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Abstract

This work presents a general methodology to analyze three-dimensional Freedericksz transitions in
twisted-nematic liquid crystal (LC) bilayers. Using two equivalent coupled electromechanical variational
formulations, the problem is treated as a bifurcation instability triggered by an externally applied electric
field. Specifically, we consider LC bilayer materials anchored between two bounding plates and subjected
to an electric field across the bilayer thickness. The plates are also twisted by an overall angle leading to
different orientations of the directors in each layer. We first evaluate the corresponding ground state of
the director field, and subsequently, we analyze the bifurcation problem by using a combined analytical-
numerical method leading to a one-dimensional finite element discretization of the resulting stiffness matrix
of the system. An analytical solution for the zero-twist bilayer is also obtained. The developed methodology
is used to study the effect of the volume fraction of the constituents forming the bilayer upon the resulting
critical electric field and corresponding eigenmodes. We find that by assembling a relatively thin 5CB layer
with a thicker 7E layer, one can obtain periodic Freedericksz transitions (i.e. local modes) even for a zero-
twist LC bilayer. We also show that when a 5CB material is assembled together with another electrically
similar LC, such as a PCH12, the combined LC bilayer can exhibit an even lower Freedericksz transition
than a LC of the same thickness consisting of any of the two constituents alone.
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1. Introduction

Liquid crystals (LCs) are materials made of elongated rod-like molecules, called directors, that have a
preferred average orientation thus resulting to an overall anisotropic behavior. Due to their response to
external stimuli (electric, magnetic or thermal fields), LCs are extensively used in electronic devices and
particularly in optical displays. In simple terms, a liquid crystal display (LCD) is essentially a thin layer
of an LC material, anchored between two bounding plates, typically, made of transparent polymer or glass
and optically polarized in different directions. In the absence of a transverse (i.e., normal to the bounding
plates) electric (or magnetic) field, all the directors (nematic or cholesteric) lie in the same plane as that of
the bounding plates. In most cases, these directors are all aligned at a given in-plane direction (e.g. nematic
LC) or form helices across the thickness (e.g. twisted-nematic, cholesteric). In the absence of an external
electric field, these configurations allow polarized light to pass through the two end plates. When an applied
transverse electric field exceeds a critical value, the directors suddenly rotate out-of-plane to align with the
applied transverse field. This changes the path followed by the polarized light resulting to the blocking of its
transmission through the end plates. This phenomenon can be modeled as a bifurcation of an appropriate
boundary value problem and is called the Freedericksz transition (Fréedericksz and Repiewa, 1927). Such
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a switching in the optical properties has been extensively exploited over the last forty years and led to the
spectacular development of the industry of LC displays and color-light screens (Wysocki et al., 1969; Gray
and Kelly, 1999; Kirsch and Bremer, 2000).

A more efficient way of optical switching may be obtained by use of twisted nematic displays (TNDs)
(Gray and Kelly, 1999; Kirsch and Bremer, 2000). TNDs are obtained when a pre-twist is applied between
the parallel plates that anchor the nematic LC phase (Schadt and Helfrich, 1971). Freedericksz transition
in TNDs requires the application of an electric field whose critical value depends on the pre-twist (Leslie,
1970; Sfyris et al., 2016). The resulting distorted patterns in such post-bifurcated TN layers depend on their
mechanical and electric (or magnetic) properties (Leslie, 1970).

In turn, a large number of studies have been devoted to the theoretical continuum description of LCs. In
particular, a continuum model for the description of LCs in terms of a free energy density was first introduced
by Oseen (1933) and Frank (1958), while the theory to model the time-dependent behavior was proposed
later by Ericksen (1962) and Leslie (1968). For a complete three-dimensional, quasi-static framework for TN
phases the reader is referred to the books of Virga (1994) (variational approach) and Stewart (2004) (direct
approach). More recently, Pampolini and Triantafyllidis (2018) have developed a variational framework for
nematic elastomers, i.e., LCs that can undergo finite deformations. In all these works, the Frank-Oseen (FO)
energy has served as a basis for the description of the continuum framework. More specifically, the bulk
FO energy consists of three mechanical contributions, namely, the splay, twist and bending energy of the
material. This description is sufficient for modeling strongly anchored LC layers (Kini, 1987; Sfyris et al.,
2016; Pampolini and Triantafyllidis, 2018). On the other hand, additional energetic contributions due to
surface tension may become significant if one is interested to model the LC free surfaces (Lavrentovich and
Pergamenshchik, 1996) or weakly anchored LC layers (Sugimura et al., 1995; Rosso et al., 2004).

As already mentioned in the beginning of this introduction, the main mechanism of operation in LCs
is the Freedericksz transition. When the resulting transition (bifurcation) pattern depends only on the
thickness coordinate, one has a global mode of instability (Blinov, 1979; Sfyris et al., 2016). By contrast,
Lonberg and Meyer (1985) have observed spatially periodic twist-splay patterns in nematic liquid crystals,
which correspond to a local mode of instability (Sfyris et al., 2016). In particular, such periodic distortions
arise in a nematic LC whenever the ratio of its splay and twist stiffness exceeds a specific threshold. Such
periodic distortions have also been observed in TN LC layers when the pre-twist exceeds a critical twist
angle (Sfyris et al., 2016).

In particular, the effect of the pre-twist upon the critical electric field has been examined by Leslie (1970)
analytically and validated experimentally by Gerritsma et al. (1971) and Karat and Madhusudana (1977).
More recently, Atherton and Sambles (2006) investigated similar post-instability periodic pattern formations
in nematic-homeotropic LC layers. Instabilities in solid LC elastomers have been observed, on the other
hand, by Bladon et al. (1993) and Warner and Terentjev (2003), while recently, Sonnet and Virga (2017)
have observed curvature-dependent periodic patterns in the post-bifurcation regime of LC polymers (Sonnet
and Virga, 2017).

The periodic patterning of thin nematic layers, which is one of the limiting cases in the present study,
has been observed in a number of experiments (Lavrentovich and Pergamenshchik, 1990). In such studies,
thin layers of nematic phases are typically anchored to a soft polymer or a liquid substrate. Theoretical
investigations show that the surface energy of the free thin film of a nematic layer is much higher when
compared to that of the substrate. Consequently, the thin LC layer buckles in order to achieve a greater
surface area, resulting in a periodic pattern, which is also termed as the spontaneous Freedericksz transition
(Kaznacheev and Sonin, 1983; Barbero and Durand, 1987). This spontaneous nematic to periodic transition
of a nematic film depends as expected on its thickness (Sparavigna et al., 1994; Alexe-Ionescu et al., 2002)
and thus only takes place below a critical thickness of the nematic layer Sparavigna et al. (1994). In this
context, Sprang and Aartsen (1985); Sugimura et al. (1998) have shown that the anchoring strength of the
thin nematic layers on a substrate depends on the surface tension of the nematic film as well as on the surface
roughness of the interface. Interestingly, reverse switching of surface roughness and wrinkling has been
observed by Liu et al. (2015) in a self-organized polydomain liquid crystal coating. More recent experiments
with nematic phase-polymer bilayers show complex surface patterns and shape changes including wrinkling,
helical twisting and folding (Agrawal et al., 2014; Boothby and Ware, 2017; Liu et al., 2017). These recent
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observations reveal the complex interactions of nematic layers with soft substrates and call for a an in depth
investigation of instabilities in LC multi-layer assemblages.

Scope of the study. In this view, our study focuses on the theoretical investigation of the stability of TN
bilayers made of two distinct LC phases with different mechanical and dielectric properties. More specifically,
in an effort to provide a general methodology to analyze three-dimensional Freedericksz transitions as well
as to carry out an insightful analysis of the Freedericksz transition in TN bilayers, we propose a variational
framework for multilayer TN composites, extending the work of Stewart (2004) and Sfyris et al. (2016) for
the single phase TN layers. Two formulations, one using a vector potential and the other a scalar potential,
are discussed in detail and are shown to be exactly equivalent by means of a non-trivial boundary value
problem (BVP). The resulting BVP along with the strong anchoring and the interface conditions is solved
to obtain the bifurcation values of the applied electric fields as well as the corresponding patterns (local
and global modes). The presence of an interface in-between the two layers requires the definition of a new
ground state for each layer for non-zero twist. This is achieved by introducing a reduced potential energy for
the director field prior to the application of an electric field and is general for any multi-layer LC with any
number of interfaces. The reduced potential allows to recover in a straightforward manner the ground state
of a single LC layer reported in the literature. The bifurcation analysis of the present BVP is achieved via a
combined analytical-numerical method (Sfyris et al., 2016) which leads to an one-dimensional finite-element
discretization along the thickness of the bilayer. An analytical bifurcation analysis is also performed for
the special case of purely nematic (no-twist) bilayers. A single layer made of a 5CB material, which has
been investigated in detail by Sfyris et al. (2016), is now anchored to another LC layer leading to periodic
patterns even in the simple zero-twist case. Moreover, we show that when the 5CB is assembled together
with another LC that exhibits similar values of the critical electric field (such as PCH12), the resulting LC
bilayer can lead to an even lower Freedericksz transition electric field than any of the constituents alone.

The present work is organized as follows. Section 2 describes two equivalent versions of the general
variational framework for multi-layered LC materials. This is followed by the definition of the LC bilayer
geometry and the corresponding expressions for the FO energy in Section 3. The finite-element framework
for the bifurcation analysis of TN bilayers is then discussed in Section 4, followed by an analytical solution
for the special case of zero-twist (nematic LC) in Section 5. The results in Section 6 consist of two parts. The
first part, in Section 6.1, shows the critical electric field and the critical wavenumbers for the Freedericksz
transition in a TN bilayer made of arbitrary volume fractions of 5CB and 7E LC materials. The second
part, in Section 6.2, investigates the variation of the critical electric field and the corresponding wavenumbers
obtained by assembling bilayers made of a 5CB layer and four other LC phases. We conclude the study
with general remarks and suggestions for future work in Section 7. Finally, in the electronic Supplemental
Material (SM), we provide additional algebraic details on the analytical solution.

2. Definition of the potential energy

In this section, we present the variational formulations used to analyze a LC boundary value problem
(BVP). The discussion that follows is based on the sketch of Fig. 1. Our LC is an infinite multilayer of
thickness `3 and occupies a volume V which comprises r = 1, L different phases occupying volumes Vr,
respectively (see Fig. 1c for a multi-layer example). The LC materials are regarded in the present work
as nematic and/or TN described by a free energy density wd (or we). This energy can be split into a
mechanical free energy density that is a function of the orientation of the director vector n(x) and its
gradient ∇n(x) (but not of the deformation gradient), and an electrical free energy that depends on n(x)
and the electric displacement d(x) (or the electric field e(x)). Specific definitions of these energies are
provided in Section 3. Here, x denotes the position vector in the current configuration, which coincides with
the reference configuration since there is no dependence on the deformation gradient. Henceforth, the x
argument will be dropped for simplicity of notation whenever considered unnecessary.

Specifically, we will present two different but equivalent variational formulations: a vector potential
formulation for the electric displacement d (leading to a Neumann BVP for the electric part) and a scalar
potential formulation for the electric field e (leading to a Dirichlet BVP for the electric part). The first
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formulation is more suitable for numerical calculations, while the second leads to an easier analytical solution
for the no-twist case.

a) b) c)

Figure 1: (a) Geometry of the R3 dimensional problem depicting the LC device. (b) The LC device of volume V and
its dimensions `1, `2 and `3. (c) A paradigm of a layered LC device comprising r = 1, L phases occupying volumes
Vr.

2.1. A vector potential formulation for the electric displacement

The interest in the present work is the investigation of the three dimensional bifurcation of LCs, and thus,
it is convenient to formulate an energy minimization problem. This will allow us to numerically calculate
the critical electric field at the onset of bifurcation as the minimum eigenvalue of the incremental stiffness
(or Hessian) matrix for the corresponding discretized potential energy. In this regard, for the BVP sketched
in Fig. 1a, we define the potential energy as

PR3

d (n,∇n,d) = inf
n∈S

inf
d∈D

{∫
V

wd (x,n,∇n,d) dV +

∫
R3\V

1

2 ε0
d · d dV +

∫
∂V

(ea ×α) ·N dS

}
, (2.1)

where ε0 ' 8.854 · 10−12F · m−1 denotes the electric permittivity of free space, ea is the applied electric
field on the boundary of the LC material and N denotes the normal to the boundary. Note that in the
above-defined potential energy, we neglect mechanical body forces and free charges. We proceed further
by introducing the approximation sketched in Fig. 1b. Therein, we take into account first that the electric
potential difference ∆ϕa is directly applied between the upper and lower surfaces of the LC (see Fig. 1b).
This leads to the electric field being identically zero outside the LC in the direction x3 and equal to

ea =
∆ϕa
`3

e3 (2.2)

on the boundary ∂V . It is worth noting here that since the independent variable used in the potential
energy in (2.1) is the electric displacement d (or equivalently the vector potential α), the application of the
conjugate electric field ea on the boundary of the LC makes it a Neumann BVP (see last integral term in
(2.1)).

Secondly, we note that in a LC device, the corresponding dimension in the x3 direction is smaller than
in the other two. These considerations allow us to model only the LC system neglecting the surrounding air
and redefining the volume as V = R2 × [0, `3]. In view of this, the potential energy (2.1) can be simplified
to

Pd(n,∇n,α) = inf
n∈S

inf
α∈D

{∫
V

wd(x,n,∇n,d)dV +

∫
∂V

(ea ×α) ·N dS

}
, (2.3)

with the admissible sets for the director field n and the electric displacement vector potential α defined by

S ≡
{
n(x) : n(x) · n(x) = 1, ∀x ∈ V,n(x) = n∂V , ∀x ∈ ∂V

}
(2.4)

and

D ≡
{

d(x) :∇ · d(x) = 0, d(x) =∇×α(x), ∇ ·α(x) = 0 ∀x ∈ V
}
. (2.5)
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Here, the introduction of α ensures that d is divergence free. In addition, the constraint ∇ · α = 0
corresponds to the well-known Coulomb gauge and leads to a uniquely defined vector potential α (B́ıró
and Preis, 1984; Stark et al., 2015). By extremizing the potential energy Pd in (2.3) with respect to n
and α, one obtains the Euler-Lagrange field equations, i.e. the equilibrium, the Faraday equations and the
corresponding jump conditions at internal interfaces

(Pd),nδn = 0 ⇒ ∇ · ∂wd
∂∇n

− ∂wd
∂n

= 0, ∀x ∈ V,

[[
∂wd
∂∇n

]]
Ni = 0,

[
[n]
]

= 0, ∀x ∈ ∂Vr, (2.6)

(Pd),αδα = 0 ⇒ ∇× e = 0, e =
∂wd
∂d

, ∀x ∈ V, Ni ×
[
[e]
]

= 0, ∀x ∈ ∂Vr, (2.7)

as well as the Dirichlet on n and Neumann on e boundary conditions

n = n∂V , N× e = N× ea, ∀x ∈ ∂V. (2.8)

In the very last equation, we have used the fact that e = 0 outside the V (see Fig. 1b). Note further that
to the field equations (2.6) and (2.7), one needs to add the constraints described in (2.4) and (2.5). This is
described in detail in the next section.

In the present study, the notation Ni is used to describe the normal at an interface between two phases
occupying volumes Vr and Vr+1 (with r = 1, L phases), while its positive direction is chosen to be from
phase i to phase i+ 1, i.e., Ni = Ni→i+1, as sketched in the multi-layer example in Fig. 1c.

2.2. An alternative potential energy using the scalar electric potential

In Section 5, we propose an analytical solution to the problem for the special case of zero twist. For this
case it is more convenient to use an alternative but equivalent definition of the potential energy, denoted
as Pe, which is written in terms of the electric field e (or the scalar potential ϕ). For that, one needs to
define first the partial Legendre-Fenchel transforms of the energies wd and we (Bustamante et al., 2009)
with respect to d and e, to obtain

we(n,∇n, e) = inf
d

[−e · d + wd(n,∇n,d)] and wd(n,∇n,d) = sup
e

[e · d + we(n,∇n, e)]. (2.9)

The above transformation leads to a unique result for strictly convex energy function, which will be the case
in the present study (see definitions for we and wd in Section 3.1). Using next the transformation (2.9)1,
one can readily define the equivalent potential energy in terms of e (or the scalar potential ϕ) as

Pe(n,∇n, ϕ) = inf
n∈S

sup
ϕ∈E

∫
V

we(x,n,∇n, e)dV. (2.10)

Here, S is defined in (2.4), whereas the admissible set E is given by

E =
{

e(x) :∇× e(x) = 0, e(x) = −∇ϕ(x), ∀x ∈ V, ϕ(x) = ea · x, ∀x ∈ ∂V
}
, (2.11)

with ea denoting the applied electric field given by (2.2) (see Fig. 1b). It is worth noting here that contrary
to the vector potential formulation presented in the previous section, the independent variable used in the
potential energy in (2.10) is the electric field e (or equivalently the scalar potential ϕ). This implies that
the application of ea on the boundary of the LC corresponds to a Dirichlet BVP and thus the corresponding
boundary term for the electric field appears in the constraint set (2.11).

The potential energy (2.10) is then extremized with respect to n and ϕ to give the equilibrium, the
Gauss equations and the corresponding jump conditions at internal interfaces, which read (Pampolini and
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Triantafyllidis, 2018)

(Pe),nδn = 0 ⇒ ∇ · ∂we
∂∇n

− ∂we
∂n

= 0, ∀x ∈ V,

[[
∂we
∂∇n

]]
Ni = 0,

[
[n]
]

= 0, ∀x ∈ ∂Vr, (2.12)

(Pe),ϕδϕ = 0 ⇒ ∇ · d = 0, d = −∂we
∂e

, ∀x ∈ V, Ni ·
[
[d]
]

= 0, ∀x ∈ ∂Vr, (2.13)

as well as the Dirichlet boundary conditions

n = n∂V , ϕ(x) = ea · x, ∀x ∈ ∂V. (2.14)

Note further that to the field equations (2.12), one needs to consider also the unit-vector constraint described
in (2.4).

It is important to mention at this point that the potential energies (2.3) and (2.10) are appropriate for
the BVP shown in Fig. 1b, which corresponds to an applied electric field, ea via electrodes directly attached
to the external surfaces of the LC device. If instead one is interested to work with magnetically activated
LCs, where the magnetic field is applied far from the device or not directly on its upper/lower surfaces,
the more general expression (2.1) should be used and the surrounding air should be modeled as depicted
in Fig. 1a. The reader is referred to the recent work of Danas (2017), Lefèvre et al. (2017) and Keip and
Rambausek (2017) for a more detailed discussion of this point. Finally, both potential energies (2.3) and
(2.10) can be augmented to include the polarization as an additional degree of freedom thus recovering the
variational formulations of Sfyris et al. (2016) and Pampolini and Triantafyllidis (2018).

3. Material selection, ground state and principal solution

In the present work, we restrict attention to a two-phase (L = 2) LC bilayer geometry, shown in Fig. 2.
Henceforth, we use the supersript r to distinguish each phase (r = 1, 2). The two LC materials are separated

by an interface defined by the normal N = ê3, while each layer has thickness along the x3−direction, `
(r)
3

with r = 1, 2. For convenience, we set the origin x3 = 0 at the interface of the two materials, such that

x3 ∈ [−`(1)3 , `
(2)
3 ] and `3 = `

(1)
3 + `

(2)
3 . The volume fraction of phase 1 is then denoted as c = `

(1)
3 /`3 whereas

that of phase 2 is 1− c = `
(2)
3 /`3.

a) b)

Figure 2: (a) Geometry of a bilayer. The origin is placed at the interface of the two layers. (b) Cross-section of the

bilayer in the 1− 3 plane. The volume fraction of each phase is c = `
(1)
3 /`3 and 1− c = `

(2)
3 /`3.

3.1. Constitutive laws

The proposed LC bilayer geometry constitutes a theoretical model problem, that allows us to explore
the richness of responses that one can obtain with such LC assemblies. Furthermore, following the existing

literature, we assume that the free energy density of each phase, w
(r)
e (or w

(r)
d , r = 1, 2) can be split in two

parts; the mechanical free energy density, ψ
(r)
m , which is a function of the orientation of the director vector
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n(x) and its gradient ∇n(x), and the electrical part, ψ
(r)
e (or ψ

(r)
d ), which depends on n(x) and the electric

field e(x) (or electric displacement d(x)) but not on ∇n. Hence, one can write

w(r)
e (n(x),∇n(x), e(x)) = ψ(r)

m (n(x),∇n(x)) + ψ(r)
e (n(x), e(x))− ε0

2
e(x) · e(x), r = 1, 2, (3.1)

where again the dependence on x will be dropped for simplicity. The electrical energy is written in such a

manner that if a given phase r has zero electric susceptibility then ψ
(r)
e = 0, while still the last term in (3.1)

is present to describe the background electric field energy in vacuum.
In view of this, we consider that the purely mechanical part of each phase is described by the well-known

“Frank-Oseen” (FO) energy, which is given by

ψ(r)
m (n,∇n) =

1

2
k
(r)
1 (∇ · n)

2
+

1

2
k
(r)
2

(
n · (∇× n) + τ (r)

)2
+

1

2
k
(r)
3 ‖n×∇× n‖2 . (3.2)

Here, k
(r)
1 , k

(r)
2 and k

(r)
3 are positive experimentally-obtained constants that serve to describe the splay,

twist and bending deformation of the LC, respectively. In turn, τ (r) is constant per phase and denotes the
initial twist of the director field in the ground state. It appears in definition (3.2) as a prestress-type term,
such that the overall energy is null in the ground state. Finally, in the last term of (3.2), ‖.‖ denotes the
Euclidean norm. The cases of a nematic and TN LC correspond to τ (r) = 0 and τ (r) 6= 0, respectively.
The evaluation of each τ (r) for each phase given an overall twist of the bilayer is discussed in the following
section.

Following Stewart (2004), we consider that the electromechanical energy of each phase is anisotropic and
is given by a simple quadratic form in terms of e, which reads

ψ(r)
e (n, e) = −ε0

2
e · χ(r)

e (n) · e, χ(r)
e (n) = χ

(r)
‖ nn + χ

(r)
⊥ (I− nn), (3.3)

where χ
(r)
e is the second-order tensor of the electric susceptibility given in terms of the parallel, χ

(r)
‖ , and

perpendicular, χ
(r)
⊥ , to n components.

For completeness, we also recall the standard definition for the polarization vector

d = ε0e + p. (3.4)

Using (2.13)2 and (3.4), one obtains

d = −∂w
(r)
e

∂e
= ε0

(
I + χ(r)

e

)
· e, p = −∂ψ

(r)
e

∂e
= ε0χ

(r)
e · e. (3.5)

Next, using the partial Legendre-Fenchel transform in (2.9)2, we readily find

w
(r)
d (n,∇n,d) = ψ(r)

m (n,∇n) + ψ
(r)
d (n,d) +

1

2 ε0
d · d, (3.6)

with

ψ
(r)
d (n,d) = − 1

2ε0
d · χ(r)

d (n) · d, χ
(r)
d (n) = χ(r)

e ·
(
I + χ(r)

e

)−1
=

χ
(r)
⊥

χ
(r)
⊥ + 1

nn +
χ
(r)
‖

χ
(r)
‖ + 1

(I− nn). (3.7)

Combining relations (2.7)2 and (3.4), one has

e =
∂w

(r)
d

∂d
= ε−10

(
I− χ

(r)
d

)
· d, p = −ε0

∂ψ
(r)
d

∂d
= χ

(r)
d · d. (3.8)

The above-discussed constitutive relations can be easily modified to include saturation but this is beyond
the scope of the present study.
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3.2. Ground state for the director field for an overall twist ∆θ

In this section, we discuss the process of obtaining the ground state of the director field n(x) given an
overall twist ∆θ 6= 0 between the upper and lower plates of the LC bilayer. This is a process that takes place
during the fabrication of the LC device, before any electric field is applied to the system. Specifically, in
the present study, the two nematic layers (i.e., with no initial twist) are initially placed together, separated
by an interface, which is assumed to be perfect, i.e., both the director field and its gradient are continuous
across that interface. Subsequently, an overall twist angle ∆θ is applied about the x3−axis at the upper
and lower plates of the LC bilayer. In agreement with the literature for single LC layers (Stewart, 2004),
the twist operation can be described by the minimization of the reduced potential energy

Pτ (n,∇n) = inf
n∈S

∑
r=1,2

∫
Vr

w(r)
τ (n,∇n)dV, w(r)

τ (n,∇n) =
1

2
k
(r)
2

(
n · (∇× n)

)2
, (3.9)

with S given by (2.4). The reduced energy wτ derives from the FO energy (3.2) by keeping only the twist

term k
(r)
2 and by setting τ (r) = 0. Following the twist operation, the LC bilayer is allowed to come to

a complete rest leading to its twisted ground state. In this ground state, the bilayer is described by the
complete FO energy (3.2) with non-zero τ (r) (Stewart, 2004). The above described process is consistent with
the corresponding twisted ground states of LC single layers reported in numerous studies in the literature,
and is used in the following to evaluate the twist of the directors in each phase of for the LC bilayer.

Specifically, we consider the strong anchoring conditions defined in (2.4). For simplicity, we assign

n(x1, x2,−`(1)3 ) = ê1 at the lower face of the LC bilayer. In turn, we apply a twist about the x3−axis at

the top face, such that n(x1, x2, `
(2)
3 ) = cos ∆θ ê1 + sin ∆θ ê2, where ∆θ is a constant denoting the overall

twist angle, as shown in Fig. 2. In order to obtain the ground state for the director field n(x), we need
to minimize (3.9) as well as satisfy the interface conditions in (2.6)2,3 (with N = ê3) and the anchoring
conditions in (2.4). Starting by the latter, we propose a trial director field that is independent of x1 and x2,
such that

n(r) = cos
[
τ (r)x3 + t(r)

]
ê1 + sin

[
τ (r) x3 + t(r)

]
ê2, r = 1, 2, (3.10)

where τ (r) is the twist of the director field in each phase and t(r) are constants. It is a matter of simple
algebra to show that the director field (3.10) satisfies identically the equilibrium conditions (2.12) (or (2.6))
and thus extremizes (3.9). In turn, the four unknown constants in (3.10) shall be obtained by using the two
anchoring conditions (described above) as well as the two interface conditions defined in (2.6).

In view of this, application of the director field (3.10) to the interface condition (2.6)2 and use of the
reduced energy(3.9) leads to[

∂w
(1)
τ

∂∇n
− ∂w

(2)
τ

∂∇n

]
· ê3 = 0 ⇒ k

(1)
2 τ (1) − k(2)2 τ (2) = 0. (3.11)

Using next the anchoring conditions at x3 = −`(1)3 and x3 = `
(2)
3 , one gets

− τ (1)`(1)3 + t(1) = 0, τ (2)`
(2)
3 + t(2) = ∆θ. (3.12)

Applying the continuity of the director field n at the interface x3 = 0 (see equation (2.6)3), we have[
[n]
]

= 0 ⇒ t(1) = t(2), (3.13)

which completes the set of equations necessary to evaluate τ (r) and t(r). By solving the set of the four linear
algebraic equations (3.11), (3.12) and (3.13), we finally obtain

τ (1) =
k
(2)
2 ∆θ

k
(2)
2 `

(1)
3 + k

(1)
2 `

(2)
3

, τ (2) =
k
(1)
2 ∆θ

k
(2)
2 `

(1)
3 + k

(1)
2 `

(2)
3

, t(1) = τ (1)`
(1)
3 , t(2) = ∆θ − τ (2)`(2)3 . (3.14)
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Thus, the ground state solution for the director field becomes

ngs(x) =


cos

[
τ (1)

(
x3 + `

(1)
3

)]
ê1 + sin

[
τ (1)

(
x3 + `

(1)
3

)]
ê2, −`(1)3 ≤ x3 < 0,

cos

[
τ (2)

(
x3 − `(2)3

)
+ ∆θ

]
ê1 + sin

[
τ (2)

(
x3 − `(2)3

)
+ ∆θ

]
ê2, 0 ≤ x3 < `

(2)
3 .

(3.15)

Figure 3: Examples of ground state solutions for the director vector ngs for (a) c = 0.5 and ∆θ = π/2 and (b)

c = 0.7 and ∆θ = 3π/2. Layer 1 corresponds to an 7E material with k
(1)
2 = 5.82pN and layer 2 to a 5CB material

with k
(2)
2 = 3.9pN. For illustration purposes `1 = `3 = 1µm. The angle θ denotes the 1 − 2 in-plane rotation of the

directors. The interface separating the two layers is denoted with a dashed (green) line

It is straightforward to show that the vector field (3.15) satisfies the equilibrium, jump and boundary
conditions in (2.6) (or (2.12)) in the absence of an electric field. The ground state solution for the director
vector is an initial piecewise uniform helix about the x3−axis, where all directors lie in planes parallel to the
end plates (n3 = 0). It is also straightforward to show that the above ground state is an overall minimum
leading to an overall zero FO energy defined in (3.6) for vanishing electric fields. It is important to mention
at this point that we can recover easily the corresponding ground states reported for single layers (Stewart,

2004; Sfyris et al., 2016) by simply setting k
(1)
2 = k

(2)
2 (and for simplicity `

(1)
3 = 0, `

(2)
3 = `3) in (3.14), i.e.

τ (1) = τ (2) = ∆θ/`3 and t(1) = t(2) = 0.
Two representative examples of the ground state solution (3.15) are shown in Fig. 3. Layer 1 corresponds

to an 7E material with k
(1)
2 = 5.82pN and layer 2 to a 5CB material with k

(2)
2 = 3.9pN. For illustration

purposes `1 = `3 = 1µm, while the angle θ denotes the 1− 2 in-plane rotation of the directors. In Fig. 3a,
we consider a bilayer with equal volume fraction for each phase, i.e., c = 0.5, and overall twist ∆θ = π/2,
while in Fig. 3b, c = 0.7 and ∆θ = 3π/2. The interface separating the two layers is depicted with a dashed
(green) line and corresponds always to the origin of the x3 axis.

3.3. Principal solution for the director and the electric fields

In this section, we find the principal solution for n0(x) and d0 (and e0) when an electric field ea (c.f.
(2.2)) is applied across the thickness of the LC bilayer. In this case, and following previous work for a single
layer (Sfyris et al., 2016), one can easily show that the principal solution (i.e., before bifurcation) for the
director field is exactly that of the ground state, i.e.,

n0(x) = ngs(x), (3.16)

with ngs given by (3.15). In other words, the directors retain their ground state up to bifurcation.
In turn, as a direct consequence of the jump conditions, defined in (2.13), the electric displacement is

constant and equal in both layers, i.e., d0(x) = d0ê3. By using (2.5) and (2.7), the minimum of the potential
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energy (2.3) admits a principal solution for the vector potential and the electric displacement given by

α0(x) =
d0
2

(x1ê2 − x2ê1) ⇒ d0(x) =∇×α0(x) = d
(1)
0 = d

(2)
0 = d0ê3, ∀x ∈ V, (3.17)

which by use of (2.2) becomes

d0ê3 = ε0ea = ε0
∆ϕa
`3

ê3. (3.18)

On the other hand, the electric field, e(x), and the polarization, p(x), exhibit jumps across the bilayer
interface but remain constant inside each layer. Using relations (3.4), (2.11), (2.12) and the constitutive
relations (3.5) and (3.8), we find the following principal solution for the electric potential and corresponding
electric fields in the bilayer in terms of the applied electric field ea,

ϕ0(x) =

{
e
(1)
0 · x, −`(1)3 ≤ x3 < 0,

e
(2)
0 · x, 0 ≤ x3 < `

(2)
3 ,

e
(r)
0 =

1

χ
(r)
⊥ + 1

ea, p
(r)
0 =

ε0χ
(r)
⊥

χ
(r)
⊥ + 1

ea, (3.19)

with ea given by (2.2). Notice that the principal solutions for the electric displacement d, the electric field
e and the polarization vector p depend only on x3.

4. The numerical bifurcation problem: critical electric fields and eigenmodes

4.1. Bifurcation functional

Of interest here is the stability of the principal solution presented in the previous section and more
precisely the onset of first bifurcation at the lowest electric field ea. As shown in (3.18), the actual applied
load is the potential difference ∆ϕa, but for simplicity in the subsequent presentation, d0 will be referred to
henceforth as the applied load (c.f. (3.18)).

The latter is obtained by minimizing the potential energy Pd ≡ P (for simplicity of notation henceforth)
in (2.3) with respect to the independent variables, denoted compactly by g ≡ {n,α}. This solution depends
on the applied electric displacement d0 (or equivalently on the potential difference ∆ϕa). At relatively small
values of the applied load d0, the principal solution g0(d0) (c.f. (3.15) and (3.17)) is stable, i.e. it is a local
minimizer of the potential energy satisfying (P,gg(g0(d0), d0)∆g)δg > 0, for arbitrary perturbations δg 6= 0.
As the applied load increases, it reaches a critical value dc0, where the principal solution at hand g0(dc0) is
no longer a local minimizer, whereby non-uniform electric fields as well as out-of-plane components of the
director n (i.e. n3 6= 0) emerge in the LC bilayer. At that point, also known as the Freedericksz transition,
the second variation of the energy vanishes along a particular direction ∆g, which satisfies the condition:

δ∆P ≡ (P,gg(g0(dc0), dc0)∆g)δg = 0. (4.1)

Here, ∆g is the bifurcation eigenmode, and δg denotes the arbitrary test functions corresponding to the
independent variables of the problem, g. In the following, we calculate the bilinear operator δ∆P using the
energy functions defined in Section 3.

Before, calculating the second variation in (4.1), it is important to take into account in the potential
energy (2.3) the constraint of n ·n = 1 introduced in (2.4) as well as the Coulomb gauge ∇ ·α = 0 discussed
in (2.5). In view of the numerical algorithm adopted in the present study, we choose to introduce these
constraints by using a penalty method, which has the advantage of preserving the positive definiteness of
the potential energy, while being easy to implement numerically. By expanding the constitutive relations
(3.6), (3.7) and (3.8), the potential energy in (2.3) becomes

P(n,α) =
1

2

∑
r=1,2

∫
Vr

[
k
(r)
1 (∇ · n)

2
+ k

(r)
2

(
n · (∇× n) + τ (r)

)2
+ k

(r)
3 ‖n×∇× n‖2 +

C
(r)
a

ε0

∥∥(∇×α) · n
∥∥2 +

C
(r)
⊥
ε0
‖∇×α‖2 +

k(r)

`23 ξ
(r)
n

(n · n− 1)2 +
1

ε0 ξ
(r)
α

(∇ ·α)2

]
dV+∫

∂V

ε−10 d0(ê3 ×α) ·N dS. (4.2)
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Here, we have introduced the notation C
(r)
⊥ ≡ (χ

(r)
⊥ + 1)−1 and C

(r)
a ≡ (χ

(r)
⊥ −χ

(r)
‖ ) (χ

(r)
⊥ + 1)−1 (χ

(r)
‖ + 1)−1,

and k(r) =
√∑

j=1,3(k
(r)
j )2. The two positive constants ξ

(r)
n � 1 and ξ

(r)
α � 1 are penalty factors serving

to enforce the relevant constraints and shall take sufficiently small values to be defined later. The addition
of `3 and ε0 in the last two term of (4.2) allows for the non-dimensionalization of these terms.

In the following, we consider the perturbations δg = (δn, δα) about the principal solutions n0 and α0

defined in equations (3.15) and (3.17), respectively. Those perturbations, δg, as well as the corresponding
eigenmodes ∆g satisfy the essential boundary conditions for n, which belongs to the admissible set S (see
equation (2.4)). This implies

∆n(x1, x2,−`(1)3 ) = δn(x1, x2,−`(1)3 ) = ∆n(x1, x2, `
(2)
3 ) = δn(x1, x2, `

(2)
3 ) = 0. (4.3)

Next, by noting that the director is a unit vector (i.e. n0 ·n0 = n ·n = 1) and n0 and α0 are the principal
solutions described in equations (3.15) and (3.17), respectively, we write the identities

n0 ·∆n = n0 · δn = 0, ∇ · n0 = 0, ∇× n0 + τ (r)n0 = 0, n0 ×∇× n0 = 0, (∇×α0) · n0 = 0.
(4.4)

Use of these identities, allows us to write the the second variation of (4.1) evaluated at the principal path,
in the explicit form

∆δP(d0)
∣∣
n0,α0

=
∑
r=1,2

∫
Vr

[
Lnn,(r)ij ∆niδnj + L∇n∇n,(r)ijkl ∆ni,jδnk,l + L∇nn,(r)ijk (∆ni,jδnk + ∆nkδni,j)

+L∇αn,(r)ijk (∆αi,jδnk + ∆nkδαi,j) + L∇α∇α,(r)ijkl ∆αi,jδαk,l

]
dV, (4.5)

where the subscripts i, j, k, l denote components with respect to the Cartesian coordinate system. The
incremental moduli in (4.5) are given by

Lnn,(r)ij = k
(r)
3 (τ (r))2δij +

k(r)

`3ξ
(r)
n

(n
(r)
0 )i (n

(r)
0 )j +

C
(r)
a

ε0
d20δi3δj3,

L∇nn,(r)ijk = −τ (r)k(r)3 εijk,

L∇n∇n,(r)ijkl = k
(r)
1 δijδkl + (k

(r)
2 − k

(r)
3 )εijpεklq(n

(r)
0 )p (n

(r)
0 )q + k

(r)
3 (δikδjl − δilδjk),

L∇αn,(r)ijk = −C
(r)
a

ε0
d0(n

(r)
0 )pεpijδk3,

L∇α∇α,(r)ijkl =
C

(r)
⊥
ε0

(δikδjl − δilδjk) +
C

(r)
a

ε0
εijpεklq(n

(r)
0 )p (n

(r)
0 )q +

1

ε0 ξ
(r)
α

δijδkl, (4.6)

with d0 defined by (3.18). In this last relation, we have explicitly used the notation n0
(r) to denote the

principal solution for the director field within each layer r = 1, 2, given by (3.15), δij denotes the Kronecker
identity second order tensor and εijk the permutation symbol.

4.2. Finite-Element (FE) discretization and calculations

The eigenvalue problem (4.1) together with the boundary conditions (4.3) is solved numerically by
considering the Fourier transform of ∆g in the x1 and x2 directions (R2) and a finite-element discretization
along x3. For the special case of no twist, ∆θ = τ (1) = τ (2) = 0, an analytical solution is presented in the
following Section.

We consider then the eigenmodes ∆g (and similarly the test functions δg)

∆n(x1, x2, x3) = ∆N (x3) exp
[
i (ω1x1 + ω2x2)

]
, ∆α(x1, x2, x3) = ∆A(x3) exp

[
i (ω1x1 + ω2x2)

]
, (4.7)
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and substitute them in (4.5). After some tedious but straightforward algebra, we find

∆δP(d0) =

∫
R2


0∫

−`(1)3

I(1)(ω1, ω2, x3; d0)dx3 +

`
(2)
3∫
0

I(2)(ω1, ω2, x3; d0)dx3

dω1dω2, (4.8)

with

I(r) ≡ Lnn,(r)ik ∆N i δNk + L∇nn,(r)i3k (∆N i,3δNk + ∆N kδNi,3) + iωβL∇nn,(r)iβk (∆N kδNi −∆N iδNk)

+ L∇n∇n,(r)i3k3 ∆N i,3δNk,3 − iωβL∇n∇n,(r)iβk3 ∆N iδNk,3 + iωβL∇n∇n,(r)i3kβ ∆N i,3δNk + ωβωγL∇n∇n,(r)iβkγ ∆N iδNk

+ L∇αn,(r)i3k (∆Ai,3δNk + ∆N kδAi,3) + iωβL∇nn,(r)iβk (∆N kδAi −∆AiδNk)

+ L∇α∇α,(r)i3k3 ∆Ai,3δAk,3 − iωβL∇α∇α,(r)iβk3 ∆AiδAk,3 + iωβL∇α∇α,(r)i3kβ ∆Ai,3δAk + ωβωγL∇α∇α,(r)iβkγ ∆AiδAk.
(4.9)

In these expressions, a bar (f) denotes complex conjugation of the quantity (f). From the Dirichlet conditions
in (4.3) and (4.7), we obtain

∆N (−`(1)3 ) = ∆N (`
(2)
3 ) = δN (−`(1)3 ) = δN (`

(2)
3 ) = 0. (4.10)

The Neumann boundary conditions (2.8) together with (4.7) lead to

∆A3(−`(1)3 ) = ∆A3(`
(2)
3 ) = δA3(−`(1)3 ) = δA3(`

(2)
3 ) = 0. (4.11)

For the special case of ω1 = ω2 = 0 (i.e. the x1, x2 independent eigenmode problem), we need to impose
additional constraints on ∆A (and δA), which read ∆A1(0) = ∆A2(0) = 0 (and δA1(0) = δA2(0) = 0).
This eliminates trivial modes of the stiffness matrix in this special case.

A finite-element discretization of ∆A and ∆N for all x3 ∈ [−`(1)3 , `
(2)
3 ] is employed to check the loss of

positive definiteness of ∆δP in (4.8) ∀{ω1, ω2} ∈ R2. The thickness of the LC bilayer then is divided in Ne
segments (i.e. finite elements). Each finite element comprises two end nodes, each of which carries six degrees
of freedom, denoted by the vector [∆GI ]T ≡ [∆N I

1 ,∆N I
2 ,∆N I

3 ,∆AI1,∆AI2,∆AI3]T with I = 1, Ne+1. Using
standard FE manipulations, the functional (4.8) can be written in the form

∆δP(d0) = [∆G]T ·K (ω1, ω2, d0] · [δG]T (4.12)

where [∆G] =
[
[∆G1], [∆G2, ..., [∆GNe+1]

]
is the global vector of the nodal degrees of freedom with di-

mension dim[∆G] = 6(Ne + 1) and K is the corresponding stiffness matrix with dimensions dim[K] =
6(Ne + 1) × 6(Ne + 1). The stiffness matrix, K, which is also called the stability matrix, is Hermitian, i.e.
KT = K and thus has real eigenvalues. It is recalled that the boundary conditions (4.10) and (4.11) have
to be applied to K (otherwise it is singular). The application of these boundary conditions is done using an
elimination technique.

In the absence of an electric field (d0 = 0), the stability matrix K(ω1, ω2, 0) is always positive definite.
For a chosen set of values (ω1, ω2) ∈ R2 and at a given value of the electric field dω0 (ω1, ω2) > 0, the lowest
eigenvalue of K, denoted as λKmin(ω1, ω2, d

ω
0 ), vanishes. This indicates a loss of stability of the system for

the given set of (ω1, ω2) ∈ R2. The critical value of the electric field dc0 (and the corresponding wavenumbers
ωc1 and ωc2) is the minimum of dω0 over (ω1, ω2) ∈ R2, namely

λKmin(ω1, ω2, d
ω
0 ) = 0, dc0(ωc1, ω

c
2) = min

(ω1,ω2)∈R2
dω0 (ω1, ω2). (4.13)

In our numerical calculations, we parametrize the wavenumbers as ω1 ≡ R cos Θ and ω2 ≡ R sin Θ, with
R ∈ R+ and Θ ∈ [0, 2π). Due to the symmetry of the stability matrix, K(ω1, ω2, d0) = K(−ω1,−ω2, d0), we
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only need to scan half of the Θ interval. Specifically, we analyze the interval (R,Θ) ∈ [0, 20] × [0, π] with
increments ∆R = 0.1 and ∆Θ = π/180. For each pair of (ω1, ω2), we increase d0 away from zero by using
large increments ∆d0 = 10 C ·µm−2 until λKmin < 0. Then a bisection method is used recurrently until we
satisfy the convergence criterion, defined by∥∥∥λKmin(ω1, ω2, d0|j)− λ

K
min(ω1, ω2, d0|j+1)

∥∥∥ ≤ 10−3λKmin
(
d0|0

)
, (4.14)

where the subscript j indicates the iteration number. The scanning process is carried out for overall twists
∆θ ∈ [0, 2π] with increments ∆θ = 5π/180 and for a large number of volume fractions c of the layers.

In the calculations reported here, we use the same dimensionless penalty parameters ξ
(r)
n = ξ

(r)
α = 10−6

for each phase r = 1, 2 in order to impose the unit length of the director vector n and the Coulomb gauge
condition, as discussed in the potential energy definition (4.8). Such low values, however, lead to locking
and hence an overly stiff system. We avoid locking, by a simple reduced integration scheme with one Gauss
point per element for the integration of the Coulomb gauge and the unit length director constraints in the
x3 integrals appearing in (4.8). For the remaining terms in that integral, the integration is carried out using
two Gauss points per element. All final calculations reported in this study use a total mesh size of Ne = 60
equal length elements which are partitioned proportionally to the volume fraction of each layer. In addition
to the mesh size, the above referenced values of the penalty parameters as well as the adopted integration
scheme are selected by requiring that the difference between the numerically calculated dc0, ωc1 and ωc2 and
the analytical ones (available only for zero twist, i.e., ∆θ = 0), presented in the following section, is less
that 0.1%.

5. An analytical solution for zero twist

In this section, we develop an analytical solution for the BVP depicted in Fig. 1b, comprising the LC
bilayer of Fig. 2. This solution is obtained only for ∆θ = 0, while for any other twist angle the problem can
only be analyzed numerically, as discussed in the previous section. For simplicity in the subsequent algebraic
manipulations, we rely on the scalar potential variational principle with respect to the variable g = {n, ϕ}
defined in (2.10). By substituting the constitutive relations (3.1), (3.3) and (3.5) in (2.10), one obtains

Pe(n, ϕ) =
1

2

∑
r=1,2

∫
Vr

[
k
(r)
1 (∇ · n)

2
+ k

(r)
2

(
n · (∇× n)

)2
+ k

(r)
3 ‖n×∇× n‖2 +

− ε0

C
(r)
⊥

∇ϕ ·∇ϕ− ε0

C
(r)
b

(∇ϕ · n)2

]
dV. (5.1)

where C
(r)
b ≡ (χ

(r)
‖ − χ

(r)
⊥ )−1. The constraint of n being a unit vector is applied explicitly in the equations

that follow and thus no penalty constraint need to be introduced in this case.
By referring to (3.15), we readily obtain the principal solution for the director field n0(x) in the case

of overall zero twist, i.e., ∆θ = 0, which reads n0(x) = ê1. The principal solutions ϕ0 for e
(r)
0 are given

directly by equations (3.19) and are piecewise constant within each layer.
We consider next the perturbations δg = {δn, δϕ} about the principal solutions n0 and ϕ0. Note that

δn and ∆n should be admissible and thus must belong to the set S defined in (2.4). This implies that they

must satisfy the anchoring conditions (4.3) at x3 = −`(1)3 and x3 = `
(2)
3 . Similarly, δϕ and ∆ϕ belong to E

(see (2.11)) and hence, they must satisfy the Dirichlet boundary conditions

∆ϕ(x1, x2,−`(1)3 ) = δϕ(x1, x2,−`(1)3 ) = ∆ϕ(x1, x2, `
(2)
3 ) = δϕ(x1, x2, `

(2)
3 ) = 0. (5.2)

The bifurcation condition (4.1) holds also for the new set of independent variable g ≡ {n, ϕ}. Again, by
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use of the identities (4.4), one may obtain the second variation of (5.1) in the explicit form

δ∆Pe(d0)|n0,ϕ0
=
∑
r=1,2

∫
Vr

[
L∇n∇n,(r)ijkl ∆ni,jδnk,l + Lnn,(r)ij ∆niδnj

+ Ln∇ϕ,(r)ij (∆ϕ,iδnj + ∆niδϕ,j) + L∇ϕ∇ϕ,(r)ij ∆ϕ,iδϕ,j

]
dV, (5.3)

where the subscripts i, j, k, l represent components in the Cartesian coordinate system. The incremental

modulus L∇n∇n,(r)ijkl of the above is the same as in (4.6)3. The remaining incremental moduli in (5.3) are
given by

Lnn,(r)ij = − ε0

C
(r)
b

(ϕ
(r)
0 ),i(ϕ

(r)
0 ),j ,

Ln∇ϕ,(r)ij = − ε0

C
(r)
b

[
(n

(r)
0 )i(ϕ

(r)
0 ),j + (ϕ

(r)
0 ),i(n

(r)
0 )j + (n

(r)
0 )k(ϕ

(r)
0 ),kδij ,

]
L∇ϕ∇ϕ,(r)ij = −ε0

[
1

C
(r)
⊥

δij +
1

C
(r)
b

(n
(r)
0 )i(n

(r)
0 )j

]
. (5.4)

Again here, we have explicitly used the notation n0
(r) to denote the principal solution for the director field

within each layer r = 1, 2, given by (3.15). As a consequence of the arbitrariness of δn and δϕ in (5.3), we
obtain the Euler-Lagrange equations for ∆n and ∆ϕ, which read

−L∇n∇n,(r)ijkl ∆nk,lj + Lnn,(r)ij ∆nj + Ln∇ϕ,(r)ij ∆ϕ,j = 0, L∇ϕ∇ϕ,(r)ij ∆ϕ,ij + Ln∇ϕ,(r)ij ∆ni,j = 0, (5.5)

along with the interface conditions at x3 = 0

[
[∆ni]

]
= 0,

[[
L∇n∇n,(r)i3kl ∆nk,l

]]
= 0,

[
[∆ϕ]

]
= 0,

[[
Ln∇ϕ,(r)3j ∆nj + L∇ϕ∇ϕ,(r)3j ∆ϕ,j

]]
= 0. (5.6)

The corresponding Dirichlet boundary conditions for ∆n and ∆ϕ at the top and bottom faces of the LC
bilayer defined in (4.3) and (5.2), respectively, must be added.

Next, using the constraint n·n = n0 ·n0 = 1, one can write ∆n1(x) in terms of the other two components,
i.e., ∆n2(x) and ∆n3(x)(Sfyris et al., 2016). The governing equations (5.5) admit a general solution

[∆n2(x),∆n3(x),∆ϕ(x)] = [∆N (r)
2 (x3), i∆N (r)

3 (x3),∆Φ(r)(x3)] exp(iω1x1 + iω2x2), (5.7)

with [
∆N (r)

2 (x3) ∆N (r)
3 (x3) ∆Φ(r)(x3)

]
=
∑
I=1,3

[
ξ
s,(r)
I ξ

c,(r)
I

]
[

sinh(ρ
(r)
I x3) cosh(ρ

(r)
I x3) cosh(ρ

(r)
I x3)

cosh(ρ
(r)
I x3) sinh(ρ

(r)
I x3) sinh(ρ

(r)
I x3)

]∆N̂ I,(r)
2 0 0

0 ∆N̂ I,(r)
3 0

0 0 1

 . (5.8)

In this last expression, ξ
c,(r)
I and ξ

s,(r)
I are the eigenmode amplitudes to be subsequently determined in this

section from the boundary and interface conditions (4.3), (5.2) and (5.6).

In turn, ρ
(r)
I and ∆N̂

I,(r)
are evaluated by substituting (5.7) and (5.8) in the governing equations (5.5).

This leads to an eigenvalue problem

Q(r)(ω1, ω2, d0, ρ
(r)
I )∆N̂

I,(r)
= 0. (5.9)
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Here, Q(r) is a 3 × 3 matrix, whose individual elements are derived in the electronic SM. A non-trivial
solution for the system (5.9), is obtained by setting det[Q(r)(ω1, ω2, d0, ρ

(r))] = 0, which in turn leads to the

characteristic equation allowing to evaluate the roots ρ
(r)
I (I = 1, 3) by

{(1 + C(r))ω2
1 + ω2

2 − (ρ(r))2}{(k(r)1 ω2
2 + k

(r)
3 ω2

1 − k
(r)
2 (ρ(r))2)(−k(r)2 ω2

2 − k
(r)
3 ω2

1 + k
(r)
1 (ρ(r))2 + C(r)C

(r)
⊥ d20/ε0)

−(k
(r)
1 − k

(r)
2 )2ω2

2(ρ(r))2} − {k(r)1 ω2
2 + k

(r)
3 ω2

1 − k
(r)
2 (ρ(r))2}(C(r))2C

(r)
⊥ d20ω

2
1/ε0 = 0. (5.10)

For convenience, we have introduced C(r) ≡ C
(r)
⊥ /C

(r)
b . The last polynomial is bi-cubic in ρ2 and thus has

six roots ±ρ(r)I (ω1, ω2, d0), with I = 1, 2, 3. Unfortunately, no explicit solution exists for this polynomial in
the present case and thus the six roots are obtained numerically.

The remaining ∆N̂
I,(r)

are then given by simply solving for the first two rows in (5.9), which gives

∆N̂ I,(r)
3 = −ε0

(1 + C(r))ω2
1 + ω2

2 − (ρ
(r)
I )2

C(r)C
(r)
⊥ d0ω1

, ∆N̂ I,(r)
2 =

(k
(r)
1 − k

(r)
2 )ω2ρ

(r)
I

k
(r)
2 (ρ

(r)
I )2 − k(r)3 ω2

1 − k
(r)
1 ω2

2

∆N̂ I,(r)
3 . (5.11)

Finally, the twelve unknown eigenmode amplitudes, denoted in matrix form by Ξ ≡ [ξc,(1), ξs,(1), ξc,(2), ξs,(2)]T ,

(with ξc,(r) ≡ [ξ
c,(r)
1 , ξ

c,(r)
2 , ξ

c,(r)
3 ]T and ξs,(r) ≡ [ξ

s,(r)
1 , ξ

s,(r)
2 , ξ

s,(r)
3 ]T ) are determined from the boundary and

interface conditions (4.3), (5.2) and (5.6). These conditions lead to a system of twelve homogeneous algebraic
equations (see electronic SM) that can be cast in the compact matrix form

M(ω1, ω2, d0) ·Ξ = 0, (5.12)

For a non-trivial solution of Ξ, the determinant of M must vanish. This condition allows us to determine the
critical dω0 for a given set of (ω1, ω2) ∈ R2. Similar to the numerical study described in Section 4.2, we obtain
the critical value of the electric field dc0 (and the corresponding wavenumbers ωc1 and ωc2) by identifying the
minimum of all those dω0 attained at different (ω1, ω2) ∈ R2, i.e.,

det[M(ω1, ω2, d
ω
0 )] = 0, dc0 = min

(ω1,ω2)∈R2
dω0 (ω1, ω2). (5.13)

It is worth noting that that ω1 and ω2 appear in the characteristic polynomial (5.10) in square powers and
thus all four d0(±ω1,±ω2) are equal. Thus, for the zero twist case, it is sufficient to scan only positive
ω1, ω2. In addition, in all analytical calculations for the LC bilayer, we find ωc1 = 0, similar to the single
layer case (Sfyris et al., 2016).

6. Results

This section presents representative results for the Freedericksz transition in bilayers made of commer-
cially available liquid crystal (LC) materials. Specifically, Table 1 presents the material parameters for six
different liquid crystals at room temperature (see Schad et al. (1979), Kelly and O'Neill (2001) and Stewart
(2004)). The choice of those materials is somehow arbitrary but reveals a number of new features seen only
in the case of bilayer systems.

In all examples considered in this study, we assign the 5CB material to layer r = 1 and change the

materials used in layer r = 2. The volume fraction of layer r = 2 is defined as c ≡ `
(2)
3 /`3, such that c = 0

corresponds to a 5CB single layer.
For convenience in the presentation of the results, we can introduce the dimensionless quantities (Sfyris

et al., 2016)

x3/`3 → x3, α
√
k5CB1 ε0 → α, ωj`3 → ωj , k

(r)
i /k5CB1 → k

(r)
i , ζ ≡ d0 `3

ε0
√
k5CB1

=
∆ϕa√
k5CB1

, (6.1)

with j = 1, 2, i = 1, 2, 3, r = 1, 2 and k5CB1 given in Table 1. The critical non-dimensional field associated
with the critical electric displacement dc0 is denoted by ζc.
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Table 1: LC material parameters

LC k1 (pN) k2 (pN) k3 (pN) χ‖ χ⊥ ∆χ = χ‖ − χ⊥
5CB 6.20 3.91 8.2 17.5 6.0 11.5
7E 11.10 5.82 15.97 2.3 3.0 -0.7
PCH7 9.40 7.40 16.3 12.9 4.2 8.5
PCH12 9.41 5.74 24.1 17.2 4.0 13.2
ZLI-2452 15.0 8.40 20.1 8.7 2.6 6.1
MDA-02-2419 8.26 8.26 17.22 40.8 7.25 33.55

In the following, the first subsection presents the transition from global (i.e. independent of x1, x2 and
ωc1 = ωc2 = 0) to local eigenmodes (i.e., ωc1 6= 0 and/or ωc2 6= 0) as a function of the twist angle ∆θ and the
volume fraction c in the LC bilayer. The second subsection shows that with properly chosen LC bilayers,
one can obtain a critical electric field that is either lower or higher than those achieved in a single layer of
the same overall thickness of any of the constituents alone.

6.1. 5CB-7E bilayers and local eigenmodes

Figure 4 shows (a) the non-dimensional critical electric field ζc and (b) the critical wavenumber ωc2 as a
function of the volume fraction c for a zero-twist bilayer (∆θ = 0) consisting of 5CB and 7E LCs. For zero
twist, we always find ωc1 = 0. Both Figs. 4a and 4b show an excellent agreement between the numerical FE
and the analytical (for zero-twist) solutions (< 0.1% error). This validates our numerical analysis, which will
subsequently be used to calculate critical electric fields and eigenmodes for the non-zero twist LC bilayers.

In addition to the agreement between the FE and the analytical solutions, one can make two important
observations in the context of Fig. 4. In Fig. 4a, we find that ζc →∞ as c→ 1, while in Fig. 4b, we obtain
a periodic Freedericksz transition, i.e., a finite wavelength (ωc2 6= 0) critical mode for c > 0.83. Those two
observations are rationalized henceforth.

Figure 4: Bilayer mixing 5CB with 7E. Comparison between the analytical and the numerical FE solutions as a
function of the layer volume fraction c for a zero-twist bilayer ∆θ = 0. (a) The normalized critical electric field

ζc = dc0`3/
√
ε0 k5CB

1 (with k5CB
1 = k

(2)
1 in present notation) and (b) the critical wavenumber ωc

2. At c ∼ 0.83 a
nonlocal mode ωc

2 6= 0 emerges.

It is known from the literature (see for instance Stewart (2004)) that the anisotropy of the electric
properties, denoted by the anisotropy factor ∆χ = χ‖−χ⊥ in LC layers controls the critical field ζc required
for the Freedericksz transition. For ∆χ > 0, the electric susceptibility χ‖ along the director orientation
n0 is greater than that (χ⊥) perpendicular to n0. In this case, the LC molecules tend to rotate from
the ground state to the ê3 direction with the application of the applied electric field. Consequently, a
competition between the mechanical stiffness of the LC and the dielectric torque due to the applied ζ sets
in. Once ζ exceeds a critical value ζc, the mechanical stiffness of the LC bulk can no longer sustain the
base state orientation of n0, resulting in the Freedericksz transition (Lonberg and Meyer, 1985; Sfyris et al.,
2016). Hence, ∆χ > 0 is a necessary condition for the Freedericksz transition to take place. The 5CB LC
layer exhibits a positive ∆χ5CB = 11.5 > 0, which explains its ubiquitous application in LCD technology.
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In contrast, the 7E LC layer has a negative anisotropy factor ∆χ7E = −0.7 < 0 and thus exhibits no
Freedericksz transition. This explains the strong increase of ζc with c and ultimately the result of ζc →∞ as
c→ 1, in Fig. 4a. We note that for a 5CB single layer (c = 0) the value ζc ∼ 6.5 matches the corresponding
prediction by Sfyris et al. (2016) for a 5CB single layer. The 7E LC layer is electrically inert and thus,
serves as the electrically passive substrate that is attached to an electrically active 5CB layer.

It is this passive electric response of the 7E material that leads to a non-zero ωc2 and thus periodic
Freedericksz transitions in the x2 plane for sufficiently large c > 0.83, as shown in Fig. 4b. Beyond that
volume fraction ωc2 increases almost exponentially and eventually goes to ∞ as c → 1. Note, on the other
hand, that the nematic 5CB single layer (c = 0) does not exhibit a periodic Freedericksz transition since
k5CB
1 /k5CB

2 < 3.3, which is the minimum value required for such phenomena in single layers (Lonberg
and Meyer, 1985). Hence, in the present example, we show that the nonlinear interaction between a thin,
electrically active 5CB layer and an electrically passive 7E substrate leads to periodic Freedericksz transition
for a untwisted bilayer, even when the k1/k2 ratios of both LC materials are less than the critical value
k1/k2 = 3.3.

The observed (finite-wavelength) periodic instability resembles closely the wrinkling instability of a
magneto-active elastomer on a non-magnetic substrate (Danas and Triantafyllidis, 2014; Psarra et al., 2017).
The essential difference of the present case with the magnetic film-substrate instability is the strong anchor-
ing at both ends, which is not present in the latter. The spontaneous periodic patterning of a free-standing
5CB thin layer (i.e. no anchoring) resting on a soft polymer (or a liquid substrate) has been observed
experimentally in Lavrentovich and Pergamenshchik (1990). In those cases, the surface tension of the thin
5CB layer becomes a critical factor for such a periodic instability pattern. On the other hand, the present
work demonstrates that even in the case of strong anchoring conditions, a nematic (untwisted) 5CB thin
layer resting on an electrically passive 7E substrate can undergo a periodic Freedericksz transition (with
ωc2 6= 0).

a) b)

Figure 5: (a) Normalized critical field ζc and (b) corresponding critical wavenumbers ω1 and ω2 as a function of the
total twist angle ∆θ for bilayers of 5CB and 7E with volume fractions c = 0.5, 0.83, 0.9. At c = 0.83, ω2 becomes
non-zero for ∆θ = 0 and increases further for c = 0.9.

Next, we explore the effect of the twist angle ∆θ > 0. Figure 5a shows the evolution of the critical
non-dimensional electric field ζc as a function of ∆θ for three volume fractions c = 0.5, 0.83, 0.9. The
corresponding critical wavenumbers are shown in Fig. 5b. We observe in Fig. 5a that increase of the twist
angle ∆θ leads to the increase of ζc. This observation is in qualitative agreement with the analytical results
of Leslie (1970) for 2D LC single layers. In that study, the critical field is found to be related to the
twist angle by ζc ∼

√
π2k1 + (k3 − 2k2)∆θ2. This relation was later validated experimentally by Karat and

Madhusudana (1977). The factor (k3 − 2k2) plays a key role since it roughly indicates the slope of ζc as
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a function of ∆θ. In particular, we notice from Table 1 that for both 5CB and 7E, (k3 − 2k2) > 0, which
implies an increasing ζc with ∆θ and is indeed observed in the 3D numerical FE computations in Fig. 5a.
In turn, if k3 is sufficiently small with respect to k2 one can get a decrease of ζc, as already discussed in
Sfyris et al. (2016).

Figure 5b shows in more detail the passage from a simple splay (i.e. global) Freedericksz transitions (i.e.,
ω1 = ω2 = 0) to periodic Freedericksz patterning as a function of the twist angle ∆θ. Specifically, twisted
5CB single layers (c = 0) are found to exhibit a periodic critical mode with ωc1, ω

c
2 6= 0 beyond a certain

∆θ > 120o (Scheffer and Nehring, 1997; Sfyris et al., 2016).
In turn, in the context of 5CB-7E bilayers, the critical twist angle ∆θ at which ω2 becomes non-zero

decreases with increase of c (i.e., increase of 7E volume fraction). Eventually, at c ∼ 0.83, the LC bilayer
exhibits a very small but non-zero ω2 for ∆θ = 0. The ωc1 always remains zero for ∆θ = 0 as discussed
earlier. The corresponding critical wavenumbers ωc1 and ωc2 are then found to vary with ∆θ after that
threshold value is reached as a function of the volume fraction c. In particular, ωc1 and ωc2 exhibit a highly
non-monotonic dependence on ∆θ. Hence, a pure splay pattern can never be achieved once we go beyond a
critical twist angle ∆θ which leads to periodic Freedericksz transitions.

a) b) c)

Figure 6: Stability results as functions of volume fraction and applied twist angle for a 5CB – 7E bilayer. (a)
Normalized critical field ζc and corresponding critical wavenumbers (b) ω1 and (c) ω2 as a function of the total twist
angle ∆θ and the bilayer volume fraction c. The red continuous line in (b) and (c) defines the boundary beyond
which the corresponding eigenmode is nonlocal (periodic Freedericksz transition, ωc

1 6= ωc
2 6= 0 ).

In Fig. 6a, we collectively plot the critical electric field ζc in the c − ∆θ space, where we observe a
monotonic increase of ζc with respect to both c and ∆θ, while Fig. 6b,c show the corresponding ωc1 and ωc2
in the same c −∆θ space. The thick red lines in both Figs. 6b and 6c indicate the transition between the
splay (global) and periodic (local) critical modes. It is noted that the separating line between splay (global)
and periodic (local) eigenmodes remains at ∆θ ∼ 120o up to a volume fraction of c = 0.7. Then, a rapid
decrease in this transition angle of twist ∆θ is obtained between 0.7 < c < 0.83, after which periodic critical
modes ωc1, ω

c
2 6= 0 are found for all possible twist angles.

In Fig. 7 and Fig. 8, we plot a series of eigenmodes associated with some of the above described critical
electric fields, twist angles and volume fractions for the 5CB-7E LC bilayer. Specifically, Fig. 7 shows the
critical modes of a 5CB-7E bilayer with c = 0.5 under three different twist angles ∆θ = 270o and 360o. The
patterns are depicted in a [1× 1× 1] representative volume element of the bilayer with thickness `3 = 1.

In particular, for each ∆θ, we depict three different cross-sections of the LC bilayer, which are parallel
to the three Cartesian coordinate axes. Therein, we plot projections of the post-bifurcated director field,
n(x) = n0(x) + q∆n with n0 given by (3.15) and ∆n being the computed critical eigenmode at bifurcation.
The amplification factor q is used only for visualization purposes. The vertical sections x2 = 0.5 and x1 = 0.5
show one dimensional waves with wavelengths λ1 and λ2, respectively. A greater tilt (i.e., inclination with the
1− 2 plane) of LC molecules is observed in the 5CB layer as compared to the 7E layer because of the higher
Franck-Oseen (FO) constants of the 7E layer. Thus, the maximum tilt is obtained near c ∼ 0.65, which is
well above the interface. On the other hand, the horizontal sections at x3 = 0.7 display two dimensional
striped patterns, which are also observed experimentally for TNDs (Chigrinov et al., 1979; Scheffer and
Nehring, 1997). These patterns are the result of the superposition of two waves along ê1 and ê2. The
striped patterns depend on the magnitudes of ωc1 and ωc2. A lower |ωc1| or |ωc2| results in strip patterns
parallel to ê1 or ê2, respectively. For example, Fig. 7a shows that a critical wavenumber ωc1 = −0.38 results
in a nearly horizontal strip pattern with wavelength λc2. Strip patterns with a positive inclination to ê1 are
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Figure 7: Projections of the post-bifurcated director field n exhibiting periodic (local) Freedericksz transitions patterns. Dif-
ferent cross-sections of a 5CB-7E bilayer with c = 0.5 under different twist angles ∆θ are shown. (a)-(c) ∆θ = 180o, (d)-(f)
∆θ = 270o and (g)-(i) ∆θ = 360o.

observed when the signs of ωc1 and ωc2 are of opposite sign (see e.g., Fig. 7d). On the other hand, negatively
inclined strips to ê1 are observed when the signs of ωc1 and ωc2 are the same (see Fig. 7g).

Critical modes for c = 0.9 bilayers, subjected to three different twists ∆θ = 235o, 270o and 360o are
depicted in Fig. 8. Unlike Fig. 7, the bulk patterns are less pronounced in Fig. 8 due to a larger volume
fraction of the mechanically stiffer 7E phase. Considerable periodic undulations are observed only near the
interface and in the thin 5CB layer (see Figs. 8b, c, e, f, h and i). The x3 = 0.9 sections (8a, d and g) show
strip patterns with various widths and inclinations depending on ωc1 and ωc2. The amplitude of these strip
patterns is maximum in the soft 5CB layer and vanishes gradually below the interface.

6.2. Non-monotonic critical fields in bilayers

In this section, we present a novel and interesting feature obtained in LC bilayers consisting of phases that
have relatively similar dielectric properties but different mechanical properties. Specifically, in the following
calculations we will use 5CB as the base phase combined with PCH7, PCH12, ZLI-22452 and MDA-02-2419
materials, as defined in Table 1. Contrary to the previous sections, all materials used here exhibit a strong
dielectric anisotropy with similar values for their dielectric permeability in most cases, whereby some of the
mechanical constants of 5CB are even less than half of those of the other LC materials.

In Fig. 9, we investigate a 5CB-PCH12 bilayer for three twist angles ∆θ = 0, 90, 270o as a function of the
bilayer volume fraction. The main observation in the context of this figure is the striking non-monotonicity
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Figure 8: Projections of the post-bifurcated director field n exhibiting periodic (local) Freedericksz transitions patterns. Dif-
ferent cross-sections of a 5CB-7E bilayer with c = 0.9 under different twist angles ∆θ are shown. (a)-(c) ∆θ = 235o, (d)-(f)
∆θ = 270o and (g)-(i) ∆θ = 360o.

Figure 9: 5CB-PCH12 LC bilayer results. (a) Critical non-dimensional electric field ζc for three twist angles ∆θ = 0, 90, 270o

and (b) critical wavenumbers for a twist angle ∆θ = 270o as functions of the bilayer volume fraction c.

of the critical non-dimensional electric field ζc as a function of c. Specifically, in Fig. 9a, the two extreme
cases c = 0 (single layer 5CB) and c = 1 (single layer PCH12) exhibit similar values of ζc. By mixing the
two, however, one gets critical fields, ζc, that can be higher (e.g. for c = 0.2) or even lower (e.g. for c = 0.8)
than any of the two single layer LCs. Furthermore, this non-monotonic feature is not affected qualitatively
by the twist angle ∆θ, but rather leads to a simple shift of the curves upwards. In turn, in Fig. 9b, we
observe that ωc1 = ωc2 = 0 (not shown) except for ∆θ = 270o in which case they are finite and remain fairly
insensitive to the volume fraction c.
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Figure 10: Critical non-dimensional electric field ζc as a function of the bilayer volume fraction c for twist angles ∆θ = 0.
Assembly of (a) 5CB-PCH7 and 5CB=PCH12 and (b) 5CB-ZLI-2452 and 5CB-MDA-02-2419 bilayers

Finally, in Fig. 10, we show several combinations of various bilayers for twist angles ∆θ = 0. Perhaps
the most interesting observation that can be made in the context of this figure is that the maximum
effect of non-monotonicity is observed for bilayers made of consituents that exhibit fairly similar critical
ζc in their single layer state, such as the 5CB-PCH7 and 5CB-ZLI-2452 cases. These observations may
have interesting implications for current LC technology, since a bilayer LC device of two LCs with given
Freedericksz transition thresholds can be lower and thus energetically more desirable than any of the two
LC single layer devices.

7. Concluding Remarks

In this work, we present a theoretical investigation of an assembly of two different liquid crystal (LC) ma-
terials in a bilayer geometry, which is subjected to a transverse (i.e., normal to the bilayer interface) electric
field. We then carry out a fully three-dimensional analysis of the Freedericksz transition phenomenon using
two equivalent variational formulations under strongly anchored boundary conditions for the director field n.
First, we introduce a reduced potential energy allowing to obtain the ground state of the director field in the
LC bilayer. Subsequently, we perform a combined analytical-numerical one-dimensional bifurcation analysis
along the bilayer thickness for arbitrary twist angles and volume fractions of the two phases constituting
the LC bilayer. This is achieved by use of an electric vector potential minimum variational principle leading
to a global minimization of the LC energy. We also use a scalar electric potential variational formulation
to obtain an analytical solution for the Freedericksz transition in bilayers with zero twist angle. The two
approaches are shown to coincide for this latter case.

One of the key results of the present study consists in showing that a LC bilayer made of a 5CB and 7E
materials can exhibit periodic Freedericksz transitions (i.e. local bifurcation modes with finite wavenumbers)
for zero twist angles, even if none of the constituents alone leads to such local modes (Sfyris et al., 2016).
In fact, this can be achieved by assembling a relatively thin electrically active LC such as the 5CB together
with an electrically inert (i.e. passive) LC such as the 7E. In that case, and for zero twist angle, we
show that by increasing the volume fraction of 7E (i.e. making the 5CB layer thinner) at a given value
of the volume fraction c ∼ 0.83, we obtain a periodic Freedericksz transition in one of the two in-plane
directions. If we apply the electric field along the direction e3 and the LC director vector for zero twist
is along direction e1, the periodic Freedericksz transition appears along direction e2. This feature persists
as the twist angle increases but now leads to complex periodic patterns along both in plane directions, i.e.
non-zero wavenumbers along e1 and e2. At the same time, the corresponding critical electric field needed
to trigger this periodic bifurcation strongly increases going finally to infinity since the 7E LC does not show
any Freedericksz transition for finite electric fields. This response is somewhat analogous to the problem
of wrinkling observed in mechanical film/substrate (Audoly and Boudaoud, 2008) or magnetorheological
(Danas and Triantafyllidis, 2014; Psarra et al., 2017) or dielectric (Wang and Zhao, 2013) film/substrate
systems.

The second novel observation of the present study is the resulting non-monotonicity of the critical
electric field as a function of the bilayer volume fraction when the two assembled materials exhibit similar
dielectric properties but different mechanical ones. In particular, individual 5CB and PCH single layers
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exhibit long-wave Freedericksz transitions at fairly similar critical electric fields. If, however, they are put
together in a bilayer geometry, the resulting critical electric field can be higher or even lower than that
corresponding to the individual single layers alone. This non-monotonic dependence on the volume fraction
of the phases in LC bilayers reveals at one hand the highly nonlinear and non-intuitive character of the
Freedericksz transition and on the other hand the possibility of designing novel more energy efficient LC
multi-layer devices. In particular, one can generalize the present study to N -layer or even more complex
nano and microstructured LC geometries in a straightforward manner. The experimental feasibility of such
LC devices remains, in turn, an open question. It should be, however, possible to obtain such systems using
liquid crystal elastomeric films (Hauser et al., 2016).

In closing, we note that in the present study we consider strongly anchoring conditions. In general, it
is possible to consider more complex boundary conditions, such as weak anchoring, but in some cases, this
might require a fully three dimensional FE resolution of the problem at hand. Furthermore, it is well known
that LCs may contain defects that can change significantly the observed patterns especially when they ex-
hibit periodic Freedericksz transitions. In addition, these patterns can gradually change and even exhibit
secondary bifurcations at higher electric fields. In this sense, the present study presents bifurcation eigen-
modes, but the post-bifurcated solutions and their stability are still an open question in three-dimensions and
multi-layer systems. In general such calculations, will require a fully three-dimensional numerical solution.
Such a work is in progress.
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