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The universal Tan relations connect a variety of microscopic features of many-body quantum systems with
two-body contact interactions to a single quantity, called the contact. The latter has become pivotal in the
description of quantum gases. We provide a complete characterization of the Tan contact of the harmonically
trapped Lieb-Liniger gas for arbitrary interactions and temperature. Combining thermal Bethe ansatz, local-
density approximation, and exact quantum Monte Carlo calculations, we show that the contact is a universal
function of only two scaling parameters, and determine the scaling function. We find that the temperature
dependence of the contact, or equivalently the interaction dependence of the entropy, displays a maximum. The
presence of this maximum provides an unequivocal signature of the crossover to the fermionized regime and it
is accessible in current experiments.

Describing strongly correlated quantum systems from mi-
croscopic models and first principles is a central challenge for
modern many-body physics. The derivation of universal re-
lations in systems governed by contact interactions is an ex-
ample of such an approach [1, 2]. Pointlike interactions in-
duce a characteristic singularity of the many-body wavefunc-
tion at short interparticle distance and, correspondingly, al-
gebraically decaying momentum tails, n(k) ' C/k4 [3, 4].
The 1/k4 scaling is universal and holds irrespective of the
quantum statistics, dimension, temperature, and interaction
strength. Furthermore, the weight C of the tails, known as
Tan’s contact, contains a wealth of information about many
quantities characterizing the specific state, e.g. the interaction
energy, the pair correlation function, the free-energy depen-
dence on interactions, and the relation between pressure and
energy density [1, 2, 4]. Stemming from the unique possibility
to measure it in ultracold gases, the contact has become cen-
tral to the description of quantum gases. Recent experiments
on three-dimensional Fermi and Bose gases have permitted us
to validate the universal Tan relations, hence demonstrating
that C provides valuable information on a variety of thermo-
dynamic quantities [5–11].

Interacting one-dimensional (1D) bosons display very
different physical regimes at varying interaction strength,
from quasicondensates to the emblematic fermionization ef-
fect [12]. So far, the emergence of statistical transmutation
in the Tonks-Girardeau regime [13, 14], the suppression of
pair correlations [15, 16], and the observation of quantum
criticality [17] have been reported in ultracold atom experi-
ments. However, the experimental characterization of the var-
ious quantum degeneracy regimes at finite temperature, iden-
tified in Ref. [18], remains challenging. A major difficulty is
that most quantities show a smooth monotonic behavior when
crossing over different regimes. Understanding whether the
contact can provide an efficient probe is one of the motiva-
tions of our work.

In most experimental conditions, the gases are confined in

longitudinal harmonic traps and thermal effects cannot be ne-
glected. While the homogeneous 1D gas is exactly solvable
by Bethe ansatz, the trapped system is not integrable, there-
fore requiring approximate or ab initio numerical approaches.
Previous theoretical studies have investigated the contact for
homogeneous bosons at finite temperature [19, 20], trapped
bosons at zero temperature [3, 21], and at finite temperature
in the Tonks-Girardeau limit [22]. Momentum distributions of
strongly interacting, trapped bosons at finite temperature were
also computed by quantum Monte Carlo methods [23].

In this Letter, we provide a complete characterization of
Tan’s contact of 1D bosons under harmonic confinement for
arbitrary interactions, particle number, temperature, and trap
frequency, and show that it indeed provides a useful probe of
quantum degeneracy regimes. Using a combination of ther-
mal Bethe-ansatz solutions with local-density approximation
and exact quantum Monte Carlo calculations, we demonstrate
that the contact is a universal function of only two scaling

Figure 1. Reduced Tan contact a3
hoC/N

5/2 for 1D Bose gases in a
harmonic trap, versus the reduced temperature ξT = −a1D/λT and
the reduced interaction strength ξγ = −aho/a1D

√
N . The results

are found using thermal Bethe ansatz solutions combined with local-
density approximation (see main text).
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parameters and find the scaling function (see Fig. 1), hence
generalizing the results of Ref. [23]. As a main result, we find
that the contact displays a maximum versus the temperature.
This behavior is characteristic of the trapped gas with finite,
although possibly arbitrarily strong, interactions. We argue
that the existence of this maximum is a direct consequence of
the dramatic change of correlations and thus provides an un-
equivocal signature of the crossover to fermionization in the
trapped 1D Bose gas. We derive asymptotic limits and discuss
a physical picture of the evolution of the contact versus tem-
perature and interaction strength. Finally, we compute the full
momentum distributions in various regimes. They show the
emergence of the high-momentum tails and assess the experi-
mental observability of our predictions.

Two-parameter scaling.— Consider a 1D Bose gas with
repulsive two-body contact interactions, in the presence of the
harmonic potential V (x) = mω2x2/2, with m the particle
mass, x the space coordinate, and ω/2π the trap frequency. It
is governed by the extended Lieb-Liniger (LL) Hamiltonian

H =
∑
j

[
− ~2

2m

∂2

∂x2j
+ V (xj)

]
+ g

∑
j<`

δ(xj − x`), (1)

where j and ` span the set of particles, and g = −2~2/ma1D is
the coupling constant with a1D the 1D scattering length. The
thermodynamic properties of the interacting gas at the finite
temperature T are uniquely determined by the grand poten-
tial Ω = −kBT ln

[
Tr e−(H−µN )/kBT

]
, where kB is the Boltz-

mann constant, N the particle number operator, and µ the
chemical potential.

We start from the homogeneous case, V (x) = 0. Using
kBT as the unit energy and, correspondingly, the thermal de
Broglie wavelength λT =

√
2π~2/mkBT as the unit length,

we readily find that the Hamiltonian H/kBT is a function of
the unique parameter a1D/λT . Since the interactions are short
range, Ω is an extensive quantity. It follows that the dimen-
sionless quantity Ω/kBT is a function of the sole intensive, di-
mensionless parameters µ/kBT and a1D/λT , times the length
ratio L/λT . We may thus write

Ω/kBT = (L/λT )Ah
(
µ/kBT , a1D/λT

)
, (2)

with Ah a dimensionless function.
For the gas under harmonic confinement, the additional

energy scale ~ω emerges, associated with the length scale
aho =

√
~/mω. Within the local-density approximation

(LDA), we write the grand potential as the sum of the con-
tributions of slices of homogeneous LL gases with a chemical
potential locally shifted by the trap potential energy, Ω/kBT =´
dx
λT
Ah [µ− V (x), T, g]. Using Eq. (2) and rescaling the po-

sition x by the quantity 2
√
πa2ho/λT , we then find

Ω/kBT =
(
aho/λT

)2A(µ/kBT , a1D/λT
)
, (3)

with A a dimensionless function stemming from Ah. The
scaling forms of the relevant thermodynamic quantities are

then readily found from Eq. (3). On the one hand, the average
particle number N = − ∂Ω/∂µ|T,a1D

reads

N = (aho/λT )2AN
(
µ/kBT , a1D/λT

)
. (4)

It follows that the reduced chemical potential µ/kBT
is a universal function of only two scaling parameters,
namely Nλ2T /a

2
ho and a1D/λT , or, equivalently, ξγ =

−aho/a1D

√
N , and ξT = −a1D/λT . On the other hand,

the contact is expressed using the Tan sweep relation [4,
24, 25], C = (4m/~2) ∂Ω/∂a1D|T,µ, yielding C =

(a2ho/a
5
1D)AC

(
µ/kBT , a1D/λT ). Using Eq. (4) and writing

µ/kBT as a function of ξγ and ξT, we find

C =
N5/2

a3ho

f (ξγ , ξT) , (5)

with f a dimensionless function. In the following, we shall
use this two-parameter scaling form. Note that the procedure
used to find the scaling form (5) is general and can be straight-
forwardly extended to higher dimensions and Fermi gases.

Scaling function for 1D bosons at finite temperature.— In
order to verify the scaling form (5) and find the scaling func-
tion f for interacting 1D bosons, we use two complementary
approaches.

On the one hand, we perform the LDA on the exact so-
lutions of the Yang-Yang (YY) equations [26], found by the
thermal Bethe ansatz for the grand-potential density

Ω/L = −kBT

ˆ
dq

2π
ln
[
1 + e

− ε(q)kBT

]
, (6)

and the dressed energy,

ε(k) =
~2k2

2m
−µ−kBT

ˆ
dq

2π

2c

c2 + (k − q)2
ln
[
1 + e

− ε(q)kBT

]
,

(7)
with c = mg/~2 = −2/a1D. We thus find the grand po-
tential in the harmonic trap, and the scaling function A in
Eq. (3). Applying the procedure presented above, we then
find the scaling function f in Eq. (5) for the contact.

On the other hand, to assess the accuracy of the LDA, we
perform ab initio quantum Monte Carlo (QMC) calculations.
We use the same implementation as in Refs. [27, 28], which
allows for numerically exact simulation of the Hamiltonian (1)
within the grand-canonical ensemble. It yields the total num-
ber of particles N , the interaction energy 〈Hint〉, and the con-
tact via the thermodynamic relation C = (2gm2/~4)〈Hint〉
versus temperature and chemical potential [29].

The scaling function f , namely the rescaled contact
a3hoC/N

5/2, for 1D bosons under harmonic confinement re-
sulting from YY theory and LDA is shown in Fig. 1. Fig-
ure 2 shows some sections of the latter (solid lines) along
with QMC data (points) for a quantitative comparison. The
rescaled contact is plotted as a function of the interaction
strength ξγ for various values of the temperature via the quan-
tity ξT in Fig. 2(a) and, inversely, as a function of ξT for various
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Figure 2. Reduced Tan contact a3
hoC/N

5/2 versus the scaling
parameters, as found from LDA (solid lines) and QMC calcula-
tions (points). (a) Reduced contact versus the interaction, ξγ =

−aho/a1D

√
N , at the fixed temperatures ξT = −a1D/λT = 0.0085

(blue), 0.28 (green), and 18.8 (red). (b) Reduced contact versus
the temperature via the quantity ξT at the fixed interaction strengths
ξγ = 10−2 (blue), 1.58 × 10−1 (green), and 15.0 (red). The black
dashed, red dotted, and red dash-dotted lines correspond to Eqs.
(S13),(9), and (10) respectively. The QMC data are found from vari-
ous sets of parameters, corresponding to the various symbols [33].

values of ξγ in Fig. 2(b). The numerically exact QMC data
are computed for a broad set of parameters. When plotted
in the rescaled units of Eq. (5), they show excellent data col-
lapse among each other and fall onto the LDA curves. Quite
remarkably, the agreement holds also in the low-temperature
and strongly interacting regime where the particle number is
as small as N ' 5, within less that 3%. Our analysis hence
validates the scaling form (5) and shows that the LDA is very
accurate in computing the contact for the trapped LL model.

Onset of a maximum contact versus temperature.— We
now turn to the behavior of the contact. Particularly interest-
ing is the nonmonotonicity of C versus temperature and the
onset of a maximum, see Fig. 2(b). This behavior strongly
contrasts with that found for the homogeneous gas and the
trapped gas in the Tonks-Girardeau limit (a1D → 0), which are
both characterized by a systematic increase of the contact ver-
sus temperature [19, 22]. In the trapped case, the maximum
in the contact as a function of ξT is found irrespective to the
strength of interactions but is significantly more pronounced
in the strongly interacting regime. From the data of Fig. 1, we
extract the temperature T ∗ at which the contact is maximum
at fixed ξγ . In Fig. 3, we plot ξ∗T = −a1D/λ

∗
T as a function

of ξγ . As we discuss now, ξ∗T shows significantly different be-
havior in the strongly and weakly interacting regimes, but, in
both cases, it characterizes the onset of the regime dominated
by interactions.

We first consider the strongly interacting regime,
ρ(0)|a1D| . 1. Using the virial expansion, we obtain
the analytical expression for the contact [29]

C =
2N5/2

πa3ho

ξγ
ξT

(
√

2− e1/2πξ
2
T

ξT

Erfc(1/
√

2πξT)

)
, (8)

see black dashed line in Fig. 2(b). It has a maximum at ξ∗T =
0.485, in very good agreement with the asymptotic scaling

Figure 3. Behavior of the temperature at which the contact is maxi-
mum versus the interaction strength. Shown is the value of ξ∗T (solid
black line with shaded gray error bars) as found from the data of
Fig. 1, together with the asymptotic behaviors ξ∗T ' 0.49 for the
strongly interacting regime (dashed red line) and ξ∗T ∝ ξνfit

T , with
νfit ' 0.6 for the weakly interacting regime (dotted blue line).

ξ∗T ' 0.490 ± 0.005 extracted from the data (dashed red line
in Fig. 3).

The existence of a maximum of the contact in the strongly
interacting regime can be inferred from the competition of
two different behaviors. On the one hand, at low tempera-
tures, |a1D| . λT (ξT . 1), both quantum and thermal fluctu-
ations are dominated by repulsive interactions and the gas is
fermionized. The contact is then found from the Bose-Fermi
mapping, i.e. C = (2~2/gm)

´
dx ρ(x)eK(x), where eK is

the kinetic-energy density [34]. Since the gas is weakly de-
generate, the latter follows from the equipartition theorem,
i.e. eK(x) = ρ(x)kBT/2, and the density profile can be taken
as noninteracting, i.e. ρ(x) = (N/

√
2πLth) exp(−x2/2L2

th),
with Lth =

√
kBT/mω2. It yields

C = 2
√

2N5/2ξγξT/a
3
ho, ξ−1γ . ξT . 1, (9)

thus recovering the results of Ref. [22] by a different ap-
proach.

On the other hand, at high temperature, λT . |a1D| (ξT & 1),
the weakly degenerate Bose gas is dominated by thermal fluc-
tuations. In this case, the contact can be estimated by the
mean-field expression 〈Hint〉 = g

´
dx [ρ(x)]2. Using the

thermal density profile, we then find

C ' 2
√

2N5/2ξγ/πξTa
3
ho, ξ−1γ , 1 .

√
ξT. (10)

Both Eqs. (9) and (10) are in good agreement with the nu-
merical calculations, see red-dotted and dash-dotted lines in
Fig. 2(b). These expressions show that the contact increases
with temperature in the fermionized regime but decreases
when thermal fluctuations dominate over interactions. The
maximum of the contact thus provides a nonambiguous sig-
nature of the crossover to fermionization.

The situation is completely different in the weakly inter-
acting regime, ρ(0)|a1D| & 1. In this case, the gas is never
fermionized. At low temperature, (|a1D|/ρ(0)3)1/4 . λT ,
the gas forms a quasicondensate characterized by suppressed
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density fluctuations [19]. The contact is then found from
the mean-field expression for 〈Hint〉, using the Thomas-Fermi
(TF) density profile ρ(x) = (µ/g)(1 − x2/L2

TF) with LTF =√
2µ/mω2. In this regime one has [3]

C = ηN5/2ξ5/3γ /a3ho, 1, ξT . ξ−1γ (11)

with η = 4× 32/3/5.
In the high-temperature and weakly interacting regime,

λT . (|a1D|/ρ(0)3)1/4, the interactions are negligi-
ble and the bosons form a nearly ideal degenerate
gas. Using the corresponding density profile ρ(x) =
λ−1T Li1/2

[
exp

(
α− x2/2L2

th

)]
with α(ξγ , ξT) = ln[1 −

exp(−1/(2πξ2γξ
2
T ))], we find

C =
(

16
√
πN5/2ξ5γξ

3
T /a

3
ho

)
G(α), ξ−1γ . ξT . ξ−2γ

(12)
with G(α) =

´
dx Li21/2[exp(α − x2)]. The function G(α)

decays at least as λ4T and thus C decreases with the tempera-
ture. Therefore, in the weakly-interacting regime, the max-
imum contact signals the crossover from the quasiconden-
sate regime to the ideal Bose gas regime. The position of
the maximum of the contact may be estimated by equating
Eqs. (11) and (12). The calculation is significantly simplified
by neglecting quantum degeneracy effects in Eq. (12). Then,
G(α) '

√
π/2 exp(2α) and we find

ξ∗T ∼ ξ−νγ , ν = 2/3. (13)

The numerical data are well fitted by Eq. (13) with ν as an
adjustable parameter (see dotted blue line in Fig. 3), yielding
νfit = 0.6± 0.06, in good agreement with the theoretical esti-
mate νth = 2/3 [35].

Maximum entropy versus interaction strength.— To fur-
ther interpret the onset of a maximum contact versus tem-
perature, we note that it is equivalent to the onset of a maxi-
mum entropy S versus interaction strength. For fixed number
of particles, it is a direct consequence of the Maxwell iden-
tity [36]

∂C/∂T |a1D,N
= (4m/~2) ∂S/∂a1D|T,N . (14)

In the homogeneous LL gas, the entropy at fixed tempera-
ture and number of particles decreases monotonically ver-
sus the interaction strength, since repulsive interactions in-
hibit the overlap between the particle wavefunctions, hence
diminishing the number of available configurations. In the
trapped gas, however, this effect competes with the interaction
dependence of the available volume. More precisely, start-
ing from the noninteracting regime, the system size increases
sharply with interaction strength, while the particle overlap
varies smoothly. In this regime, the number of available con-
figurations and the entropy thus increase with the interaction
strength. At the onset of fermionization, interaction-induced
spatial exclusion becomes dramatic and the particles strongly
avoid each other. In turn, as opposed to the noninteracting
regime, the volume increases very slightly. In this regime,

Figure 4. Log-log plots of momentum distributions found by QMC
calculations in the strongly interacting regime. (a) Low temperature:
ξγ = 4.47 and ξT = 0.0085. (b) Temperature at the maximum
contact: ξγ = 1.26 and ξT = 0.49. The solid blue lines with shaded
statistical error bars are the QMC results, the dashed red lines are
algebraic fits to the large-k tails, and the dotted green lines are the
momentum distributions of the nondegenerate ideal gas. The insets
show the same data in lin-lin scale.

the number of available configurations thus decreases when
the interactions increase. This picture confirms that the max-
imum of the entropy as a function of the interaction strength,
or equivalently the maximum of the contact as a function of
the temperature, signals the fermionization crossover.

Experimental observability.— Our predictions can be in-
vestigated with quantum gases where the Tan contact is ex-
tracted from radio-frequency spectra or momentum distribu-
tions [5, 6, 9, 37]. Figure 4 shows momentum distribu-
tions found from QMC calculations in the strongly interacting
regime close to zero temperature [ξT � 1, Fig. 4(a)] and at the
contact maximum [ξT ' ξ∗T , Fig. 4(b)]. In both cases, an alge-
braic decay at large momenta is observed, with an amplitude
matching our estimate for the contact [38].

In ultracold atom experiments, 1D systems are produced in
the strongly interacting regime when loaded in 2D arrays of
tubes [13, 14, 39], which raises the question of the effect of
averaging the momentum distributions over the tubes. How-
ever, in the strongly interacting regime, the relative amplitude
of the maximum with respect to the zero-temperature value,
C∗/C0, is lower bounded by its value in the central tube [29].
For the parameters of Ref. [39], we find C∗/C0 & 5.1, which
should be sufficient for a clear identification of the maximum.
Moreover, the condition for the tubes to be in the quasi-1D
regime, kBT � ~ω⊥, where ω⊥ is the transverse trap fre-
quency, can be fulfilled using a strong-enough transverse con-
finement [29].

Conclusion.— Summarizing, we have provided a com-
plete characterization of the Tan contact for the trapped Lieb-
Liniger gas with arbitrary interaction strength, number of par-
ticles, temperature, and trap frequency. We have derived a
universal scaling function of only two parameters and we have
shown that it is in excellent agreement with the numerically
exact QMC results over a wide range of parameters. As a
pivotal result, we found that the contact exhibits a maximum
versus the temperature for any interaction strength. This be-
havior is mostly marked in the gas with large interactions and
provides an unequivocal signature of the crossover to fermion-
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ization. In outlook, the analysis of the Tan contact can be used
to identify critical behaviors [40]. It can further be extended to
the excited states and multicomponent quantum systems [41–
46].
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Supplemental Material for

Tan’s Contact for Trapped Lieb-Liniger Bosons at Finite Temperature

In this supplemental material, we provide details about the QMC approach (Sec. S1), the derivation of the virial-expansion
formula (Sec. S2), and a detailed analysis of experimental observability of the contact maximum in experiments using a 2D array
of 1D tubes in strongly-interacting regime (Sec. S3).

S1. QUANTUM MONTE CARLO SIMULATIONS

A. Path-integral Monte-Carlo approach

The quantum Monte Carlo (QMC) calculations exploit the same implementation as detailed in Refs. [27, 28]. The continuous-
space path integral formulation allows us to simulate the exact Hamiltonian, Eq. (1) of the main paper, for an arbitrary trap V (x),
within the grand-canonical ensemble. The statistical average of the number of world lines yields the total number of particles
N , and the interaction energy 〈Hint〉 is computed from the zero-range two-body correlator. The contact is then found using the
thermodynamic relation

C = (2gm2/~4)〈Hint〉. (S1)

The world lines are discretized into an adjustable number M of slices of elementary imaginary propagation time ε = 1/MkBT
each, and sampled using the worm algorithm [30, 31]. Each calculation is run for various values of ε and polynomial extrapola-
tion is used to eliminate systematic finite-time discretization errors (see below).

B. Finite-ε scaling

The QMC results are exact in the ε → 0 limit. In order to find the final results reported on the Fig. 2 of the main paper,
we proceed as follows. For each set of physical parameters (interaction strength, chemical potential, temperature, and trap
frequency), we perform a series of QMC calculations for different values of ε and extrapolate the result to the limit ε→ 0.

For most of the calculations, we are able to use a sufficiently small value of ε and a linear extrapolation is sufficient. We fit
the QMC data with a3hoC/N

5/2 = a + b(ε/β), with a and b as fitting parameters. We then use the quantity a as the final result
for a3hoC/N

5/2. An example is shown on the left panel of Fig. S1 below. In this case, the linear extrapolation only corrects the
QMC result for the smallest value of ε (ε/β = 0.01) by less than 4%.

Figure S1. Quantum Monte Carlo (QMC) results for the reduced Tan contact for ξT = |a1D|/λT = 0.28 and ξγ = aho/|a1D|
√
N = 0.1

(left panel) and for ξT = 0.0085 and ξγ = 4.47 (right panel). The red points show the QMC results for various values of the dimensionless
parameter ε/β, where β = 1/kBT is the inverse temperature, togther with a linear (left panel) or third-order polynomial (right panel) fit.
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In some cases, however, the linear fit is not sufficient for extrapolating correctly the QMC results. This occurs in the strongly-
interacting regime for low to intermediate temperatures. In such cases, we use a third-order polynomial, a3hoC/N

5/2 = a +
b(ε/β) + c(ε/β)2 + d(ε/β)3, to extrapolate the finite-ε numerical data. An example is shown on the right panel of Fig. S1. In
this case, the extrapolation corrects the QMC result for the smallest value of ε (ε/β = 0.0005) by roughly 25%.

For all the QMC results reported on the Fig. 2 of the main paper, we have performed a systematic third-order polynomial
extrapolation, even when a linear extrapolation was sufficient.

S2. DERIVATION OF THE TAN CONTACT IN THE LARGE-TEMPERATURE AND LARGE-INTERACTION LIMIT

We derive here Eq. (8) of the main paper for the contact at large, finite temperature (kBT � N~ω) and large interactions
|a1D|/aho � 1. As a first step, the Tan contact at large temperature and arbitrary interactions can be estimated using the first term
of the virial expansion [22]

C =
4mω

~λT
N2 c2 (S2)

where c2 = λT
∂b2
∂|a1D|

and b2 =
∑
ν e
−β~ω(ν+1/2). The ν’s are the solutions of the transcendental equation

f(ν) =
Γ(−ν/2)

Γ(−ν/2 + 1/2)
=
√

2
a1D

aho

. (S3)

By exploiting the Euler reflection formula

Γ(z)Γ(1− z) =
π

sin(πz)
, (S4)

one can re-write Eq. (S3) under the form

f(ν) = −cot(πν/2)
Γ(ν/2 + 1/2)

Γ(ν/2 + 1)
. (S5)

By using the asympotic expansions

Γ(z) '
√

2π zz−1/2 e−z
(

1 +
1

12 z
+O(1/z2)

)
(S6)

and

Γ(z + 1/2) '
√

2π zz e−z
(

1− 1

24 z
+O(1/z2)

)
, (S7)

we obtain the following asymptotic expression for f(ν)

f(ν) ' −cot(πν/2)
1√

ν/2 + 1/2
' −

√
2

ν
cot(πν/2). (S8)

In the Tonks-Girardeau regime, corresponding to a1D = 0, one has ν = 2n+ 1, with n ∈ N. Thus, in the regime |a1D|/aho � 1,
we obtain an explicit expression for ν, by writing√

2

2n+ 1
cot(πν/2) '

√
2
|a1D|
aho

(S9)

namely

νn =
2

π
acot(

√
2n+ 1|a1D|/aho) + 2n, n ∈ N. (S10)
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2 calculated using the numerical solution of Eq. (S3) (blue continuous line) and using the analytical expression (S13)
(magenta dashed line). We have considered |a1D|/aho = 0.4.

This yields the following explicit expression for c2:

c2 = λT
∑
ν

(−β~ω)
∂ν

∂|a1D|
e−β~ω(νn+1/2)

= λT
∑
n

(−β~ω)
2

π

√
2n+ 1

aho

−1

1 + (2n+ 1)
a21D
a2ho

e−β~ω(νn+1/2)

=
2λTβ~ω
πaho

∑
n

√
2n+ 1

1 + (2n+ 1)
a21D
a2ho

e−β~ω(νn+1/2).

(S11)

In order to evaluate analytically the sum in Eq. (S11), we replace ν with 2n + 1 in the exponential. Indeed, the first-order
correction in |a1D| gives a negligible contribution in the limit β → 0 and a1D → 0. We finally get

c2 =
√

2

(
1

2πξ2T
− e1/2πξ

2
T

23/2πξ3T
Erfc(1/

√
2πξT)

)
. (S12)

Thus, the contact at large temperatures and large interactions can be approximated by

C =
4
√

2N2ξT

|a1D|a2ho

(
1

2πξ2T
− 1

23/2πξ3T
e1/2πξ

2
T Erfc(1/

√
2πξT)

)
=

2N5/2

πa3ho

ξγ
ξT

(
√

2− e1/2πξ
2
T

ξT

Erfc(1/
√

2πξT)

)
.

(S13)

We have checked that this expression is in excellent agreement with the calculation of Eq. (S2) using the numerical solution of
Eq. (S3), see Fig. S3.

S3. EXPERIMENTAL OBSERVABILITY OF THE MAXIMUM CONTACT IN A 2D ARRAY OF 1D TUBES

We address here a more detailed explanation for the question of observability of the contact maximum in ultracold-atom
experiments. In subsection S3 A, we discuss the effect of averaging the momentum distribution over the 2D array of tubes. In
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subsection S3 B, we discuss the validity of the quasi-1D gas condition.

A. Averaging over the tubes

In most cases, strong transverse confinement is realized by applying a 2D optical lattice in the directions y and z, orthogonal to
the 1D direction x. For sufficiently strong lattices, it creates an array of independent 1D tubes, indexed by the labels (j, `) ∈ Z2.
The total contact then reads as

C =
∑
j,`

C(j, `), (S14)

where C(j, `) is the contact in the corresponding tube. Each tube is populated with a number N(j, `) of atoms, which depends
on the loading procedure of the atoms in the 2D lattice. Since the number of atoms is maximum in the central tube (j = ` = 0),
we have ξγ(j, `) ≥ ξγ(0, 0), and the condition for having all tubes in the strongly-interacting regime reduces to ξγ(0, 0)� 1.

In that regime, the temperature dependence of the contact around the maximum is independent of ξγ , and thus independent of
the tube. Indeed, as shown by Eq. (8) of the main paper, the parameter ξγ just appears as a prefactor. In particular, the maximum
contact is located at the universal value ξ∗T ' 0.485, which is identical for the tubes. Using Eq. (8) of the main paper, we then
find

C∗ ' 0.55×
∑
j,`

N(j, `)5/2ξγ(j, `)

a3ho

. (S15)

At zero temperature, the contat may be found using the mapping between the strongly-interacting Bose gas and the strongly-
degenerate ideal Fermi gas. It yields the value [3]

C0 ' 0.82×
∑
j,`

N(j, `)5/2

a3ho

. (S16)

We then find that the relative amplitude of the maximum contact with respect to its zero-temperature value fullfils the inequality

C∗

C0
& 0.68× ξγ(0, 0). (S17)

Therefore, the relative ampitude of the maximum contact is larger than a fraction of the interaction parameter ξγ(0, 0)� 1 and
should be observable. For instance, for the parameters of Ref. [39], we find ξγ(0, 0) ' 7.5 and C∗/C0 & 5.1.

Note that the lower bound in Eq. (S17) is universal in the sense that it does not depend on the distribution of atoms in the
various lattice tubes. Note also that it is immune to shot-to-shot fluctuations of the atom numbers in the tubes.

Finally, a more precise value of the relative amplitude of the maximum contact is found by compting the sums in Eqs. (S15)
and (S16) for realistic distributions of the atom numbers among the tubes. Using the estimate

Nj,` =

[
1− 2πN(0, 0)

5N

(
j2 + `2

)]3/2
, (S18)

relevant to the experiments of Refs. [13, 39], we find C∗/C0 ' 0.8 × ξγ(0, 0), which is only about 20% larger than the atom
distribution-independent lower bound, Eq. (S17). For the parameters of Ref. [39], it yields C∗/C0 & 6.1. It may be further
increased by lowering the total number of atoms, although at the expense of atom detectability. In this respect, mestable He
atoms appear particularly suited for they allow for atom-resolved detection and measurement of momentum distributions over
up to six decades [37].

B. Validity condition of the quasi-1D regime

The condition for generating truly quasi-1D tubes in the experiment reads as kBT � ~ω⊥, where ω⊥ is in the angular
frequency of the transverse confinement induced by the 2D lattice, see for instance Ref. [32]. This condition may be written
using the scaling parameters ξγ = −aho/a1D

√
N and ξT = −a1D/λT . Using the relations aho =

√
~/mω, λT =

√
2π~2/mkBT ,

and

ξTξγ =
1√

2πN

√
kBT

~ω
, (S19)
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Figure S3. Reproduction of Fig. 3 of the main paper together with the validity condition of the quasi-1D regime, Eq. (S20), for
√
ω⊥/ω = 30,

relevant for the experiments of Ref. [39]. The dark regions show the excluded regions for N = 2 atoms (black) and N = 10 atoms (gray).

it reads as

ξTξγ �
1√

2πN
×
√
ω⊥
ω
. (S20)

In experiments, the typical value of ω⊥/ω varies from a few hundreds to a few thousands. In Fig. S3 we reproduce the Fig. 3
of the main paper, together with the condition (S20) for two values of the atom number N and the parameters of Ref. [39],
ω/2π = 15.8Hz and ω⊥/2π = 14.5kHz. The regions where the validity condition is not fulfilled is shown in black for N = 2
and gray for N = 10. We conclude that the value ξ∗T corresponding to the maximum of the contact is well inside the validity
regime deep enough in the strongly-interacting regime, ξγ � 1. It is thus possible to observe the maximum contact in this
regime. Moreover, one can further extend the validity region by increasing the value of the ratio ω⊥/ω, i.e. by increasing the
transverse confinement.
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