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Short-term forecasts and risk management for photovoltaic energy is studied via a new standpoint on time series: a result published by P. Cartier and Y.

Perrin in 1995 permits, without any probabilistic and/or statistical assumption, an additive decomposition of a time series into its mean, or trend, and quick fluctuations around it. The forecasts are achieved by applying quite new estimation techniques and some extrapolation procedures where the classic concept of "seasonalities" is fundamental. The quick fluctuations allow to define easily prediction bands around the mean. Several convincing computer simulations via real data, where the Gaussian probability distribution law is not satisfied, are provided and discussed. The concrete implementation of our setting needs neither tedious machine learning nor large historical data, contrarily to many other viewpoints.

Introduction

Many scientific works and technological issues (see, e.g., [START_REF] Hagenmeyer | Information and communication technology in energy lab 2.0: Smart energies system simulation and control center with an open-street-map-based power flow simulation example[END_REF]) are related to the Energiewende, i.e., the internationally known German word for the "transition to renewable energies." Among them weather prediction is crucial. Its history is a classic topic (see, e.g., [START_REF] Lynch | The origins of computer weather prediction and climate modeling[END_REF] and references therein). [START_REF] Reikard | Predicting solar radiation at high resolutions: A comparison of time series forecasts[END_REF] provides an excellent introduction to our more specific subject, i.e., short-term forecasting: "The increasing use of solar power as a source of electricity has led to increased interest in forecasting radiation over short time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, and short-term power purchases, as well as for planning for reserve usage, and peak load matching." Time series analysis (see, e.g., [START_REF] Antonanzas | Review of photovoltaic power forecasting[END_REF]) is quite popular for investigating such situations: See, e.g., [START_REF] Bacher | Online short-term solar power forecasting[END_REF]; [START_REF] Behrang | The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data[END_REF]; [START_REF] Boland | Time series analysis of climatic variables[END_REF][START_REF] Boland | Time series modelling of solar radiation[END_REF]Boland ( , 2015a,b),b); [START_REF] Diagne | Review of solar irradiance forecasting methods and a proposition for small-scale insular grids[END_REF]; [START_REF] Duchon | Time Series Analysis in Meteorology and Climatology: An Introduction[END_REF]; [START_REF] Fortuna | Nonlinear Modeling of Solar Radiation and Wind Speed Time Series[END_REF]; [START_REF] Grantham | Nonparametric short-term probabilistic forecasting for solar radiation[END_REF]; [START_REF] Hirata | Improving time series prediction of solar irradiance after sunrise: Comparison among three methods for time series prediction[END_REF]; [START_REF] Inman | Solar forecasting methods for renewable energy integration[END_REF]; [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF]; [START_REF] Martín | Prediction of global solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning[END_REF]; [START_REF] Ordiano | Nearest-neighbor based non-parametric probabilistic forecasting with applications in photovoltaic systems[END_REF]; [START_REF] Paoli | Forecasting of preprocessed daily solar radiation time series using neural networks[END_REF]; [START_REF] Prema | Development of statistical time series models for solar power prediction[END_REF]; [START_REF] Reikard | Predicting solar radiation at high resolutions: A comparison of time series forecasts[END_REF]; [START_REF] Trapero | Short-term solar irradiation forecasting based on Dynamic Harmonic Regression[END_REF]; [START_REF] Voyant | Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation[END_REF][START_REF] Voyant | Multi-horizon solar radiation forecasting for Mediterranean locations using time series models[END_REF]Voyant et al. ( , 2015)); [START_REF] Wu | Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN[END_REF]; [START_REF] Yang | Forecasting of global horizontal irradiance by exponential smoothing, using decompositions[END_REF]; [START_REF] Zhang | A suite of metrics for assessing the performance of solar power forecasting[END_REF], . . . , and references therein. The developed viewpoints are ranging from the rather classic setting, stemming from econometrics to various techniques from artificial intelligence and machine learning, like artificial neural networks.

No approach will ever rigorously produce accurate predictions, even nowcasting, i.e., short-term forecasting. To the best of our knowledge, this unavoidable uncertainty, which ought to play a crucial rôle in the risk management of solar energy, starts only to be investigated (see, e.g., [START_REF] David | Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models[END_REF]; [START_REF] Ordiano | Nearest-neighbor based non-parametric probabilistic forecasting with applications in photovoltaic systems[END_REF]; [START_REF] Rana | 2D-interval forecasts for solar power production[END_REF][START_REF] Rana | Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power[END_REF]; [START_REF] Scolari | Ultra-shortterm prediction intervals of photovoltaic AC active power[END_REF]; [START_REF] Trapero | Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates[END_REF]). As noticed by some authors (see, e.g., [START_REF] David | Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models[END_REF]; [START_REF] Trapero | Calculation of solar irradiation prediction intervals combining volatility and kernel density estimates[END_REF], this lack of precision might be related to volatility, i.e., a most popular word in econometrics and financial engineering. Let us stress however the following criticisms, that are borrowed from the financial engineering literature:

1. Wilmott (2006) (chap. 49, p. 813) writes: Quite frankly, we do not know what volatility currently is, never mind what it may be in the future. [START_REF] Mandelbrot | The (Mis)Behavior of Markets: A Fractal View of Risk, Ruin, and Reward[END_REF], the existing mathematical definitions suffer from poor probabilistic assumptions.

According to

3. [START_REF] Goldstein | We don't quite know what we are talking about when we talk about volatility[END_REF] exhibits therefore multiple ways for computing volatility which are by no means equivalent and might even be contradictory and therefore misleading.

A recent conference announcement (Join et al. (2016)) is developed here. It is based on a new approach to time series that has been introduced for financial engineering purposes [START_REF] Fliess | A mathematical proof of the existence of trends in financial time series[END_REF][START_REF] Fliess | A-t-on vraiment besoin d'un modèle probabiliste en ingénierie financière[END_REF](Fliess et al. ( , 2015a,b),b)). A theorem due to [START_REF] Cartier | Integration over finite sets[END_REF] yields under very weak assumptions on time series an additive decomposition into its mean, or trend, and quick fluctuations around it. Let us emphasize the following points:

• The probabilistic/statistical nature of those fluctuations does not play any rôle. 1

• No modeling via difference/differential equations is necessary: it is a model-free setting. 2

• Implementation is possible without arduous machine learning and large historical data.

A clear-cut definition of volatility is moreover provided. It is inspired by the 1 This fact should be viewed as fortunate since this nature is rather mysterious if real data are involved.

2 At least two other wordings, namely "nonparametric" or "data-driven," instead of "modelfree" would have been also possible. The first one however is almost exclusively related to the popular field of nonparametric statistics (see, e.g., [START_REF] Härdle | Nonparametric and Semiparametric Models[END_REF]; [START_REF] Wasserman | All of Nonparametric Statistics[END_REF]), that has been also encountered for photovoltaic systems (see, e.g., [START_REF] Ordiano | Nearest-neighbor based non-parametric probabilistic forecasting with applications in photovoltaic systems[END_REF]).

The second one has also been recently used, but in a different setting (see, e.g., [START_REF] Ordiano | Photovoltaic power forecasting using simple data-driven models without weather data[END_REF]). Let us highlight the numerous accomplishments of model-free control [START_REF] Fliess | Model-free control[END_REF]) in engineering. See for instance renewable energy [START_REF] Bara | Model-free load control for high penetration of solar photovoltaic generation[END_REF], Jama et al.

(2015), Join et al. (2010), and agricultural greenhouses [START_REF] Lafont | A model-free control strategy for an experimental greenhouse with an application to fault accommodation[END_REF].

mean absolute error (MAE ) which has been proved already to be more convenient in climatic and environmental studies than the root mean square error (RMSE ) [START_REF] Willmott | Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance[END_REF]). This fact is to a large extent confirmed by [START_REF] Chai | Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature[END_REF] by Section 3.2, which shows that the fluctuations are not Gaussian. See, e.g., [START_REF] Hyndman | Another look at forecast accuracy metrics for intermittent demand[END_REF]) for further theoretical investigations.

Confidence intervals, i.e., a well known notion in statistics [START_REF] Cox | Theoretical Statistics[END_REF];

Willink (2013)), do not make much sense since the probabilistic nature of the uncertainty is unknown. We are therefore replacing them by prediction bands. 

Time series

2.1. Nonstandard analysis: A short introduction [START_REF] Robinson | Non-standard Analysis[END_REF] introduced nonstandard analysis in the early 60's (see, e.g., [START_REF] Dauben | Abraham Robinson -Nonstandard Analysis: A Personal and Mathematical Odyssey[END_REF]). It is based on mathematical logic and vindicates Leibniz's ideas on "infinitely small" and "infinitely large" numbers. Its presentation by [START_REF] Nelson | Internal set theory[END_REF] (see also [START_REF] Nelson | Radically Elementary Probability Theory[END_REF] and Diener et al. (1995[START_REF] Diener | Analyse non standard[END_REF]), where the logical background is less demanding, has become more widely used. As demonstrated by [START_REF] Harthong | Le moiré[END_REF], [START_REF] Lobry | La méthode des élucidations successives[END_REF] 

T = {0 = t 0 < t 1 < • • • < t ν = 1} (1)
where t i+1 -t i , 0 ≤ i < ν, is infinitesimal, i.e., "very small." A time series X is a function T → R.

Remark Let X : T → R be a S-integrable time series. Then, according to the Cartier-Perrin theorem [START_REF] Cartier | Integration over finite sets[END_REF]), 7 the additive decomposition

X(t) = E(X)(t) + X fluctuat (t) (2) 
holds where

• E(X)(t), which is called the mean, or trend, 8 is Lebesgue integrable;

• X fluctuat (t) is quickly fluctuating.

The decomposition ( 2) is unique up to an additive infinitesimal quantity. Let us stress once again that the above mean is independent of any probabilistic modeling. 9

Volatility

According to

• our discussion about mean absolute errors (MAE) in Section 1,

• the fact, which follows at once from the Cartier-Perrin theorem, that |X -

E(X)| is S-integrable, define the volatility vol(X)(t) of X(t) by vol(X)(t) = E(|X -E(X)|)(t) (3) 
E(|X -E(X)|)(t) in Equation (3) is nothing else than the mean of |X(t) - E(X)(t)|.
6 A set is quadrable [START_REF] Cartier | Integration over finite sets[END_REF] if its boundary is rare. 7 The presentation in the article by [START_REF] Lobry | Nonstandard analysis and representation of reality[END_REF] is less technical. We highly recommend it. Note that it also includes a fruitful discussion on nonstandard analysis.

8 "Trend" would be the usual terminology in technical analysis (see, e.g., Béchu et al.

(2014); [START_REF] Kirkpatrick | Technical Analysis: The Complete Resource for Financial Market Technicians[END_REF]. It was therefore used by [START_REF] Fliess | A mathematical proof of the existence of trends in financial time series[END_REF]. 9 Let us mention that [START_REF] Cartier | Integration over finite sets[END_REF] also introduced the notion of martingales (see, e.g., [START_REF] Williams | Probability with Martingales[END_REF]) without using any probabilistic tool.

Forecasting via algebraic estimation techniques

In order to forecast via the above setting, new estimation tools have to be summarized (see, e.g., [START_REF] Fliess | An algebraic framework for linear identification[END_REF]Fliess et al. ( , 2008a,b),b); Mboup et al. (2010); Sira-Ramírez et al. ( 2014)). 10

First calculations

Start with a polynomial time function

p 1 (t) = a 0 + a 1 t, t ≥ 0, a 0 , a 1 ∈ R,
of degree 1. Rewrite thanks to classic operational calculus (see, e.g., Yosida

(1984)) 11 p 1 as

P 1 = a 0 s + a 1 s 2
Multiply both sides by s 2 :

s 2 P 1 = a 0 s + a 1 (4) 
Take the derivative of both sides with respect to s, which corresponds in the time domain to the multiplication by -t:

s 2 dP 1 ds + 2sP 1 = a 0 (5) 
The coefficients a 0 , a 1 are obtained via the triangular system of equations ( 4)-( 5). We get rid of the time derivatives, i.e., of sP 1 , s 2 P 1 , and s 2 dP1 ds , by multiplying both sides of Equations ( 4)-( 5) by s -n , i.e., n ≥ 3 (resp n ≥ 2) for Equation (4) (resp. ( 5)). The corresponding iterated time integrals are lowpass filters (see, e.g., [START_REF] Shenoi | Introduction to Digital Signal Processing and Filter Design[END_REF]): they attenuate the corrupting noises, which are viewed as highly fluctuating phenomena [START_REF] Fliess | Analyse non standard du bruit[END_REF]). A quite short time 11 The computations below are often presented via the classic Laplace transform (see, e.g., [START_REF] Doetsch | Einführung in Theorie und Anwendung der Laplace-Transformation[END_REF]). Then s is called the Laplace variable.

window [0, t] is sufficient for obtaining accurate estimates â0 , â1 , of a 0 , a 1 , where

n = 2, 3: â0 = 2 t 2 t 0 (2t -3τ )p(τ )dτ and â1 = - 6 t 3 t 0 (t -2τ )p(τ )dτ
This last formula shows that a derivative estimate is obtained via integrals. [START_REF] Lanczos | Applied Analysis[END_REF] was perhaps the first author to suggest such an approach. In practice, the above integrals are of course replaced by straightforward linear digital filters (see, e.g., [START_REF] Shenoi | Introduction to Digital Signal Processing and Filter Design[END_REF]).

Back to time series and short-term forecasts

Assume that the following rather weak assumption holds true: the mean E(X(t)) may be associated with a differentiable real-valued time function. Then, on a short time lapse, E(X(t)) is well approximated by a polynomial function of degree 1. The above calculations yield via sliding time windows numerical estimates E(X) estim (t) and d dt E(X) estim (t) of the mean and its derivative. Causality is taken into account via backward calculations with respect to time.

As in [START_REF] Fliess | A mathematical proof of the existence of trends in financial time series[END_REF][START_REF] Fliess | A-t-on vraiment besoin d'un modèle probabiliste en ingénierie financière[END_REF]), forecasting the time series X(t) boils down to an extrapolation of its mean E(X)(t). If T > 0 is not 'too large," i.e., a few minutes in our context, a first order Taylor expansion yields the following extrapolation for prediction at time t + T Replace Equation ( 6) by

X predict (t + T ) = E(X) estim (t) + d dt E(X) estim (t) × T ( 
X predict (t + T ) = E(X) estim (t) + Ḋ(t -1.day) × T (7) 
where

• T > 0 is the time horizon, here between 30 minutes and 1 hour;

• D(t -1.day) is estimated via the data from the day before;

• Ḋ(t -1.day) is its derivative.

This formula is useful since the parabola is erasing the bumps and the hollows on the trend. Taking derivatives around such bumps and holes leads obviously to a wrong forecasting for a larger time horizon.

Prediction bands

Equation (3) yields the prediction Vol predict (X)(t + T ) of the volatility at time t + T via the following persistence law [START_REF] Lauret | A benchmarking of machine learning techniques for solar radiation forecasting in an insular context[END_REF]):

Vol predict (X)(t + T ) = Vol(X)(t) = E(|X -E(X)|)(t) (8) 
Define via Equation (8) the first prediction band

CB 1 (t + T ) = X predict (t + T ) -Vol predict (X)(t + T ) ≤ CB 1 (t + T ) ≤ X predict (t + T ) + Vol predict (X)(t + T ) = CB 1 (t + T ) (9) 
In order to improve it, set

CB 2 (t + T ) = X predict (t + T ) -α t+T Vol predict (X)(t + T ) ≤ CB 2 (t + T ) ≤ X predict (t + T ) + α t+T Vol predict (X)(t + T ) = CB 2 (t + T ) ( 10 
)
where the coefficient α t+T > 0 may be chosen in various ways. If, for instance, α t+T = 1, we are back to Equation ( 9). Here we select α t+T such that the band 

I g,clsk = I 0 exp - τ g (sin h) g sin h (11) I b,clsk = I 0 exp - τ b (sin h) b (12) 
where • I 0 is the extraterrestrial radiation (depending of the day of the year),

• h is the solar elevation (depending of the hour of the day),

• τ g and τ b are respectively the global and beam total atmospheric optical depths,

• g and b are fitting parameters.

Diffuse radiation I d,clsk is defined by

I d,clsk = I g,clsk -I b,clsk 12 
The quantity 68% is obviously inspired by the theory confidence intervals with respect to Gaussian probability distributions.

It yields

CB 3 (t + T ) = max (I d,clsk (t), X predict (t + T ) -α t+T Vol predict (X)(t + T )) ≤ CB 3 (t + T ) ≤ min (1.1 × I g,clsk (t), X predict (t + T ) + α t+T Vol predict (X)(t + T )) = CB 3 (t + T ) (13) 
where min( (t), (t)) and max( (t), (t)) are respectively the minimum and maximum values of the arguments (t) and (t) at time t.

The safety margin corresponding to the multiplicative factor 1.1 takes into account a modeling error on I g,clsk [START_REF] Ineichen | A broadband simplified version of the Solis clear sky model[END_REF]), whereas I d,clsk does not necessitate such a correction [START_REF] Ineichen | A broadband simplified version of the Solis clear sky model[END_REF]).

Computer experiments via real data

Three time horizons are considered: 1, 15 and 60 minutes. The following points should be added:

• no exogenous variable,

• no need of large historical data,

• unsupervised method.

Data

The full year data were collected from two sites in 2013 by means of CMP11 pyranometer (Kipp & Zonen):

• Nancy in the East of France. It has usually a relatively narrow annual temperature range.

• Ajaccio in Corsica, a French island in the Mediterranean sea. This coastal town has hot and sunny summers and mild winters. The time granularity of our solar irradiance measurements is 1 minute. Missing values for the sites are less than 2%. 13 See Figures 1 and 2 for excerpts. The numerical values of the parameters in Equations ( 11) and ( 12), are: 14

• Nancy: τ g = 0.49, g = 0.39, τ b = 0.66, b = 0.51;

• Ajaccio: τ g = 0.43, g = 0.33, τ b = 0.64, b = 0.51.

Normality tests

To better justify our definitions of volatility in Section 2. • Jarque-Bera,

• Kolmogorov-Smirnov, 13 The data are cleaned as in [START_REF] David | Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models[END_REF].

14 See, e.g., the WEB site of AERONET Data Synergy Tool. Figures 3,4, 5 and 6 show most clearly that the Gaussian property is not satisfied.

Presentation of some results

Figures 1 and 2 present global irradiation during 1 month. Figure 1 6) and ( 7).

Remark 3.1. We follow a common practice by removing night hours, i.e., hours where the solar elevation h in Equations ( 11)-( 12) is less than 10 degrees.

- The prediction bands defined in Section 2.7 are also displayed in the previous figures. Note the following points:

1. by construction, CB 2 yields larger bands than CB 1 , 2. the mean interval length is reduced with CB 3 , 3. the widths of the bands increase with the time horizon, 4. Daily profiles, Figures 7,8, 9 on the one hand, and 10, 11, 12 on the other hand demonstrate that forecasts are better in June than in February.

In order to quantify comparisons, introduce the following quantities:

• The Mean Interval Length, or MIL stems from the Mean Relative Error (MRL) [START_REF] Rana | 2D-interval forecasts for solar power production[END_REF][START_REF] Rana | Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power[END_REF]; [START_REF] Scolari | Ultra-shortterm prediction intervals of photovoltaic AC active power[END_REF]). It is given by

MIL i = N k=1 BW i (t k ) N k=1 X(t k ) i = 1, 2, 3
where -N is the number of measurements,

-BW i = CB i (t k + T ) -CB i (t k + T ) ≥ 0, is the band width, -X(t k ) ≥ 0 the irradiance measurement.
• The Prediction Interval Coverage Probability, or PICP, [START_REF] Rana | 2D-interval forecasts for solar power production[END_REF][START_REF] Rana | Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power[END_REF]; [START_REF] Scolari | Ultra-shortterm prediction intervals of photovoltaic AC active power[END_REF]) is defined by

PICP i = M k=1 c k M i = 1, 2, 3
where -M is the number of predictions,

-c k = 1 if the prediction is inside the bands, i.e., CB i (t k + T ) ≤ X(t k + T ) ≤ CB i (t k + T ), -c k = 0 otherwise.
A quite large MIL i with a PICP i close to 1 is inefficient for grid management.

Our objective is a large PICP i and a low MIL i . Consequently, a compromise is required. Figures 13, 14, 15 and 16 present MIL i vs PICP i for all forecasting horizons.

On these Figures, four areas characterise the CB qualities. Thus, if a bound is in the "good" area, the result is more interesting than in the "bad" and even more than in the "very bad" areas but less interesting than in the "very good" zone. According to the clear sky concept and to the ad-hoc computing methodologies [START_REF] Mueller | Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module[END_REF]; [START_REF] Ineichen | A broadband simplified version of the Solis clear sky model[END_REF], the measured global irradiance is between the computed irradiance under clear sky and under totally cloudy sky.

So 100% of the predictions, i.e., PICP i = 1, should be included between the bounds defined by the global radiation I g,clsk and the diffuse radiation I d,clsk .

Uncertainties and Solis modeling errors explain why it is not always the case.

The space is divided in four zones. The blue line is the vertical limit. It corresponds to a PICP of 0.5: it means that 50% of predictions are in the band.

The green line is the horizontal limit. It defines the limit of relevance: all the intervals with a M IL > 1 are not really interesting since the bands are too large. For case 1 (CB 1 ) and 2 (CB 2 ), we find coherent results because the PICP are respectively close to 70% and 50%. Regarding case 2, the MIL is too important. Regarding case 3 (CB 3 ), the best compromise between low MIL and high PICP is obtained thanks to the clear sky model.

Some preliminary comments on comparisons

Comparing our results with the huge set of numerical calculations in the whole academic literature is obviously beyond the reach of a single journal pub- 1. the performances of the "algebraic" setting, that is presented here, are perhaps slightly better than those via neural nets. For the irradiance (resp. irradiation), the mean absolute error (MAE) between the forecasts and the true values is 26.6% (resp. 23.9%) vs 35.44% (resp. 22.36%). 

Conclusion

The positive results obtained in this paper ought of course to be verified by considering more diverse situations and by launching more thorough comparisons than in Section 3.4. For future researches, let us emphasize the two following directions:

• The possibility of extending our techniques to larger time horizons is another key point.

• Asymmetric prediction bands might be useful in practice for energy management.

• Is the causality analysis by Fliess et al. (2015a) The concrete implementation of our approach should be rather straightforward.

Finally, if our standpoint encounters some success, the probabilistic techniques 

10

  Those techniques have already been successfully employed in engineering. In signal processing, see, e.g., the recent publications by Beltran-Carbajala et al. (2017) and Morales et al. (2016).

(

  10) contains during the 3 previous days 68% of the available data. 12 Taking into account the global and diffuse radiations under clear sky will obviously improve the above band (10). Note that clear sky models played already some rôle in solar irradiation and irradiance forecasting via time series (see, e.g.,[START_REF] Cros | Clear sky models assessment for an operational PV production forecasting solution[END_REF];[START_REF] Inman | Solar forecasting methods for renewable energy integration[END_REF]). This is achieved here by using the quite famous solis model[START_REF] Mueller | Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module[END_REF];[START_REF] Ineichen | A broadband simplified version of the Solis clear sky model[END_REF]). The clear sky global horizontal irradiance I g,clsk reaching the ground and the clear sky beam radiation I b,clsk are defined by[START_REF] Ineichen | A broadband simplified version of the Solis clear sky model[END_REF]):

Figure 1 :

 1 Figure 1: Global irradiation profile for the two sites in February

  3 and of prediction bands in Section 2.7, we show that, if the fluctuations around the trends are viewed as random variables, they are not Gaussian. Three classic tests (see, e.g., Jarque et al. (1987); Judge et al. (1988); Thode (2002)) are used:

Figure 2 :

 2 Figure 2: Global irradiation profile for the two sites in June

  Figures 1 and 2 present global irradiation during 1 month. Figure 1 displays an irregular radiation behavior during winter. As shown by Figure 1-(a) this is especially true for Nancy. During summer, Figure 2, exhibits a nice daily seasonality even if some deteriorations show up for Nancy. The red line in Figures 7, 8, 10, 11 on the one hand, and in Figures 9, 12 on the other hand, show the forecasts according respectively to Equations (6) and (7).

Figure 3 :Figure 4 :Figure 5 :Figure 6 :

 3456 Figure 3: Nancy, February : Signal distribution (blue) and the Gaussian distribution (red)

Figure 7 :Figure 8 :Figure 9 :Figure 10 :Figure 11 :Figure 12 :Figure 16 :

 78910111216 Figure 7: Nancy, February, 5min forecasting: irradiance (blue), its prediction (red) and prediction band (black --)

2.

  When looking at big data and machine learning, the behavior of the algebraic setting looks much better. Neural nets need data during 3 years whereas the algebraic viewpoint only 1 day. With respect, for instance, to Grantham et al. (2016); David et al. (2016); Trapero (2016), note that time-consuming and cumbersome calibrations to obtain a convincing probability law, a time series modeling via a difference equation, and a suitable autoregressive conditional heteroskedasticity (ARCH ) or generalized autoregressive conditional heteroskedasticity (GARCH ) 15 become quite irrelevant.

(

  see, e.g., Appino et al. (2018); Gneiting et al. (2014); Hong et al. (2016); Lauret et al. (2017)), which are a today mainstay in all the fields of energy forecasting, price included, might become clearly less central.

  X is S-continuous at t ι ∈ T if, and only if, f (t ι ) f (τ ) when t ι τ .

	2.1. The normalized time interval [0, 1] is introduced for notational
	simplicity. It will be replaced here by a time lapse from a few minutes to one
	hour. Infinitely small or large numbers should be understood as mathematical
	idealizations. In practice a time lapse of 1 second (resp. hour) should be viewed
	as quite small when compared to 1 hour (resp. month). Nonstandard analysis
	may therefore be applied in concrete situations.
	2.2.2. The Cartier-Perrin theorem	
	The Lebesgue measure on T is the function defined on T\{1} by (t i ) =
	t i+1 -t i . The measure of any interval [c, d] ⊂ T, c ≤ d, is its length d -c. The
	integral over [c, d] of the time series X(t) is the sum
	Xdτ =	X(t) (t)
	[c,d]	t∈[c,d]
	X is said to be S-integrable if, and only if, for any interval [c, d] the integral
	[c,d] |X|dτ is limited, i.e., not infinitely large, and, if d -c is infinitesimal,
	[c,d] |X|dτ is also infinitesimal.	

4 

X is said to be almost continuous if, and only if, it is S-continuous on T \ R, where R is a rare subset. 5 X is Lebesgue integrable if, and only if, it is S-integrable and almost continuous.

A time series X : T → R is said to be quickly fluctuating, or oscillating, if, and only if, it is S-integrable and A X dτ is infinitesimal for any quadrable subset.

6 

  Standard least square techniques permit to obtain such a suitable parabola, that is the set of parameters {α 0 , α 1 , α 2 }, only with the data collected during a single day.

	6)
	2.6. Forecasting for a larger time horizon
	With forecasts for a time horizon equal to 1 hour, Equation (6) would provide
	poor results. Seasonalities, i.e., a more or less periodic pattern, which is classic
	in time series analysis (see, e.g., Brockwell et al. (1991); Mélard (2008)) will
	be used here. A single day is an obvious season with respect to photovoltaic
	energy. Figures 7, 10 show that the corresponding pattern may be reasonably

well approximated by a parabola D(t) = α 2 t 2 + α 1 t + α 0 .

  useful to improve our forecasting techniques if other facts are taken into account (see, e.g., Badosa et al. (2015))?

We might also employ the terminology confidence bands. To the best of our knowledge, it has been already employed elsewhere but with another definitions (see, e.g.,[START_REF] Härdle | Nonparametric and Semiparametric Models[END_REF]).

a b means that a -b is infinitesimal.

The set R is said to be rare[START_REF] Cartier | Integration over finite sets[END_REF]) if, for any standard real number α > 0, there exists an internal set A ⊃ R such that m(A) ≤ α.

The popular concepts of ARCH and GARCH were respectively introduced by[START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom Inflation[END_REF] and[START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF]. Everyone should read the harsh comments by[START_REF] Mandelbrot | The (Mis)Behavior of Markets: A Fractal View of Risk, Ruin, and Reward[END_REF].
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