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Abstract An effective and patient-specific feedback control synthesis for inflamma-
tion resolution is still an ongoing research area. A strategy consisting of manipulating
a pro and anti-inflammatory mediator is considered here as used in some promising
model-based control studies. These earlier studies, unfortunately, suffer from the dif-
ficultly of calibration due to the heterogeneity of individual patient responses even
under similar initial conditions. We exploit a new model-free control approach and
its corresponding “intelligent” controllers for this biomedical problem. A crucial fea-
ture of the proposed control problem is as follows: the two most important outputs
which must be driven to their respective desired states are sensorless. This difficulty
is overcome by assigning suitable reference trajectories to the other two outputs that
do have sensors. A mathematical model, via a system of ordinary differential equa-
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tions, is nevertheless employed as a “virtual” patient for in silico testing. We display
several simulation results with respect to the most varied situations, which highlight
the effectiveness of our viewpoint.

Keywords Immune systems · Inflammatory response · Model-free control ·
Intelligent controllers

1 Introduction

Inflammation is a key biomedical subject (see, e.g., [58,86]) with fascinating con-
nections to diseases like cancer (see, e.g., [10]), AIDS (see, e.g., [27]) and psychiatry
(see, e.g., [56]). Mathematical and computational models investigating these biolog-
ical systems have provided a greater understanding of the dynamics and key mech-
anisms of these processes (see, e.g., [85]). The very content of this particular study
leads citations of mathematical models where differential equations play a prominent
role (see, e.g., [5,6,7,18,23,24,26,28,30,31,40,46,51,59,61,63,64,65,75,83,92]).
The usefulness of those equations for simulation, prediction purposes, and, more gen-
erally, for understanding the intimate mechanisms is indisputable. In addition, some
models have also been used in order to provide a real-time feedback control synthesis
(see, e.g., [8] for an excellent introduction to this important engineering topic) for
treating acute inflammation due to severe infection. Insightful results were obtained
via two main model-based approaches:

– optimal control [12,14,15,44,76,77,78,80],
– model predictive control [25,41,69,96].

Our work in [12,14,15,25,96] made use of the low dimensional system of ordinary
differential equations (ODE) derived in [65] (see also [26]). This four variable model
possesses the following characteristics:

– The model is based on biological first principles, the non-specific mechanisms of
the innate immune response to a generic gram-negative bacterial pathogen.

– A variable representing anti-inflammatory mediators e.g. Interleukin-10, Trans-
forming Growth Factor-β ) is included and plays an important role in mitigating
the negative effects of inflammation to avoid excessive tissue damage.

– Though a qualitative model of acute inflammation, it reproduces several clinically
relevant outcomes: a healthy resolution and two death outcomes.

The calibration of a system of differential equations can be quite difficult since the
identification of various rate parameters requires specific data in sufficient quantities,
which may not be feasible. Additionally, there is much heterogeneity to account for
between patient responses such as the initiating circumstances, patient co-morbidities
and personal characteristics, like genetics, age, gender, . . . . In spite of promising pre-
liminary results in [11,13,96], state estimation and parameter identification of highly
nonlinear models may still require more data than can be reasonably collected. These
roadblocks hamper the use of model-based control strategies in clinical practice in
spite of recent mathematical advances. Here, another route, i.e, model-free control
(MFC) and the corresponding “intelligent” feedback controllers [34], are therefore
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explored.1 We briefly introduce the method before discussing its application to the
scenario of controlling the inflammatory response to pathogen. We begin by replac-
ing the poorly known global description by the ultra-local model given by:

ẏ = F +αu, (1)

where

– the control and output variables are u and y, respectively;
– the derivation order of y is 1 like in most concrete situations;
– α ∈R is chosen by the practitioner such that αu and ẏ are of the same magnitude;
– F is estimated via the measurements of u and y;
– F subsumes not only the unknown system structure but also any perturbation.

Remark 1 The following comparison with computer graphics is borrowed from [34].
To produce an image of a complex curve in space, the equations defining that curve
are not actually used but, instead an approximation of the curve is made with short
straight line segments. Equation (1), which might be viewed as an analogue of such
a segment, should hence not be considered as a global description but instead as a
rough linear approximation.

Remark 2 The estimation of the fundamental quantity F in Equation (1) via the con-
trol and output variables u and y will be detailed in Section 2.2. It connects our ap-
proach to the data-driven viewpoint which has been adopted in control engineering
(see, e.g., [39,42,67,68]) and in studies about inflammation (see, e.g., [9,20,69,84]).

Ideally, data associated with the time courses of the inflammatory response vari-
ables would be generated by measurements from real patients. In our case, it would be
the pro-inflammatory and anti-inflammatory variables of the model (patient) which
we would want to track; and therefore, define these as the reference trajectories (avail-
able data) for the model-free setup. Once the quantity Fest is obtained, the loop is
closed by an intelligent proportional controller, or iP:

u =−Fest− ẏ∗+KPe
α

, (2)

where

– Fest is an estimate of F ;
– y? is the reference trajectory;
– e = y− y? is the tracking error; and
– KP is an usual tuning gain.

With a “good” estimate Fest of F , i.e., F−Fest ' 0, Equations (1)-(2) yield

ė+KPe = F−Fest ' 0

1 This new viewpoint in control engineering has been successfully illustrated in many concrete case-
studies (see, e.g., the references in [34], and [1,2,3,4,17,21,43,47,49,50,52,53,54,57,55,66,72,81,82,
87,88,89,90,91,94,95]). Some of the methods have been patented and some have been applied to life
sciences [35,43,47,57,81].
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Thus e(t)' e(0)exp(−KPt), which implies that

lim
t→+∞

y(t)' y?(t)

if and only if, KP > 0. In other words, the scheme ensures an excellent tracking of the
reference trajectory. This tracking is moreover quite robust with respect to uncertain-
ties and disturbances which can be numerous in a medical setting such as considered
here. This robustness feature is explained by the fact that F in Equation (1) encom-
passes “everything,” without trying to distinguish between its different components.
In our application, sensorless outputs must be driven in order to correct dysfunctional
immune responses of the patient. Here, this difficult problem is solved by assigning
suitable reference trajectories to those systems variables which can be measured. This
feedforward viewpoint is borrowed from the flatness-based control setting [37] (see
also [8,48,73]).

After justifying model-free control in Section 2, Section 3 presents results from
applying the method to a heterogeneous in silico virtual patient population generated
in [25]. The cohort of virtual patients are summarized in Section 3.1. The computer
simulations demonstrate the great robustness of the model-free control strategy with
respect to noise corruption, as demonstrated in Section 3.4. Concluding remarks in
Section 4 discuss some of the potential as well as the remaining challenges of the
approach in the setting of controlling complex immune responses.

A first draft has already been presented in [16].

2 Justification of the model-free approach: A brief sketch

2.0.1 Justification of the ultra-local model

We first justify the ultra-local model given in (1). For notational simplicity, we restrict
to a system with a single control variable u and a single output variable y. Assume
that the system is a causal, or non-anticipative functional; In other words, for any
time instant t > 0, let

y(t) = F (u(τ) | 0≤ τ ≤ t) , (3)
where F depends on

– the past and present but not the future,
– various perturbations, and
– initial conditions at t = 0.

Example 1 A representation of rather general nonlinear functionals, also popular in
the biological sciences, is provided by a Volterra series (see, e.g., [45]):

y(t) =h0(t)+
∫ t

0
h1(t,τ)u(τ)dτ+∫ t

0

∫ t

0
h2(t,τ2,τ1)u(τ2)u(τ1)dτ2dτ1 + . . .∫ t

0
. . .
∫ t

0
hν(t,τν , . . .τ1)u(τν) . . .u(τ1)dτν . . .dτ1

+ . . .
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Solutions of quite arbitrary ordinary differential equations, related to input-output
behaviors, may be expressed as a Volterra series (see, e.g., [36]).

Let

– I ⊂ [0,+∞[ be a compact subset and
– C ⊂C0(I ) be a compact subset, where C0(I ) is the space of continuous func-

tions I → R, which is equipped with the topology of uniform convergence.

Consider the Banach R-algebra S of continuous causal functionals (3) I ×C → R.
If a subalgebra contains a non-zero constant element and separates points in I ×C ,
then it is dense in S according to the classic Stone-Weierstraß theorem (see, e.g.,
[70]). Let A ⊂ S be the set of functionals which satisfy an algebraic differential
equation of the form

E(y, ẏ, . . . ,y(a),u, u̇, . . . ,u(b)) = 0, (4)

where E is a polynomial function of its arguments with real coefficients. It has been
proven in [34] that with this, the conditions of the Stone-Weierstraß theorem are
satisfied and, therefore, A is dense in S.

Assume therefore that our system is “well” approximated by a system defined by
Equation (4). Let ν be an integer, 1≤ ν ≤ a, such that

∂E
∂y(ν)

6≡ 0.

The implicit function theorem yields locally

y(ν) = E (y, ẏ, . . . ,y(ν−1),y(ν+1), . . . ,y(a),u, u̇, . . . ,u(b)).

This may be rewritten as
y(ν) = F +αu. (5)

In most concrete situations such as the one here, the order ν = 1 of derivation, as
in Equation(1), is enough. See [34] for an explanation and for some examples where
ν = 2.

2.1 Closing the loop

If ν = 1 in Equation (5), we are back to Equation (1). The loop is closed with the
intelligent proportional controller (2).

2.2 Estimation of F

Any rather general function [a,b]→ R, a,b ∈ R, a < b, may be approximated by a
step function Fapprox, i.e., a piecewise constant function (see, e.g., [71]). Therefore,
for estimating a suitable approximation of F in Equation (5), the question reduces to
the identification of the constant parameter Φ in

ẏ = Φ +αu. (6)
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Here a recent real-time algebraic estimation/identification techniques are employed
([38,74]). With respect to the well-known notations of operational calculus (see, e.g.,
[32,93]) (which are identical to those of the classic Laplace transform taught every-
where in engineering e.g., [29], [8]), Equation (6) yields:

sY =
Φ

s
+αU + y(0),

where U and Y are the operational analogues of u and y. In the literature, U and Y
are often called the Laplace transforms of u and y, and s is the Laplace variable (see,
e.g., [8]).

We eliminate the initial condition y(0) by left-multiplying both sides by d
ds or, in

other words, by differentiating both sides with respect to s:

Y + s
dY
ds

=−Φ

s2 +α
dU
ds

.

The product by s corresponds in the time domain to the derivation with respect to
time. Such a derivation is known to be most sensitive to noise corruptions. Therefore,
multiply both sides on the left by s−2 in order to replace derivations by integrations
with respect to time, which are quite robust with respect to noise (see [33] for more
explanations). Recall that dι

dsι , where ι ≥ 1 is an integer, corresponds in the time
domain to the multiplication by (−t)ι . Then

Fest(t) =−
6
τ3

∫ t

t−τ

[(τ−2σ)y(σ)+ασ(τ−σ)u(σ)]dσ , (7)

where τ > 0 might be quite small. This integral may of course be replaced in practice
by a classic digital filter.

There are other formulas one can use for obtaining an estimate of F . For instance,
closing the loop with the iP (2) yields:

Fest(t) =
1
τ

[∫ t

t−τ

(ẏ?−αu−KPe)dσ

]
. (8)

Remark 3 Measurement devices are always corrupted by various noise sources (see,
e.g., [79]). The noise is usually described via probabilistic/statistical laws that are
difficult to write down in most concrete situations. Following [33] where nonstan-
dard analysis is used, the noise is related to quick fluctuations around zero [22]. Such
a fluctuation is a Lebesgue-integrable real-valued time function F which is char-
acterized by the following property: the integral of F over any finite time interval,∫ τ f

τi F (τ)dτ , is infinitesimal. Therefore, noise is attenuated thanks to the integrals in
formulas (7)-(8).

3 Computer Simulation

3.1 Virtual patients

In [25], a cohort of virtual patients were defined by using the ODE model of [65] for
the underlying immune response dynamics for each patient and with each differing in
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the value of six of the rate parameters and two of the initial conditions. This same co-
hort was used in this study as well. The ODE model describes an abstract dynamical
representation of an acute inflammatory response to pathogenic infection:

Ṗ(t) = kpgP(t)
(

1− P(t)
p∞

)
−

kpmsmP(t)
µm + kmpP(t)

− kpn f (N(t))P(t) (9)

Ṅ(t) =
snrR(P(t),N(t),D(t))

µnr +R(P(t),N(t),D(t))
−µnN(t)+up(t) (10)

Ḋ(t) = kdn
f (N(t))6

x6
dn + f (N(t))6

−µdD(t) (11)

Ċa(t) = sc + kcn
f (N(t)+ kcndD(t))

1+ f (N(t)+ kcndD(t))
−µcCa(t)+ua(t), (12)

where

R(P,N,D) = f (knpP(t)+ knnN(t)+ kndD(t)) and

f (x) =
x

1+
(

Ca(t)
c∞

)2 .

– Equation (9) represents the evolution of the bacterial pathogen population P that
causes the inflammation.

– Equation (10) governs the dynamics of the concentration of a collection of early
pro-inflammatory mediators such as activated phagocytes and the pro-inflammatory
cytokines produced by N.

– Equation (11) corresponds to tissue damage (D), which helps to determine re-
sponse outcomes.

– Equation (12) describes the evolution of the concentration of a collection of anti-
inflammatory mediators Ca.

As explained in [65], f (x) represents a Hill function that models the impact of ac-
tivated phagocytes and their by-products (N) on the creation of damaged tissue. With
this modeling construct, tissue damage (D) increases in a switch-like sigmoidal fash-
ion as N increases such that it takes sufficiently high levels of N to incite a moderate
increase in damage and that the increase in damage saturates with sufficiently ele-
vated and sustained N levels. The hill coefficient (exponent) 6 was chosen to model
this aspect which also ensured that the healthy equilibrium had a reasonable basin of
attraction for the N/D subsystem.

For the reference set of parameter values which is given in Table I of [65], the
above model possesses three (positive) stable equilibria which can be qualitatively
interpreted as the following clinical outcomes:

– Healthy outcome: equilibrium in which P = N = D = 0 and Ca is at a background
level.

– Aseptic death outcome: equilibrium in which all mediators N, Ca, and D are at
elevated levels, while pathogen, P, has been eliminated.
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– Septic death outcome: equilibrium in which all mediators N, Ca, and D together
with the pathogen P are at elevated levels (higher than in the aseptic death equi-
librium).

Fig. 1 Diagram of the mediators of the acute inflammatory response to pathogen as abstractly modeled
in [65]. Solid lines with arrow heads and dashed lines with nodes/circular heads represent upregulation
and inhibition, respectively. P: replicating pathogen, N: early pro-inflammatory immune mediators, D:
marker of tissue damage/dysfunction caused by inflammatory response, Ca: inhibitory anti-inflammatory
mediators, ua and up: time-varying input controls for the anti- and pro-inflammatory therapy, respectively.

Note that the model was formulated to represent a most abstract form of the com-
plex processes involved in the acute inflammatory response. Hence, as explained in
[65] the variables N and Ca represent multiple mediators with similar inflammatory
characteristics, and D is an abstract representation of collateral tissue damage caused
by inflammatory by-products. This abstraction reduces the description to four es-
sential variables which also allows for tractable mathematical analysis. Therefore,
the units of these variables are in arbitrary units of N-units, Ca-units, D-units, since
they represent various types of cells and thus, they qualitatively, rather than quanti-
tatively, describe the response of the inflammatory mediators and their by-products.
Pathogen, P, units are more closely related to numbers of pathogens or colony form-
ing units (CFU), but abstract units P-units are simply used as well and this population
is scaled by 106/cc. More details about the model development can be found in [65].

The diagram in Figure 1 characterizes the different interactions between the states
of the inflammatory model. A solid line with an arrow head indicates an up-regulation,
whereas a dashed line with circular head indicates inhibition or down-regulation of a
process. For instance, early pro-inflammatory mediators, N, respond to the presence
of pathogen, P, by initiating self-recruitment of additional inflammatory mediators
and N is therefore up-regulated by the interaction with P to attempt to efficiently
eliminate the pathogen. The self up-regulation that exists for P is due to replication.
Furthermore, N inhibits P by eliminating it at some rate. The inflammation caused
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by N, however, results in tissue damage, D, which can provide a positive feedback
into the early inflammatory mediators depending on their intensity. To balance this,
anti-inflammatory mediators, such as cortisol, IL-10, and TGF-β , can mitigate the
inflammation and its harmful effect by suppressing the response by N and the effects
of D in various ways. The Ca variable maintains a small positive background level
at equilibrium in the presence of no pathogen. Following the setup used in [25], the
reference parameter value for Ca(0) is set to 0.125 and virtual patients have a value
that is±25% of the reference value. In addition, the values of six other parameters as
well as the initial condition for P are set to have differing (positive) values from the
reference set. In particular, the values of these parameters and initial conditions were
generated from a uniform distribution on defined parameter ranges or on a range that
was +/-25% of the (mean) reference value. The remaining parameters retained the
same values as those in the reference set. These differences distinguish one virtual
patient from another.

We use the set of 1000 virtual patients generated by [25] in the way described
above to evaluate the performance of the proposed control strategy. The set of pa-
tients was classified with respect to their outcome after an open loop simulation for a
long enough time to numerically determine outcome without ambiguity. Of the 1000
virtual patients, 369 did not resolve the infection and/or inflammatory response on
their own and succumbed to a septic (141) or aseptic (228) death death outcome. On
the other hand, 631 exhibited a healthy outcome of which there were two distinct
subsets:

1. 379 of the 631 healthy virtual patients did not necessitate treatment intervention
because their inflammatory levels did not exceed a specified threshold (defined to
be N(t)≤ 0.05, set in [25]). These virtual patients were excluded from receiving
treatment and from our in silico study.

2. The remaining 252 of these virtual patients did surpass the specified threshold,
N(t) ≥ 0.05, and are included in the cohort that receives treatment. However,
these virtual patients would be able to resolve to health on their own, in the ab-
sence of treatment intervention. An important issue for these particular virtual
patients is not to harm them with treatment.

Thus, 621 of the 1000 generated virtual patients receive treatment via our control
design. Once a suitable reference trajectory is provided for the states with sensors,
the derivation of the control part is straightforward which we now discuss.

3.2 Control design

As in previous control studies using this model, we assume that the state components
P and D in Equations (9) and (12) are not measurable; whereas, the states N and Ca
in Equations (10) and (12), respectively, are:

– easily measured and
– influenced by the control variables up and ua, respectively.
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We then introduce two equations of type (1):

Ṅ = F1 +αpup(t) (13)

Ċa = F2 +αaua(t). (14)

We emphasize that, like in [47], the above two ultra-local systems may be “decou-
pled” so that they can be considered as monovariable systems. It should be neverthe-
less clear from a purely mathematical standpoint that F1 (resp. F2) is not necessarily
independent of ua (resp. up). The two corresponding iPs (2) then read

up =−
F1,est− Ṅ∗+KP1ep

αp
(15)

ua =−
F2,est−Ċ∗a +KP2ea

αa
. (16)

The tracking errors are defined by

ep = N−N∗ and ea =Ca−C∗a ,

where N∗ and C∗a represent the reference trajectories corresponding to pro and anti-
inflammatory measurements N and Ca, respectively. Knowing that F encapsulates all
the model uncertainties and disturbances as already explained in the introduction, a
good estimate Fest provides exponential local stability of the closed-loop system. The
following algorithm 1 provides a good summary on the functioning of the proposed
methodology for immune regulation:

Algorithm 1 Model-free Control

Step 1: Initialization, k = 0
up(0) = 0, define reference trajectories N∗, initialize Kp and α , fix the sampling time Te;
For 1≤ k ≤ Tf
Step 2, : Get measurements of N and up;

Step 3 Estimation of F :
Estimate F according to a discrete implementation of equation (7);

Step 4: Close the loop according to equation (15) and return to Step 2.

Note that the same design procedure can lead to the derivation of the control ua;
however, this time we associate the measurement Ca with the control ua (See equa-
tion (14)). The interesting fact about this approach is that we do not need to control
the state variables P and D, which are not measurable. Solving the tracking problem
consisting of following closely the reference trajectory of N and Ca is enough to drive
the pathogen and damage to values in the basin of attraction of the healthy equilib-
rium where they would converge to this state as time progressed, thereby ’curing’ the
patient.
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3.3 Results without noise corruption

We first examine the performance of the control approach with respect to the set
of virtual patients and their individual corresponding initial conditions. The robust-
ness of the control law with the addition of corrupting measurement noise will be
discussed afterward. In what follows, the reference trajectories which are inspired
from [15], correspond to the measurable states N and Ca. They will be highlighted in
dashed lines.

Fig. 2 Dashed (- -) curves in the panels for the variables N and Ca denote the reference trajectories used in
the simulation. The various colored curves display the closed loop state responses for the set of 141 septic
patients, of which 92 resolved to the healthy outcome.

The simulations for all patients were performed under the following conditions:

– a sampling time of 1 minute,
– αp = 1, αa = 10 in Equations (13)-(14),
– KP1 = KP2 = 0.5 in Equations (15)-(16), and
– 250 hours simulation time to numerically determine outcomes without ambiguity;

though we note stress that our control objectives were reached in less than 250
hours.

The use of the same reference trajectory for all simulations emphasizes the robust-
ness of the proposed control approach with respect to the variability among virtual
patient parameter values and initial conditions. Figure 2 represents a successful out-
comes related to 92 out of the 141 septic patients who were cured when applying a



12 O. Bara et al.

Fig. 3 Time evolution of the control up and ua for the set of septic patients on which the strategy was
implemented. The zoomed-in plot for up provides more details on the duration of the control dose, where
the x-axis is shown for only two hours since it is zero for the remaining time

control given by Figure 3. The patients that converged to the septic death equilib-
rium (as explained in Section 3.1) are obviously the ones who were not cured with
the approach. The criteria to classify successful therapeutic control is to determine if
the levels of pathogen (P) and damage (D) are reduced to very low values (< 0.2).
All virtual patients not meeting this criteria were either classified as septic death out-
comes if, in addition, the pathogen state did not also approach zero or aseptic death
outcomes otherwise. These two latter cases correspond to virtual patients not saved
by the applied dosage.

A closer look during the first hours in Figure 3 shows that the amplitude of the
control variables is the main difference between different dosing profiles. Similar re-
marks apply fo ua. Analyzing ua shows that it is applied for a longer period of time
than up, but with smaller amplitude. This was not observed in the optimal control
setting of [15], where dosing strategy ended at 30 hrs. It is thus interesting to see if
purposefully restraining the dose quantity would have a sizable impact on the result.
Surprisingly, however, we observe that forcing the anti-inflammatory control input,
ua, to be zero after 28 hours does not affect the number of cured patients in this cur-
rent study. This is an important insight to have in order to prevent unnecessary and
lengthy dosing protocols. Whereas the maximum duration of the derived optimal con-
trol doses in [15] is 30 hours, it is much longer in the model-free control simulations.
An extended duration in the model-free setting is the price to pay. On the other hand,
the model-free control tracks a single given reference trajectory for all the virtual pa-
tients whereas the optimal control strategy [15] strives to infer the trajectories from a
mathematical model that is required to be a ’good’ model for all the virtual patients.

Table 1 displays the results from our study for the 621 patients that qualified
for therapy because of sufficiently elevated inflammation. The first column displays
the outcomes in the absence of intervention, labeled the placebo outcome. Without
intervention, 40% (252) will resolve to a healthy outcome, while the remaining 60%
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(369) fall into one of the two unhealthy outcome categories. We use the total of 369
unhealthy placebo outcomes to determine the percentage of those that the treatment
rescued. Likewise, we use the total of 252 healthy placebo outcomes to determine
the percentage of those harmed (i.e. they would have resolved to healthy without
treatment but converged to one of the death states instead after receiving treatment).
Figures 2 and 3 display the time courses for the sensorless states, P and D. These
were guided via the reference trajectories for the states with sensors, N and Ca, along
with the corresponding control input. The results are reminiscent of [12,14,25]: first
apply a large dose of pro-inflammatory therapy, up, followed by an anti-inflammatory
dose, ua. The latter attempts to prevent excessive tissue damage resulting from the
additional pro-inflammatory signals form the first dose.

Therapy Type: Placebo Model-free control
therapy

Percentage Healthy: 40% (252) 85.66% (518)

Percentage Aseptic: 37% (228) 6.4% (40)

Percentage Septic: 23% (141) 7.8% (49)

Percentage Harmed (out of 252) n/a 0% (0/252)

Percentage Rescued (out of 369) n/a 75.88% (280/369)

Table 1 Results of the model-free immune therapy strategy without measurement noise compared to the
placebo outcomes.

The information we can derive from Table 1 is that the control strategy obviously
improves the percentage of cured patients when compared to the placebo case. Our
therapy rescued 85.66% of the total patient population (621) and 75.88% of the com-
bined septic and aseptic population (369). Additionally, 0% of the healthy patients
are harmed. Figure 4 shows the evolution of the unobservable state P and D together
with the measured states corresponding to N and Ca for a set of 228 aseptic patients.
Of these, 188 were able to recover from an aseptic placebo outcome, when the gener-
ated controls in Figure 5 are applied, driving the pathogen P and the level of damage
D to zero. Again, one can observe from Figure 4 that some trajectories diverge to the
unhealthy aseptic region, where the pathogen is known to have a zero value but the
other state variables remain elevated.

Overall, the simulation results with respect to successful control of the number
of outcomes for both the septic and aseptic placebo outcomes are very encouraging
when one considers that only a unique reference trajectory was used for the heteroge-
neous population. The absence of perfect tracking should not be seen as a weakness
of the model free control approach, since the control objective has been attained in
most scenarios.

One of the important features of the presented data driven control approach is the
necessity to have suitable choice(s) for the reference trajectories. To be more explicit,
consider a naive choice of the reference trajectories: a trajectory exponential decaying
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Fig. 4 Dashed (- -) curves in the panels for the variables N and Ca denote the reference trajectories used
in the simulation. The various colored curves display the closed loop state responses results for the set of
228 aseptic placebo patients, of which 188 were cured.

Fig. 5 Time evolution of the control inputs up and ua for the set of aseptic patients shown in Figure 4. The
zoomed-in plot for up provides a better perspective on the duration of the control dose, where the x-axis is
shown for two hours only since it is zero afterward.

to zero for Nre f and another trajectory exponentially decaying to the CA steady state
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value 0.125. This would not satisfy the control objective since the generated control
doses are negative and the level of pathogen will converge to its maximum allowable
value. The reason for this behavior can be explained by the fact that the iP controller
is only concerned about reducing the tracking error without imposing any constraints
on the control inputs. Constraints on the control are not implemented simply because
the model-free approach is not formulated as an optimization problem. 2 However,
choosing a reference trajectory that will account for the correct time-varying dynam-
ics of the inflammatory response will eventually generate the correct doses. That is, if
we chose, for example, a reference trajectory with a smaller amplitude or with slower
rising dynamics, other than what is presented in this work, then it is highly probable
that the patient would not converge to the healthy state with respect to the generated
control doses received. Similar remarks can be made to Figure 5 as discussed previ-
ously for the set of placebo septic patients. It is not surprising to notice a very close
pattern with respect to the generated control doses for both sets of septic and aseptic
patients. This can be explained in part by a common control objective consisting of
tracking the same reference trajectory and also because of what has been discussed
before regarding how the inflammatory immune system needs to react in order to
eliminate the pathogen without incurring a significant damage.

3.4 Results with noise corruption

Consider the effects of corrupting measurement noise on our control problem. Here,
a white Gaussian noise is taken into account as in many academic studies, (see, e.g.,
[19,62]). Otherwise, the same setting as the previous section is kept. Figures 6 and
7 display the states and the corresponding controls for the set of 141 septic placebo
patients in which 90 were cured.

The addition of measurement noise with a standard deviation equal to 10−3 only
changes the outcome for two of the septic patients, when compared to the initial
simulations where no noise was included. However, for the aseptic set of patients,
there is a difference of 16 additional patients that did not survive when measurement
noise is considered.

Remark 4 For the model-free simulation with measurement noise, there are mainly
two important remarks to make with regard to the discussion of the previous Section.
First, for the case of septic patients, restraining the control up and ua to be zero after
2 hours and 28 hours, respectively, will not considerably affect the number of cured
patient since 90 patients were cured. One would fail to obtain a similar result when
altering the control in the same way for the aseptic case. Although not shown here,
a decrease of around 45 patients was observed when compared to the 172 who were
cured without restraining control inputs.

2 Allowing the control to be only positive semidefinite will result in a zero control all the time.
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Fig. 6 Dashed (- -) curves in the panels for the variables N and Ca denote the reference trajectories used
in the simulation. The various colored curves display the closed loop state responses for the set of 141
septic placebo patients, of which 90 were cured. Note that the measurements N and Ca were corrupted
with Gaussian noise.

Fig. 7 Time evolution of the control up and ua for the set of septic placebo patients when the measurements
N and Ca were corrupted with Gaussian noise. The zoomed-in plot for up provides more detail on the
duration of the control dose, with an x-axis shown only for two hours since the doses are zero afterward.
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Fig. 8 Dashed (- -) curves in the panels showing the time courses of the variables N and Ca denote the
reference trajectories used in the simulation. The various colored curves display the closed loop state
responses for the set of 228 aseptic placebo patients, 172 of which were cured. Note that the measurements
N and Ca were corrupted with Gaussian noise.

Fig. 9 Time evolution of the control up and ua for the set of 228 aseptic placebo patients when the mea-
surements N and Ca were corrupted with Gaussian noise. The zoomed-in plot for up provides more details
on the duration of the control dose, with an x-axis shown only for two hours since the doses are zero
afterward.
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Therapy Type: Placebo Model-free control
therapy

Percentage Healthy: 40% (252) 82.76% (514)

Percentage Aseptic: 37% (228) 9.02% (56)

Percentage Septic: 23% (141) 8.21% (51)

Percentage Harmed (out of 252) n/a 0% (0/252)

Percentage Rescued (out of 369) n/a 71% (262/369)

Table 2 Results of the model-free immune therapy strategy with measurement noise compared to the
placebo outcomes.

4 Concluding remarks

In this study we propose a new data-driven control approach in order to appropriately
regulate the state of an inflammatory immune response in the presence of pathogenic
infection. The performance of the proposed control strategy is investigated in the con-
text of a set of 621 heterogenous model-based virtual patient population having model
rate parameter variability. The results of the model-free strategy presented here in the
presence of measurement noise are also explored and discussed. The robustness of
the approach to parameter variability and noise disturbances is seen in the fact that a
single reference trajectory was used to inform the approach about desirable inflamma-
tory dynamics and from this, the individual dosing strategies found largely produced
healthy outcomes. The downside of the proposed control approach to this specific
application is the necessity to apply the control for a longer period of time although
with small doses. However, we have seen that artificially restricting this small dose
from being provided does not affect the outcome of the states in the case when no
measurement noise is used; thought it did in the scenarios with measurement noise.
We want to emphasize the importance of a suitable choice for the reference trajectory
and further studies may provide better insights in this direction.
Past successes of the model-free control feedback approach in other realistic case-
studies should certainly be viewed as encouraging for the future development of
our approach to the treatment of inflammation. Additionally, the model-free control
approach seems to be both theoretically and practically simpler when compared to
model-based control designs. This newer viewpoint for control problems in biomedicine
needs to be further analyzed in order to confirm its applicability in these complex
dynamic systems where the ability to realistically obtain frequent measurement in-
formation is limited.
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