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aLIX (CNRS, UMR 7161), École polytechnique, 91128 Palaiseau, France.
Michel.Fliess@polytechnique.edu

bCRAN (CNRS, UMR 7039), Université de Lorraine, BP 239,
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Abstract

Short-term forecasts and risk management for photovoltaic energy is studied

via a new standpoint on time series: a result published by P. Cartier and Y.

Perrin in 1995 permits, without any probabilistic and/or statistical assumption,

an additive decomposition of a time series into its mean, or trend, and quick

fluctuations around it. The forecasts are achieved by applying quite new esti-

mation techniques and some extrapolation procedures where the classic concept

of “seasonalities” is fundamental. The quick fluctuations allow to define easily

prediction bands around the mean. Several convincing computer simulations

via real data, where the Gaussian probability distribution law is not satisfied,

are provided and discussed. The concrete implementation of our setting needs

neither tedious machine learning nor large historical data, contrarily to many

other viewpoints.

Keywords: Solar energy, short-term forecasts, prediction bands, time series,

mean, quick fluctuations, persistence, risk, volatility, normality tests.

∗Corresponding author.

Preprint submitted to Solar Energy March 17, 2018



1. Introduction1

Many scientific works and technological issues (see, e.g., Hagenmeyer et al.2

(2016)) are related to the Energiewende, i.e., the internationally known German3

word for the “transition to renewable energies.” Among them weather prediction4

is crucial. Its history is a classic topic (see, e.g., Lynch (2008) and references5

therein). Reikard (2009) provides an excellent introduction to our more specific6

subject, i.e., short-term forecasting: “The increasing use of solar power as a7

source of electricity has led to increased interest in forecasting radiation over8

short time horizons. Short-term forecasts are needed for operational planning,9

switching sources, programming backup, and short-term power purchases, as10

well as for planning for reserve usage, and peak load matching.” Time series11

analysis (see, e.g., Antonanzas et al. (2016)) is quite popular for investigating12

such situations: See, e.g., Bacher et al. (2009); Behrang et al. (2010); Boland13

(1997, 2008, 2015a,b); Diagne et al. (2013); Duchon et al. (2012); Fortuna et14

al. (2016); Grantham et al. (2016); Hirata et al. (2017); Inman et al. (2013);15

Lauret et al. (2015); Mart́ın et al. (2010); Ordiano et al. (2016); Paoli et al.16

(2010); Prema et al. (2015); Reikard (2009); Trapero et al. (2015); Voyant et al.17

(2011, 2013, 2015); Wu et al. (2011); Yang et al. (2015); Zhang et al. (2015), . . . ,18

and references therein. The developed viewpoints are ranging from the rather19

classic setting, stemming from econometrics to various techniques from artificial20

intelligence and machine learning, like artificial neural networks.21

No approach will ever rigorously produce accurate predictions, even nowcast-22

ing, i.e., short-term forecasting. To the best of our knowledge, this unavoidable23

uncertainty, which ought to play a crucial rôle in the risk management of solar24

energy, starts only to be investigated (see, e.g., David et al. (2016); Ordiano et25

al. (2016); Rana et al. (2015, 2016); Scolari et al. (2016); Trapero (2016)). As26

noticed by some authors (see, e.g., David et al. (2016); Trapero (2016), this lack27

of precision might be related to volatility, i.e., a most popular word in econo-28

metrics and financial engineering. Let us stress however the following criticisms,29

that are borrowed from the financial engineering literature:30
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1. Wilmott (2006) (chap. 49, p. 813) writes: Quite frankly, we do not know31

what volatility currently is, never mind what it may be in the future.32

2. According to Mandelbrot et al. (2004), the existing mathematical defini-33

tions suffer from poor probabilistic assumptions.34

3. Goldstein et al. (2007) exhibits therefore multiple ways for computing35

volatility which are by no means equivalent and might even be contradic-36

tory and therefore misleading.37

A recent conference announcement (Join et al. (2016)) is developed here. It is38

based on a new approach to time series that has been introduced for financial39

engineering purposes (Fliess et al. (2009, 2011, 2015a,b)). A theorem due to40

Cartier et al. (1995) yields under very weak assumptions on time series an41

additive decomposition into its mean, or trend, and quick fluctuations around42

it. Let us emphasize the following points:43

• The probabilistic/statistical nature of those fluctuations does not play any44

rôle.145

• No modeling via difference/differential equations is necessary: it is a46

model-free setting.247

• Implementation is possible without arduous machine learning and large48

historical data.49

A clear-cut definition of volatility is moreover provided. It is inspired by the50

1This fact should be viewed as fortunate since this nature is rather mysterious if real data

are involved.
2At least two other wordings, namely “nonparametric” or “data-driven,” instead of “model-

free” would have been also possible. The first one however is almost exclusively related to the

popular field of nonparametric statistics (see, e.g., Härdle et al. (2004); Wasserman (2006)),

that has been also encountered for photovoltaic systems (see, e.g., Ordiano et al. (2016)).

The second one has also been recently used, but in a different setting (see, e.g., Ordiano et

al. (2017)). Let us highlight the numerous accomplishments of model-free control (Fliess et

al. (2013)) in engineering. See for instance renewable energy Bara et al. (2017), Jama et al.

(2015), Join et al. (2010), and agricultural greenhouses Lafont et al. (2015).
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mean absolute error (MAE ) which has been proved already to be more con-51

venient in climatic and environmental studies than the root mean square error52

(RMSE ) (Willmott et al. (2005)). This fact is to a large extent confirmed by53

Chai et al. (2014) by Section 3.2, which shows that the fluctuations are not54

Gaussian. See, e.g., (Hyndman (2006)) for further theoretical investigations.55

Confidence intervals, i.e., a well known notion in statistics (Cox et al. (1974);56

Willink (2013)), do not make much sense since the probabilistic nature of the57

uncertainty is unknown. We are therefore replacing them by prediction bands.358

They mimic to some extent the Bollinger bands (Bollinger (2001)) from technical59

analysis, i.e., a widespread approach to financial engineering (see, e.g., Béchu60

et al. (2014); Kirkpatrick et al. (2010)). To pinpoint the efficiency of our tools,61

numerical experiments via real data stemming from two sites are presented.62

Our paper is organized as follows. Time series are the core of Section 2,63

where algebraic nowcasting and prediction bands are respectively presented in64

Sections 2.4 and 2.7. The numerical experiments are presented and discussed in65

Section 3. Considerations on future investigations are presented in Section 4.66

2. Time series67

2.1. Nonstandard analysis: A short introduction68

Robinson (1996) introduced nonstandard analysis in the early 60’s (see, e.g.,69

Dauben (1995)). It is based on mathematical logic and vindicates Leibniz’s70

ideas on “infinitely small” and “infinitely large” numbers. Its presentation by71

Nelson (1977) (see also Nelson (1987) and Diener et al. (1995, 1989)), where72

the logical background is less demanding, has become more widely used. As73

demonstrated by Harthong (1981), Lobry (2008), Lobry et al. (2008), and several74

other authors, nonstandard analysis is a marvelous tool for clarifying in a most75

intuitive way various questions from applied sciences.76

3We might also employ the terminology confidence bands. To the best of our knowledge,

it has been already employed elsewhere but with another definitions (see, e.g., Härdle et al.

(2004)).
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2.2. Time series and nonstandard analysis77

2.2.1. A nonstandard definition of time series78

Take a time interval [0, 1]. Introduce as often in nonstandard analysis the

infinitesimal sampling

T = {0 = t0 < t1 < · · · < tν = 1} (1)

where ti+1 − ti, 0 ≤ i < ν, is infinitesimal, i.e., “very small.” A time series X79

is a function T→ R.80

Remark 2.1. The normalized time interval [0, 1] is introduced for notational81

simplicity. It will be replaced here by a time lapse from a few minutes to one82

hour. Infinitely small or large numbers should be understood as mathematical83

idealizations. In practice a time lapse of 1 second (resp. hour) should be viewed84

as quite small when compared to 1 hour (resp. month). Nonstandard analysis85

may therefore be applied in concrete situations.86

2.2.2. The Cartier-Perrin theorem87

The Lebesgue measure on T is the function ` defined on T\{1} by `(ti) =

ti+1 − ti. The measure of any interval [c, d] ⊂ T, c ≤ d, is its length d− c. The

integral over [c, d] of the time series X(t) is the sum∫
[c,d]

Xdτ =
∑
t∈[c,d]

X(t)`(t)

X is said to be S-integrable if, and only if, for any interval [c, d] the integral88 ∫
[c,d]
|X|dτ is limited, i.e., not infinitely large, and, if d − c is infinitesimal,89 ∫

[c,d]
|X|dτ is also infinitesimal.90

X is S-continuous at tι ∈ T if, and only if, f(tι) ' f(τ) when tι ' τ .4 X is91

said to be almost continuous if, and only if, it is S-continuous on T \ R, where92

R is a rare subset.5 X is Lebesgue integrable if, and only if, it is S-integrable93

and almost continuous.94

4a ' b means that a− b is infinitesimal.
5The set R is said to be rare (Cartier et al. (1995)) if, for any standard real number α > 0,

there exists an internal set A ⊃ R such that m(A) ≤ α.
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A time series X : T → R is said to be quickly fluctuating, or oscillating,95

if, and only if, it is S-integrable and
∫
A
Xdτ is infinitesimal for any quadrable96

subset.697

Let X : T → R be a S-integrable time series. Then, according to the

Cartier-Perrin theorem (Cartier et al. (1995)),7 the additive decomposition

X(t) = E(X)(t) +Xfluctuat(t) (2)

holds where98

• E(X)(t), which is called the mean, or trend,8 is Lebesgue integrable;99

• Xfluctuat(t) is quickly fluctuating.100

The decomposition (2) is unique up to an additive infinitesimal quantity. Let101

us stress once again that the above mean is independent of any probabilistic102

modeling.9103

2.3. Volatility104

According to105

• our discussion about mean absolute errors (MAE) in Section 1,106

• the fact, which follows at once from the Cartier-Perrin theorem, that |X−107

E(X)| is S-integrable,108

define the volatility vol(X)(t) of X(t) by

vol(X)(t) = E(|X − E(X)|)(t) (3)

E(|X − E(X)|)(t) in Equation (3) is nothing else than the mean of |X(t) −109

E(X)(t)|.110

6A set is quadrable Cartier et al. (1995) if its boundary is rare.
7The presentation in the article by Lobry et al. (2008) is less technical. We highly recom-

mend it. Note that it also includes a fruitful discussion on nonstandard analysis.
8“Trend” would be the usual terminology in technical analysis (see, e.g., Béchu et al.

(2014); Kirkpatrick et al. (2010). It was therefore used by Fliess et al. (2009).
9Let us mention that Cartier et al. (1995) also introduced the notion of martingales (see,

e.g., Williams (1991)) without using any probabilistic tool.
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2.4. Forecasting via algebraic estimation techniques111

In order to forecast via the above setting, new estimation tools have to be112

summarized (see, e.g., Fliess et al. (2003, 2008a,b); Mboup et al. (2010); Sira-113

Ramı́rez et al. (2014)).10
114

2.4.1. First calculations115

Start with a polynomial time function

p1(t) = a0 + a1t, t ≥ 0, a0, a1 ∈ R,

of degree 1. Rewrite thanks to classic operational calculus (see, e.g., Yosida

(1984))11 p1 as

P1 =
a0

s
+
a1

s2

Multiply both sides by s2:

s2P1 = a0s+ a1 (4)

Take the derivative of both sides with respect to s, which corresponds in the

time domain to the multiplication by −t:

s2 dP1

ds
+ 2sP1 = a0 (5)

The coefficients a0, a1 are obtained via the triangular system of equations (4)-

(5). We get rid of the time derivatives, i.e., of sP1, s2P1, and s2 dP1

ds , by mul-

tiplying both sides of Equations (4)-(5) by s−n, i.e., n ≥ 3 (resp n ≥ 2) for

Equation (4) (resp. (5)). The corresponding iterated time integrals are lowpass

filters (see, e.g., Shenoi (2006)): they attenuate the corrupting noises, which

are viewed as highly fluctuating phenomena (Fliess (2006)). A quite short time

10Those techniques have already been successfully employed in engineering. In signal pro-

cessing, see, e.g., the recent publications by Beltran-Carbajala et al. (2017) and Morales et

al. (2016).
11The computations below are often presented via the classic Laplace transform (see, e.g.,

Doetsch (1976)). Then s is called the Laplace variable.
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window [0, t] is sufficient for obtaining accurate estimates â0, â1, of a0, a1, where

n = 2, 3:

â0 =
2

t2

∫ t

0

(2t− 3τ)p(τ)dτ

and

â1 = − 6

t3

∫ t

0

(t− 2τ)p(τ)dτ

This last formula shows that a derivative estimate is obtained via integrals.116

Lanczos (1956) was perhaps the first author to suggest such an approach. In117

practice, the above integrals are of course replaced by straightforward linear118

digital filters (see, e.g., Shenoi (2006)).119

2.5. Back to time series and short-term forecasts120

Assume that the following rather weak assumption holds true: the mean

E(X(t)) may be associated with a differentiable real-valued time function. Then,

on a short time lapse, E(X(t)) is well approximated by a polynomial function

of degree 1. The above calculations yield via sliding time windows numeri-

cal estimates E(X)estim(t) and d
dtE(X)

estim
(t) of the mean and its derivative.

Causality is taken into account via backward calculations with respect to time.

As in (Fliess et al. (2009, 2011)), forecasting the time series X(t) boils down

to an extrapolation of its mean E(X)(t). If T > 0 is not ‘too large,” i.e., a

few minutes in our context, a first order Taylor expansion yields the following

extrapolation for prediction at time t+ T

Xpredict(t+ T ) = E(X)estim(t) +

(
d

dt
E(X)

estim
(t)

)
× T (6)

2.6. Forecasting for a larger time horizon121

With forecasts for a time horizon equal to 1 hour, Equation (6) would provide122

poor results. Seasonalities, i.e., a more or less periodic pattern, which is classic123

in time series analysis (see, e.g., Brockwell et al. (1991); Mélard (2008)) will124

be used here. A single day is an obvious season with respect to photovoltaic125

energy. Figures 7, 10 show that the corresponding pattern may be reasonably126

well approximated by a parabola D(t) = α2t
2 + α1t + α0. Standard least127
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square techniques permit to obtain such a suitable parabola, that is the set128

of parameters {α0, α1, α2}, only with the data collected during a single day.129

Replace Equation (6) by130

Xpredict(t+ T ) = E(X)estim(t) +
(
Ḋ(t− 1.day)

)
× T (7)

where131

• T > 0 is the time horizon, here between 30 minutes and 1 hour;132

• D(t− 1.day) is estimated via the data from the day before;133

• Ḋ(t− 1.day) is its derivative.134

This formula is useful since the parabola is erasing the bumps and the hollows135

on the trend. Taking derivatives around such bumps and holes leads obviously136

to a wrong forecasting for a larger time horizon.137

2.7. Prediction bands138

Equation (3) yields the prediction Volpredict(X)(t + T ) of the volatility at

time t+ T via the following persistence law (Lauret et al. (2015)):

Volpredict(X)(t+ T ) = Vol(X)(t) = E(|X − E(X)|)(t) (8)

Define via Equation (8) the first prediction band

CB1(t+ T ) = Xpredict(t+ T )−Volpredict(X)(t+ T )

≤ CB1(t+ T ) ≤

Xpredict(t+ T ) + Volpredict(X)(t+ T ) = CB1(t+ T )

(9)

In order to improve it, set

CB2(t+ T ) = Xpredict(t+ T )− αt+TVolpredict(X)(t+ T )

≤ CB2(t+ T ) ≤

Xpredict(t+ T ) + αt+TVolpredict(X)(t+ T ) = CB2(t+ T )

(10)
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where the coefficient αt+T > 0 may be chosen in various ways. If, for instance,139

αt+T = 1, we are back to Equation (9). Here we select αt+T such that the band140

(10) contains during the 3 previous days 68% of the available data.12
141

Taking into account the global and diffuse radiations under clear sky will

obviously improve the above band (10). Note that clear sky models played

already some rôle in solar irradiation and irradiance forecasting via time series

(see, e.g., Cros et al. (2013); Inman et al. (2013)). This is achieved here by

using the quite famous solis model (Mueller et al. (2004); Ineichen (2008)). The

clear sky global horizontal irradiance Ig,clsk reaching the ground and the clear

sky beam radiation Ib,clsk are defined by (Ineichen (2008)):

Ig,clsk = I0 exp

(
− τg

(sinh)g

)
sinh (11)

Ib,clsk = I0 exp

(
− τb

(sinh)b

)
(12)

where142

• I0 is the extraterrestrial radiation (depending of the day of the year),143

• h is the solar elevation (depending of the hour of the day),144

• τg and τb are respectively the global and beam total atmospheric optical145

depths,146

• g and b are fitting parameters.147

Diffuse radiation Id,clsk is defined by

Id,clsk = Ig,clsk − Ib,clsk

12The quantity 68% is obviously inspired by the theory confidence intervals with respect to

Gaussian probability distributions.
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It yields

CB3(t+ T ) = max (Id,clsk(t), Xpredict(t+ T )− αt+TVolpredict(X)(t+ T ))

≤ CB3(t+ T ) ≤

min (1.1× Ig,clsk(t), Xpredict(t+ T ) + αt+TVolpredict(X)(t+ T )) = CB3(t+ T )

(13)

where min(�(t),4(t)) and max(�(t),4(t)) are respectively the minimum and148

maximum values of the arguments �(t) and 4(t) at time t.149

The safety margin corresponding to the multiplicative factor 1.1 takes into150

account a modeling error on Ig,clsk (Ineichen (2008)), whereas Id,clsk does not151

necessitate such a correction (Ineichen (2008)).152

3. Computer experiments via real data153

Three time horizons are considered: 1, 15 and 60 minutes. The following154

points should be added:155

• no exogenous variable,156

• no need of large historical data,157

• unsupervised method.158

3.1. Data159

The full year data were collected from two sites in 2013 by means of CMP11160

pyranometer (Kipp & Zonen):161

• Nancy in the East of France. It has usually a relatively narrow annual162

temperature range.163

• Ajaccio in Corsica, a French island in the Mediterranean sea. This coastal164

town has hot and sunny summers and mild winters.165
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Figure 1: Global irradiation profile for the two sites in February

The time granularity of our solar irradiance measurements is 1 minute. Missing166

values for the sites are less than 2%.13 See Figures 1 and 2 for excerpts. The167

numerical values of the parameters in Equations (11) and (12), are:14
168

• Nancy: τg = 0.49, g = 0.39, τb = 0.66, b = 0.51;169

• Ajaccio: τg = 0.43, g = 0.33, τb = 0.64, b = 0.51.170

3.2. Normality tests171

To better justify our definitions of volatility in Section 2.3 and of prediction172

bands in Section 2.7, we show that, if the fluctuations around the trends are173

viewed as random variables, they are not Gaussian. Three classic tests (see,174

e.g., Jarque et al. (1987); Judge et al. (1988); Thode (2002)) are used:175

• Jarque-Bera,176

• Kolmogorov-Smirnov,177

13The data are cleaned as in David et al. (2016).
14See, e.g., the WEB site of AERONET Data Synergy Tool.
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Figure 2: Global irradiation profile for the two sites in June

• Lilliefors.178

Figures 3, 4, 5 and 6 show most clearly that the Gaussian property is not sat-179

isfied.180

181

3.3. Presentation of some results182

Figures 1 and 2 present global irradiation during 1 month. Figure 1 displays183

an irregular radiation behavior during winter. As shown by Figure 1-(a) this184

is especially true for Nancy. During summer, Figure 2, exhibits a nice daily185

seasonality even if some deteriorations show up for Nancy.186

The red line in Figures 7, 8, 10, 11 on the one hand, and in Figures 9, 12 on the187

other hand, show the forecasts according respectively to Equations (6) and (7).188

189

Remark 3.1. We follow a common practice by removing night hours, i.e.,190

hours where the solar elevation h in Equations (11)-(12) is less than 10 de-191

grees.192
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Figure 3: Nancy, February : Signal distribution (blue) and the Gaussian distribution (red)
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Figure 4: Nancy, June : Signal distribution (blue) and the Gaussian distribution (red)
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Figure 5: Ajaccio, February : Signal distribution (blue) and the Gaussian distribution (red)
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Figure 6: Ajaccio, June : Signal distribution (blue) and the Gaussian distribution (red)

The prediction bands defined in Section 2.7 are also displayed in the previous193

figures. Note the following points:194

1. by construction, CB2 yields larger bands than CB1,195

2. the mean interval length is reduced with CB3,196

3. the widths of the bands increase with the time horizon,197

4. Daily profiles, Figures 7, 8, 9 on the one hand, and 10, 11, 12 on the other198

hand demonstrate that forecasts are better in June than in February.199

In order to quantify comparisons, introduce the following quantities:200

• The Mean Interval Length, or MIL stems from the Mean Relative Error

(MRL) (Rana et al. (2015, 2016); Scolari et al. (2016)). It is given by

MILi =

∑N
k=1 BWi(tk)∑N
k=1X(tk)

i = 1, 2, 3

where201

– N is the number of measurements,202

– BWi = CBi(tk + T )− CBi(tk + T ) ≥ 0, is the band width,203

– X(tk) ≥ 0 the irradiance measurement.204

• The Prediction Interval Coverage Probability, or PICP, (Rana et al. (2015,

2016); Scolari et al. (2016)) is defined by

PICPi =

∑M
k=1 ck
M

i = 1, 2, 3
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where205

– M is the number of predictions,206

– ck = 1 if the prediction is inside the bands, i.e., CBi(tk + T ) ≤207

X(tk + T ) ≤ CBi(tk + T ),208

– ck = 0 otherwise.209

A quite large MILi with a PICPi close to 1 is inefficient for grid management.210

Our objective is a large PICPi and a low MILi. Consequently, a compromise is211

required. Figures 13, 14, 15 and 16 present MILi vs PICPi for all forecasting212

horizons.213

On these Figures, four areas characterise the CB qualities. Thus, if a bound214

is in the “good” area, the result is more interesting than in the “bad” and even215

more than in the “very bad” areas but less interesting than in the “very good”216

zone. According to the clear sky concept and to the ad-hoc computing method-217

ologies Mueller et al. (2004); Ineichen (2008), the measured global irradiance is218

between the computed irradiance under clear sky and under totally cloudy sky.219

So 100% of the predictions, i.e., PICPi = 1, should be included between the220

bounds defined by the global radiation Ig,clsk and the diffuse radiation Id,clsk.221

Uncertainties and Solis modeling errors explain why it is not always the case.222

The space is divided in four zones. The blue line is the vertical limit. It223

corresponds to a PICP of 0.5: it means that 50% of predictions are in the band.224

The green line is the horizontal limit. It defines the limit of relevance: all the225

intervals with a MIL > 1 are not really interesting since the bands are too226

large. For case 1 (CB1) and 2 (CB2), we find coherent results because the227

PICP are respectively close to 70% and 50%. Regarding case 2, the MIL is228

too important. Regarding case 3 (CB3), the best compromise between low MIL229

and high PICP is obtained thanks to the clear sky model.230

3.4. Some preliminary comments on comparisons231

Comparing our results with the huge set of numerical calculations in the232

whole academic literature is obviously beyond the reach of a single journal pub-233
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Figure 7: Nancy, February, 5min forecasting: irradiance (blue), its prediction (red) and pre-

diction band (black - -)
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Figure 8: Nancy, February, 15min forecasting: irradiance (blue), its prediction (red) and

prediction band (black - -)
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Figure 9: Nancy, February, 60min forecasting: irradiance (blue), its prediction (red) and

prediction band (black - -)
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Figure 10: Nancy, June, 5min forecasting: irradiance (blue), its prediction (red) and predic-

tion band (black - -)
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Figure 11: Nancy, June, 15min forecasting: irradiance (blue), its prediction (red) and pre-

diction band (black - -)
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Figure 12: Nancy, June, 60min forecasting: irradiance (blue), its prediction (red) and pre-

diction band (black - -)
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Figure 13: Nancy, February: Performance evaluation
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Figure 14: Nancy, June: Performance evaluation
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Figure 15: Ajaccio, February: Performance evaluation
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Figure 16: Ajaccio, June: Performance evaluation
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lication. Let us nevertheless summarize the observations in Join et al. (2014);234

Voyant et al. (2015) on short-term forecasting with respect to artificial neural235

networks:236

1. the performances of the “algebraic” setting, that is presented here, are237

perhaps slightly better than those via neural nets. For the irradiance238

(resp. irradiation), the mean absolute error (MAE) between the forecasts239

and the true values is 26.6% (resp. 23.9%) vs 35.44% (resp. 22.36%).240

2. When looking at big data and machine learning, the behavior of the al-241

gebraic setting looks much better. Neural nets need data during 3 years242

whereas the algebraic viewpoint only 1 day.243

With respect, for instance, to Grantham et al. (2016); David et al. (2016); Trap-244

ero (2016), note that time-consuming and cumbersome calibrations to obtain245

a convincing probability law, a time series modeling via a difference equation,246

and a suitable autoregressive conditional heteroskedasticity (ARCH ) or gener-247

alized autoregressive conditional heteroskedasticity (GARCH )15 become quite248

irrelevant.249

4. Conclusion250

The positive results obtained in this paper ought of course to be verified251

by considering more diverse situations and by launching more thorough com-252

parisons than in Section 3.4. For future researches, let us emphasize the two253

following directions:254

• The possibility of extending our techniques to larger time horizons is an-255

other key point.256

• Asymmetric prediction bands might be useful in practice for energy man-257

agement.258

15The popular concepts of ARCH and GARCH were respectively introduced by Engle (1982)

and Bollerslev (1986). Everyone should read the harsh comments by Mandelbrot et al. (2004).
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• Is the causality analysis by Fliess et al. (2015a) useful to improve our fore-259

casting techniques if other facts are taken into account (see, e.g., Badosa260

et al. (2015))?261

The concrete implementation of our approach should be rather straightforward.262

Finally, if our standpoint encounters some success, the probabilistic techniques263

(see, e.g., Appino et al. (2018); Gneiting et al. (2014); Hong et al. (2016); Lauret264

et al. (2017)), which are a today mainstay in all the fields of energy forecasting,265

price included, might become clearly less central.266

Acknowledgements. The authors thank warmly the anonymous reviewers for267

their most helpful comments.268

References269

Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F.J.,270

Antonanzas-Torres, F., 2016. Review of photovoltaic power forecasting. Solar271

Ener. 136, 78–111.272
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