

• the control and output variables are respectively u and y;

• the derivation order ν is often equal to 1, sometimes to 2; in practice ν ≥ 3 has never been encountered;

• the constant α ∈ R is chosen by the practitioner such that αu and y (ν) are of the same magnitude; therefore α does not need to be precisely estimated.

The following comments might be useful:

• Equation ( 3) is only valid during a short time lapse and must be continuously updated;

• F is estimated via the knowledge of the control and output variables u and y;

• F subsumes not only the system structure, which most of the time will be nonlinear, but also any external disturbance.

Intelligent controllers

Set ν = 2. Close the loop with the following intelligent proportional-integralderivative controller, or iPID,

u = - F -ẏ * + K P e + K I e + K D ė α (4) 
where:

• e = y -y is the tracking error,

• K P , K I , K D ∈ R are the tuning gains.

When K I = 0, we obtain the intelligent proportional-derivative controller, or iPD,

u = - F -ẏ * + K P e + K D ė α (5) 
When ν = 1 and K I = K D = 0, we obtain the intelligent proportional controller, or iP, which is the most important one,

u = - F -ẏ * + K P e α (6) 
Combining Equations ( 3) and ( 6) yields:

ė + K P e = 0 ( 7 
)
where F does not appear anymore. The tuning of K P is therefore straightforward.

Remark 2.1. See [START_REF] Join | Un résultat intrigant en commande sans modèle[END_REF] for a comment on those various controllers.

Estimation of F

Assume that F in Equation ( 3) is "well" approximated by a piecewise constant function F est . 4 The estimation techniques below are borrowed from [START_REF] Fliess | An algebraic framework for linear identification[END_REF][START_REF] Fliess | Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques[END_REF] and Sira-Ramírez et al. (2014). Let us summarize two types of computations:

1. Rewrite Equation (3) in the operational domain (see, e.g., [START_REF] Erdélyi | Operational Calculus and Generalized Functions[END_REF]):

sY = Φ s + αU + y(0)
where Φ is a constant. We get rid of the initial condition y(0) by multiplying both sides on the left by d ds :

Y + s dY ds = - Φ s 2 + α dU ds
Noise attenuation is achieved by multiplying both sides on the left by s -2 , since integration with respect to time is a lowpass filter. It yields in the time domain the realtime estimate, thanks to the equivalence between d ds and the multiplication by -t,

Fest(t) = - 6 τ 3 t t-τ [(τ -2σ)y(σ) + ασ(τ -σ)u(σ)] dσ (8)
where τ > 0 might be quite small. This integral may of course be replaced in practice by a classic digital filter.

2. Close the loop with the iP (6). It yields:

F est (t) = 1 τ t t-τ ( ẏ -αu -K P e) dσ
Remark 2.2. From a hardware standpoint, a real-time implementation of our intelligent controllers is also cheap and easy [START_REF] Join | Intelligent" controllers on cheap and small programmable devices[END_REF]).

PI and iP

Consider the classic continuous-time PI controller

u(t) = k p e(t) + k i e(τ )dτ (9) 
A crude sampling of the integral e(τ )dτ through a Riemann sum I(t) leads to e(τ )dτ

I(t) = I(t -h) + he(t)
where h is the sampling interval. The corresponding discrete form of Equation ( 9) reads:

u(t) = k p e(t) + k i I(t) = k p e(t) + k i I(t -h) + k i he(t)
Combining the above equation with

u(t -h) = k p e(t -h) + k i I(t -h) yields u(t) = u(t -h) + k p (e(t) -e(t -h)) + k i he(t) (10) 
Remark 2.3. A trivial sampling of the "velocity form" of Equation ( 9)

u(t) = k p ė(t) + k i e(t) (11) 
yields u(t) -u(t -h) h = k p e(t) -e(t -h) h + k i e(t)
which is equivalent to Equation (10).

Replace in Equation ( 6) F by ẏ(t) -αu(t -h) and therefore by

y(t) -y(t -h) h -αu(t -h) It yields u(t) = u(t -h) - e(t) -e(t -h) hα - K P α e(t) (12) 
FACT.-Equations ( 10) and ( 12) become identical if we set • It is straightforward to extend it to the same type of equivalence between PIDs and iPDs.

k p = - 1 αh , k i = - K P αh ( 
• It explains apparently for the first time the ubiquity of PIs and PIDs in the industrial world.

Exact adaptation and dynamic compensation

Equation ( 11) shows that integral and proportional-integral controllers are close when 1. ė remains small, 2. the reference trajectory y * starts at the initial condition y(0) or, at least, at a point in a neighborhood, 3. the measurement noise corruption is low.

The following conditions might be helpful:

• the reference trajectory y * is "slowly" varying, and starts at the initial condition y(0) or, at least, at a point in its neighborhood, 5

• the disturbances and the corrupting noises are rather mild.

Then the performances of the integral controller should be decent: this is exact adaptation, or homeostasis. When the above conditions are not satisfied, dynamic compensation means that one at least of the feedback loops in Section 2.1 is negative, i.e., fluctuations around the reference trajectory due to perturbations and input changes are attenuated. 6

5 Setpoints are therefore recovered.

6 The wording "negative feedback" is today common in biology, but, to some extent, neglected in engineering, where it was quite popular long time ago (see, e.g., Küpfmüller et al.

(2017)). Historical details are given by [START_REF] Zeron | Positive and negative feedback in engineering and biology[END_REF] and Del [START_REF] Vecchio | Biomolecular Feedback Systems[END_REF].

Two computer experiments

The two academic examples below provide easily implementable numerical examples. They are characterized by the following features:

• K I = 0.5 (resp. K I = 1) for the integral feedback in the linear (resp. nonlinear) case.

• α = K P = 1 for the the iP ( 6) in both cases.

• The sampling period is 10ms.

• In order to be more realistic, the output is corrupted additively by a zeromean white Gaussian noise of standard deviation 0.01.

Linear case

Consider the input-output system defined by the transfer function 2(s + 1)

s 2 + s + 1
Several reference trajectories are examined:

(i) Setpoint and 50% efficiency loss of the actuator: see Figures 1 see 2.

(ii) Slow connection between two setpoints: see Figures 3 and4.

(iii) Fast connection: see Figures 5 and6.

(iv) Complex reference trajectory: see Figures 7 and8.

In the first scenario, the control efficiency loss is attenuated much faster by the iP than by the integral feedback. The behaviors of the integral feedback and the iP with respect to a slow connection are both good and cannot be really where P pert is a perturbation. Introduce three scenarios:

(i) Setpoint without any perturbation, i.e., P pert = 0: see Figures 9 and10.

(ii) Setpoint with a sine wave perturbation which starts at t = 25s, i.e., • theoretical investigations in Sontag (2010).

P

Conclusion

In order to be fully convincing, this preliminary annoucement on homeostasis ( )). The estimation and identification techniques sketched in Section 2.1 might lead to a better understanding (see also [START_REF] Fliess | Analyse non standard du bruit[END_REF][START_REF] Fliess | Critique du rapport signal à bruit en communications numériques[END_REF]). 

  13) Remark 2.4. This path breaking result was first stated by d'Andréa-Novel et al. (2010):

  Figure 1: Integral feedback, constant reference trajectory, control efficiency loss

  extensions needs of course to exhibit true biological examples. In our context noise corruption is also a hot topic (see, e.g., Briat et al. (2016); Sun et al.

  Figure 9: Integral feedback, constant reference trajectory, without any perturbation

For a multivariable extension, see, e.g.,[START_REF] Springer | A model-free control strategy for an experimental greenhouse with an application to fault accommodation[END_REF];[START_REF] Menhour | An efficient model-free setting for longitudinal and lateral vehicle control. Validation through the interconnected pro-SiVIC/RTMaps prototyping platform[END_REF].

This is a weak assumption (see, e.g.,[START_REF] Bourbaki | Fonctions d'une variable réelle[END_REF]).