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Abstract

We introduce an improved meshfree approximation scheme which is based on the local maximum-entropy strategy
as a compromise between shape function locality and entropy in an information-theoretical sense. The improved
version is specifically designed for severe, finite deformation and offers significantly enhanced stability as opposed to
the original formulation. This is achieved by (i) formulating the quasistatic mechanical boundary value problem in a
suitable updated-Lagrangian setting, (ii) introducing anisotropy in the shape function support to accommodate direc-
tional variations in nodal spacing with increasing deformation and eliminate tensile instability, (iii) spatially bounding
and evolving shape function support to restrict the domain of influence and increase efficiency, (iv) truncating shape
functions at interfaces in order to stably represent multi-component systems like composites or polycrystals. The new
scheme is applied to benchmark problems of severe elastic and elastoplastic deformation that demonstrate its perfor-
mance both in terms of accuracy (as compared to exact solutions and, where applicable, finite element simulations)
and efficiency. Importantly, the presented formulation overcomes the classical tensile instability found in most mesh-
free interpolation schemes, as shown for stable simulations of, e.g., the inhomogeneous extension of a hyperelastic
block up to 100% or the torsion of a hyperelastic cube by 200◦ – both in an updated Lagrangian setting and without
the need for remeshing.

Key words: meshfree/particle methods, updated Lagrangian, maximum entropy, tensile instability, finite
deformation

1. Introduction

The finite element method (FEM) has been widely successful in simulating the mechanics and physics of solids.
Unfortunately, conventional FEM is often severely limited when solving problems involving complex geometries and,
especially, large deformations that may lead to severe mesh distortions. In this latter context, problems associated with
classical FEM are two-fold. First, formulating the governing equations in the initial or reference configuration (re-
ferred to as total-Lagrangian description) often becomes inapplicable in case of large deformations, where the initial
mesh loses relevance. Second, when formulated in the updated-Lagrangian or Eulerian settings, severe mesh distor-
tion may lead to entangled or ill-shaped elements. Solutions to the latter scenario have included adaptive remeshing
and mesh refinement as well as the arbitrary Lagrangian-Eulerian (ALE) method (Hirt et al., 1974), in which the
mesh is updated independently of the geometry. Such solutions can be complicated and computationally expensive,
particularly for adaptive remeshing and refinement, which is prone to errors when mapping stresses and strains from
the old mesh to the new mesh.

By contrast, meshfree methods are more suited for simulations involving large deformations. Detailed reviews of
meshfree methods can be found in Belytschko et al. (1996b) and Chen et al. (2017). Notable examples of meshfree
methods include smoothed-particle hydrodynamics (SPH) (Lucy, 1977; Monaghan, 2005), the element-free Galerkin
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method (Belytschko et al., 1994), reproducing kernel particle methods (Liu et al., 1995), and material point methods
(Sulsky et al., 1994, 1995; Li et al., 2010), all of which circumvent mesh-related problems by treating nodes as
interacting particles. However, meshfree methods have problems that are different from those of FEM and involve, in
particular, the treatment of discontinuities and boundary conditions as well as numerical instabilities. Belytschko et al.
(2000) showed that all kernel-based meshfree methods experience a rank-deficiency instability that causes spurious
modes. This instability can be eliminated by sampling away from the nodes for numerical integration, using, e.g.,
stress-point integration (Dyka and Ingel, 1995; Dyka et al., 1997; Randles and Libersky, 1996) or material-point
integration (Arroyo and Ortiz, 2006; Li et al., 2010)). Additionally, Belytschko et al. (2000) showed that, when the
discretization is formulated in an updated-Lagrangian setting, a purely numerical instability called tensile instability
arises from the changing nodal spacing and the associated localization of the shape function support. Addressing the
tensile instability usually involves adaptive evolution of the characteristic lengths of the approximants, which is not
trivial for most approximation schemes such as, e.g., moving least-squares (MLS) approximants. Meshfree schemes
also face challenges in accurately capturing material interfaces due to the smearing of discontinuous gradients induced
by the non-local support (Cordes and Moran, 1996; Krongauz and Belytschko, 1998).

More recently, maximum-entropy approximation schemes have attracted interest among the class of meshfree
particle methods. Sukumar (2004) used the maximization of information entropy (Jaynes, 1957) to formulate meshfree
interpolants on polygonal elements, while Arroyo and Ortiz (2006) used a Pareto compromise between locality of
approximation and maximization of information entropy to create the local maximum-entropy (local max-ent) shape
functions. The local max-ent scheme is particularly attractive because it provides a seamless transition between non-
local approximation and simplicial interpolation on a Delaunay triangulation like in FEM. It also possesses the weak
Kronecker property, which allows the direct application of boundary conditions. Li et al. (2010) used the local max-
ent shape functions to develop the optimal transportation meshfree (OTM) method for simulating problems such as
fluid-structure interactions and fragmentation (Li et al., 2013). Though these methods are promising for dynamic
problems, they are less well-suited for quasistatic simulations like the ones reported here. Additionally, Li et al.
(2010) proposed the use of an isotropic adaptive evolution of shape functions to overcome the problems associated
with tensile instability (Belytschko et al., 2000). Despite this adaptive evolution of shape functions, that scheme is
still prone to tensile instability in case of anisotropic deformations (as will be demonstrated in Section 2.4). Further
advances in the area of max-ent approximations include the convergence analysis of Bompadre et al. (2012), the
variational formulation of the optimal support size of max-ent shape functions (Rosolen et al., 2010), max-ent schemes
with arbitrary order of consistency (González et al., 2010), as well as tools to evaluate derivatives of max-ent shape
functions near the boundary (Greco and Sukumar, 2013).

Here, we present an enhanced local max-ent scheme for stable, quasistatic meshfree simulations. In Section 2.1,
we present modified local max-ent shape functions that are based on an anisotropic Pareto compromise between max-
imizing information entropy and minimizing shape function width, which will play a crucial role in eliminating the
tensile instability under large deformations. In Section 2.2, we begin with a quasistatic total-Lagrangian formulation
of the mechanical boundary value problem and transform it into a spatially discretized, quasistatic updated-Lagrangian
formulation. In Section 2.3, we examine the tensile instability through an instructive one-dimensional toy problem
and, motivated by the same, in Section 2.4 we present a new, anisotropic adaption scheme for the evolution of the
shape function support that is able to cope with tensile instability. Next, in Section 2.5, we discuss the application
of essential boundary conditions and propose a simple, computationally inexpensive scheme that leverages the weak
Kronecker delta property of local max-ent shape functions to accurately capture discontinuous derivatives across ma-
terial interfaces. Section 3 summarizes a suite of numerical benchmark simulations of representative boundary value
problems. We demonstrate that the enhanced local max-ent scheme introduced here provides better convergence and
better handling of severe distortions than FEM. It accurately captures discontinuous derivatives across material inter-
faces and, most remarkably, avoids the common tensile instability associated with anisotropically increasing nodal
spacings (for better understanding of the numerical implementation, a pseudo-code for solving simple hyperelasticity
problems is included in B). Finally, Section 4 concludes our investigation.

2. Enhanced local maximum-entropy interpolation in updated-Lagrangian setting

First introduced by Arroyo and Ortiz (2006), the local maximum-entropy (or local max-ent) scheme belongs to the
class of convex approximation schemes and provides a seamless transition between finite elements (FE) and meshfree
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interpolations. The approximation scheme is based on a compromise between minimizing the width of the shape
function support and maximizing the information entropy of the approximation. Building upon the idea of anisotropic
shape functions (Arroyo and Ortiz, 2006), we here introduce an enhanced version of the original local max-ent scheme,
which uses an anisotropic support to deal with tensile instability in an updated Lagrangian formulation.

2.1. Anisotropic local maximum-entropy approximation
Consider a finite set of nn distinct nodes in d dimensions, X = {xa, a = 1, . . . , nn} with nodal positions xa ∈ Rd.

The domain bounded by convex hull of the node set is denoted by Ω ⊂ Rd. Let u : Ω → R be a function that we aim
to approximate based on the known values of the function at nodes, {ua = u(xa), a = 1, . . . , nn}. We wish to construct
an approximation of the type

uh(x) =

nn∑
a=1

uaNa(x), x ∈ Ω, (1)

where Na : Ω→ R denotes the shape function corresponding to node a. Shape functions are subject to the constraints

Na(x) ≥ 0 ∀ x ∈ Ω, (2a)
nn∑

a=1

Na(x) = 1 ∀ x ∈ Ω, (2b)

nn∑
a=1

xaNa(x) = x ∀ x ∈ Ω. (2c)

The first constraint (2a) ensures the non-negativity of shape functions1. The second constraint (2b) enforces zeroth-
order consistency (i.e., constant functions are exactly approximated), and whereas third constraint (2c) enforces first-
order consistency and guarantees the exact interpolation of affine functions. These together ensure that the scheme
is consistent under h-refinement. Local max-ent schemes that satisfy higher-order consistency are also possible
(González et al., 2010) but the formulation becomes increasingly complex. Hence, we limit ourselves to first-order
consistency for the scope of this contribution.

We define the width of a shape function Na as2

Ua[Na,β] =

∫
Ω

Na(x) ‖x − xa‖
2
β dV =

∫
Ω

Na(x) (x − xa) · β (x − xa)dV, (3)

where β ∈ Rd×d is a constant, positive-definite metric tensor defining the Euclidean distance in Ω. Further, β is a
tensorial analogue of the scalar locality parameter in the original formulation of Arroyo and Ortiz (2006). A measure
of the total width for the set of shape functionsN = {Na, a = 1, . . . , nn} follows as the sum of individual shape function
widths, viz.,

U[N ,β] =

nn∑
a=1

Ua[Na,β] =

∫
Ω

nn∑
a=1

Na(x) ‖x − xa‖
2
β dV. (4)

Minimum shape function support or maximum locality requires minimizing the functional U[N] with respect to all
shape functions subject to constraints (2). The resulting scheme is equivalent to using linear interpolants on a Delaunay
triangulation of the node set X (Arroyo and Ortiz, 2006).

By interpreting the shape functions as probability distributions, the information entropy encoded in the shape
functions evaluated at a point x ∈ Ω is defined as (Arroyo and Ortiz, 2006)

H[N](x) = −

nn∑
a=1

Na(x) ln Na(x). (5)

1One may also relax the first constraint and admit negative values of shape functions, see e.g. (Bompadre et al., 2012), which however is not the
focus here.

2Here and in the following, we use classical tensor and index notation common to continuum mechanics. Specifically, dots denote inner products
of tensors of equal order, so v · u = viui and T · S = Ti jS i j for vectors v,u ∈ Rd and second-order tensors T,S ∈ GL(d). For tensors as linear
mappings of vectors we write [Tv] j = Ti jv j and anlogously [ST]i j = S ikTk j. Outer products are represented by [v ⊗ u]i j = viu j.
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The total information entropy is obtained by integration over the entire domain Ω, i.e.,

H[N] = −

∫
Ω

nn∑
a=1

Na(x) ln Na(x)dV. (6)

Intuitively, the approximation scheme should be based on a minimum inference bias by the nodal positions, which is
equivalent to the maximum information entropy (Jaynes, 1957). This requires maximizing the information entropy
functional H[N] with respect to all shape functions subject to constraints (2). Consequently, the resulting shape
functions have a global support that is too large for a reasonable approximation. Arroyo and Ortiz (2006) proposed
a Pareto optimality between the competing optimizations (minimum locality vs. maximum entropy) to find the shape
functions. In adopting their approach, we define the functional

F[N ,β] = U[N ,β] − H[N] =

∫
Ω

nn∑
a=1

(
Na(x)‖x − xa‖2β + Na(x) ln Na(x)

)
dV, (7)

where the metric tensor β acts as a parameter controlling the Pareto optimality and is referred to the locality parameter
in subsequent discussions. For given β, the local max-ent shape functions are thus computed as

Nβ = arg min
{
F[N ,β] s.t. (2)

}
. (8)

For example, consider the simple isotropic case of β = βI, where β is a scalar parameter (Arroyo and Ortiz, 2006).
In the limiting case of β → ∞, the problem reduces to minimizing locality, which results in affine interpolation on a
Delaunay triangulation. In contrast, when β → 0, the problem reduces to maximizing information entropy with no
regard to locality of the approximation. A detailed discussion for general anisotropic locality parameter is presented
later in this section.

The structure of the minimization problem in (8) admits a pointwise optimization, so the shape functions at a point
x ∈ Ω are given by

{
N1(x), . . . ,Nnn (x)

}
β

= arg min

 nn∑
a=1

(
Na(x)‖x − xa‖2β + Na(x) ln Na(x)

)
subject to


Na(x) ≥ 0, a = 1, . . . , nn∑nn

a=1 Na(x) = 1∑nn
a=1 Na(x)xa = x.

(9)

Analogous to the isotropic formulation of Arroyo and Ortiz (2006), there exists a unique set of minimizers given by

Na(x) =
1

Z(x, λ∗(x))
exp

[
−‖x − xa‖2β + λ∗(x) • (x − xa)

]
, a = 1, . . . , nn, (10)

where we define the partition function Z : Rd × Rd → R as

Z(x, λ) =

nn∑
a=1

exp
[
− ‖x − xa‖

2
β + λ • (x − xa)

]
, (11)

and a unique minimizer λ∗ as
λ∗(x) = arg min

λ∈Rd
ln Z(x, λ). (12)

The derivation of (10)-(12) with the newly introduced tensorial locality parameter β is summarized in A.
Again following Arroyo and Ortiz (2006), the spatial derivatives of the shape functions are given by

∇Na(x) = −Na(x) J (x, λ∗(x))−1 (x − xa) (13)
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(a) β =

(
10 0
0 10

)
, x =

(
0.5
0.5

)

(b) β =

(
25 0
0 25

)
, x =

(
0.5
0.5

)
(c) β =

(
300 0
0 300

)
, x =

(
0.5
0.5

)

(d) β =

(
25 0
0 10

)
, x =

(
0.5
0.5

)
(e) β =

(
300 0
0 10

)
, x =

(
0.5
0.5

)

Figure 1: Local max-ent shape functions Na(x) evaluated at fixed interior point x (viz., the central node) of a 2D node set with different choices of
the locality parameter β. That is, the graphs show the value of each node’s shape function Na when evaluated at the central node, thus illustrating
the contributions of nodal values to the interpolation at the central node. (We note that this visualization is different from that of Arroyo and Ortiz
(2006) who plotted Na(x) as a function of x for fixed a). Cases (a,b,c) show the isotropic and (d,e) the anisotropic transition from global to local
shape function support with increasing components of β.

where

J(x, λ) =
∂2 ln Z(x, λ)

∂λ ∂λ
=

nn∑
a=1

Na(x, λ)(x − xa) ⊗ (x − xa) − r(x, λ) ⊗ r(x, λ) (14)

and

r(x, λ) =
∂ ln Z(x, λ)

∂λ
=

nn∑
a=1

Na(x, λ)(x − xa). (15)

For a detailed derivation, the reader is referred to the analogous isotropic case presented by Arroyo and Ortiz (2006).
Note that β is assumed to be constant when constructing the approximation and when computing the above gradi-
ents of the shape functions. The justification of this assumption will be discussed in Section 2.3, where the spatial
discretization scheme is presented.

The transition from a scalar to a tensorial locality parameter is essential and allows for anisotropic adaptivity of
the shape functions, which forms the basis for our approach to dealing with tensile instability, as will be demonstrated
in Section 2.4. Note that, for variational problems, the locality parameter β can be included in the global functional
to yield shape function supports that are optimal with respect to the total potential energy (Rosolen et al., 2010).
However, this introduces additional complexity, both theoretical and computational, and will not be pursued here.
Instead, the locality parameter β is defined by the user and chosen based on the initial nodal spacing and the physics
of the problem.

Figure 1 illustrates the transition of the shape function support from global to local and from isotropic to anisotropic,
as the locality parameter β changes. We emphasize that, instead of plotting a particular shape function evaluated at
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(a) β =

(
25 0
0 25

)
, x =

(
0.5
1

)
(b) β =

(
25 0
0 25

)
, x =

(
0
1

)

Figure 2: Local max-ent shape functions Na(x) evaluated at fixed point x: (a) on an edge, (b) on a corner of a 2D node set. As in Figure 1, note
that we do not plot a given shape function Na as a function of position x but we compute shape functions Na at a given point x.

different points in space as commonly shown in the literature, Figure 1 illustrates the shape function values of each
node evaluated at a fixed point (thus demonstrating the influence of each nodal contribution at that location in space).
This is required since shape functions are no longer associated with nodes only – viewed from different material points
with different β-tensors, a shape function evaluated at a node may have distinct values for each material point under
consideration. In addition, shape functions are only evaluated at material points and there is no unique definition of
those at nodes. In the limit of any eigenvalue of β tending to +∞, the functional F in (7) is dominated by the shape
function width. As a result, the shape functions reduce to simplicial interpolation on a Delaunay triangulation of the
node set in the corresponding eigen-direction (see Figures 1(c) and 1(e)). In particular, Figure 1(e) illustrates global
support in one direction and convergent linear interpolation in the perpendicular direction. Unlike the FE method,
the local max-ent scheme does not satisfy the strong Kronecker property at the nodes, i.e., it is an approximation and
not an interpolation. However, it does satisfy the weak Kronecker property at the boundary nodes (Arroyo and Ortiz,
2006). Figure 2 shows the shape function support when evaluated at points on the convex hull of the node set. When
the evaluation point lies on an edge (see Figure 2(a)), shape functions of interior nodes vanish at the point and the
approximation only depends on boundary nodes. Further, if the evaluation point coincides with a corner node, shape
functions evaluate to zero for all nodes but the corner node itself. More generally for convex schemes like local max-
ent, the shape function support of interior nodes terminates at the convex hull and, consequently, the approximation
on the boundary is independent of interior nodes. This fact is advantageous for straightforward application of essen-
tial boundary conditions. In contrast, non-convex approximation schemes such as smoothed particle hydrodynamics
(SPH), element-free Galerkin method (EFG), reproducing kernel particle method (RKPM), etc. do not satisfy this
property and require additional methods for imposing essential boundary conditions (Bonet and Kulasegaram, 2000;
Belytschko et al., 1994; Liu et al., 1995; Fernández-Méndez and Huerta, 2004).

The minimization problem in (12) can be solved in a few Newton-Raphson iterations. The derivative and Hessian
matrix of the objective function are given by (15) and (14) respectively, and the Newton step

λ← λ − J(x, λ)−1r(x, λ) (16)

is iterated until convergence. In the limit of the approximation converging to linear interpolation along any direction
(some eigenvalue of β→ +∞), the Hessian matrix becomes singular when the guess for λ is far away from the unique
minimizer λ∗. Li (2009) suggested the use of a steepest descent technique in this case. Alternatively, we found that
the regularized Newton method proposed by Polyak (2009) and applied to local max-ent by Foca (2015) gives a faster
convergence in the aforementioned limit of large eigenvalues of β. We consider the modified objective function

F(x, λ, ζ) = ln Z(x, ζ) +
1
2

∥∥∥∥∥∂ ln Z(x, λ)
∂λ

∥∥∥∥∥ ‖ζ − λ‖2. (17)

Since ln Z(x, ζ) is a convex function and
∥∥∥ ∂ ln Z(x,λ)

∂λ

∥∥∥ ‖ζ −λ‖2 ≥ 0, the regularized function F(x, λ, ζ) is strongly convex
6



in ζ. The minimizer of (12) is given by

λ∗(x) = arg min
ζ∈Rd

F(x, λ, ζ)|ζ=λ . (18)

The derivative and Hessian matrix of the objective function in (18) are obtained as

∂F(x, λ, ζ)
∂ζ

∣∣∣∣∣
ζ=λ

= r(x, λ),
∂F(x, λ, ζ)
∂ζ∂ζ

∣∣∣∣∣
ζ=λ

= J(x, λ) + ‖r(x, λ)‖I. (19)

Clearly, the regularized Hessian is non-singular even when J(x, λ) is singular. Therefore, the regularized Newton step
for any λ , λ∗, viz.

λ← λ −
(
J(x, λ) + ‖r(x, λ)‖I

)−1r(x, λ), (20)

is expected to provide more robust convergence for the aforementioned limiting case.

2.2. Quasi-static updated-Lagrangian formulation

In a classical total-Lagrangian description, the initial configuration is always the reference at any time or load
steps. However, in simulations involving large deformations and distortions, the initial reference configuration often
loses its meaning. An updated-Lagrangian formulation overcomes this limitation by using the deformed configuration
of the previous step as the reference in an incremental fashion. For instructive purposes, we first describe a quasi-static
variational problem in the total-Lagrangian setting and then reformulate it in an updated-Lagrangian framework. The
proposed scheme is general to all approximation schemes and is not limited to local max-ent shape functions. Also,
even though we limit our derivation to finite elasticity, the method can easily be extended to a more general class of
variational material models (e.g., by using variational constitutive updates for inelasticity (Ortiz and Stainier, 1999)).

We assume an incremental setting in which Ωn refers to the nth configuration of a body Ω (likewise, all fields are
denoted by subscripts (.)n), and in particular n = 0 corresponds to the initial configuration with domain Ω0. Consider
the total potential energy at step n with respect to the initial domain Ω0:

I[ϕn] =

∫
Ω0

W(Fn)dV −
∫

Ω0

ρ0Bn · ϕn dV −
∫
∂ΩN

0

T̂n · ϕn dS , (21)

where W : GL+(d)→ R denotes the strain energy density, F = Gradϕ is the deformation gradient, ϕ : Ω→ Rd is the
deformation mapping, B represents body forces and T̂ constant surface tractions applied over the Neumann boundary
∂ΩN

0 ⊂ ∂Ω0. All quantities are defined at a step n ≥ 0. We seek solutions as infimizers of the total potential energy3,
specifically,

ϕn = arg inf
{
I[ϕ] : ϕ ∈ Un

}
, (22)

where
Un =

{
ϕ ∈ H1(Ω0) : ϕ = ϕ̂n on ∂ΩD

0

}
(23)

defines the set of admissible solutions with ϕ̂n denoting essential boundary conditions at step n defined on the Dirichlet
boundary ∂ΩD

0 ⊂ Ω0. Without loss of generality, we make two assumptions: the initial configuration is undeformed
(i.e., F0 = I), and the initial and deformed coordinate systems coincide. The latter allows us to define the total
displacement field at step n as un(x) = ϕn(x0) − x0, and we seek solutions in terms of the displacement field. We thus
write the deformation gradient as

Fn =
∂ϕn

∂x0
= I + ∇0un, (24)

where ∇m = ∂
∂xm

is the spatial derivative with respect to the mth configuration.

3Note that in subsequent benchmark examples the energy density is chosen to be quasiconvex, so that unique solutions may be found. However,
the same numerical procedure can, in principle, be extended to non-convex potentials, in which the formation of microstructure is implied.
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Let us introduce a discretized approximation based on the above modified local max-ent scheme, which gives

un(x0) ≈ uh
n(x0) =

nn∑
a=1

ua
nNa(x0) ⇒ Fn ≈ Fh

n = I +

nn∑
a=1

ua
n ⊗ ∇0Na(x0), (25)

where the shape functions Na(x0) are computed in the initial configuration Ω0. The set of all nodal displacements are
denoted by Un = {u1

n, . . . ,u
nn
n , }. Computing the first variation of (21) and inserting the approximate fields at step n

yields the discretized stationary condition in terms of nodal force balance:

f a
n (Un) = f a

int,n(Un) − f a
ext,n = 0, a = 1, . . . , nn. (26)

The internal force vector acting on node a is given by

f a
int,n(Un) =

∫
Ω0

P(Fn) · ∇0Na(x0)dV (27)

with the first Piola-Kirchoff stress tensor P = ∂W/∂F. Analogously, the external force on node a is

f a
ext,n =

∫
Ω0

ρ0BnNa(x0)dV +

∫
∂ΩN

0

T̂nNa(x0)dS . (28)

Solving the quasi-static system of equations in (26) calls for a robust and efficient iterative solver, which for
optimal convergence rates uses the consistent tangent such as the family of Newton-Raphson methods.

To this end, the submatrices of the tangent matrix Tn and its components are computed as

Tab
n =

∂ f a
n

∂ub
n

(Un),
(
T ab

n

)
ik

=

∫
Ω0

Ci jkl(Fn)∇0Na
j (x0)∇0Nb

l (x0)dV −
∂
(

f a
ext,n

)
i

∂
(
ub

n

)
k

, (29)

where we used indicial notation with the classical summation convention and the incremental stiffness tensor Ci jkl =

∂Pi j/∂Fkl. Once the nodal displacements are found, the total strain energy of the domain at step n is given by the first
term in (21), i.e., En(Un) =

∫
Ω0

W(Fn)dV . This completes the total-Lagrangian description at the nth step with respect
to the initial configuration as reference.

To transform the formulation into an updated-Lagrangian framework, we introduce an incremental deformation
gradient Fn→n+1 which maps the configuration from step n to n + 1 as

Fn→n+1 =
∂ϕn+1

∂xn
= I + ∇n(un+1 − un). (30)

Under the assumption that the step size is sufficiently small, the incremental deformation gradient can be related to
total deformation gradient by the composition

Fn+1 ≈ Fn→n+1Fn. (31)

Note that the mapping of gradients between the reference and current configurations is

∇0(·) =
∂(·)
∂x0

=
∂xn

∂x0

∂(·)
∂xn

= Fn ∇n(·), (32)

while the density and volume integral are transformed, respectively, according to

ρ0 = Jnρn,

∫
Ω0

(·)dV =

∫
Ωn

1
Jn

(·)dV with Jn = det Fn. (33)

To arrive at a consistent updated-Lagrangian description, we start with the total-Lagrangian description at step
n + 1, analogous to (27), but now computing all shape functions with respect to the Ωn instead of Ω0. By exploiting
the transformations (32) and (33), the internal nodal forces at step n + 1 are thus given by

f a
int,n+1(Un+1) =

∫
Ω0

P(Fn+1) · ∇0Na(xn)dV =

∫
Ωn

1
Jn

P(Fn→n+1Fn)FT
n∇nNa(xn)dV = f a

int,n+1(∆Un) (34)

8



where ∆Un = Un+1 − Un is the vector of nodal displacement increments from Ωn to Ωn+1. Note that the term
J−1

n P(Fn→n+1Fn)FT
n in (34) can be interpreted as the pull-back of the Cauchy stress tensor from Ωn+1 to Ωn or, alter-

natively, as the push-forward of the first Piola-Kirchoff stress tensor from Ω0 to Ωn. This formulation is a compromise
between classical incremental/rate formulations and variational modeling which typically uses a total-Lagrangian
setting.

The transformation of the external nodal forces (28) occurs in a similar fashion (using (32), (33)), leading to

f a
ext,n+1 =

∫
Ωn

ρnBn+1Na(xn)dV +

∫
∂ΩN

n

T̂n+1Na(xn)dS , (35)

where Bn+1 and T̂n+1 are now defined in the nth configuration. Further, the tangent matrix components of (29) and the
total strain energy transform into, respectively,

(
T ab

n+1

)
ik

=

∫
Ωn

Ci jkl(Fn→n+1Fn) Fq j∇nNa
q (xn) Frl∇nNb

r (xn)J−1
n dV −

∂
(

f a
ext,n+1

)
i

∂
(
∆ub

n+1

)
k

(36)

and
En+1(∆Un) =

∫
Ωn

1
Jn

W(Fn→n+1Fn)dV. (37)

To construct a numerical approximation of the spatial integrals in the above expressions for energy, forces and
tagent matrix, we introduce a second set of np so-called material points which discretize the mass distribution in the
domain according to (Li et al., 2010)

ρn(xn) =

np∑
p=1

ρ
p
nV p

n δ(xn − xp
n ) =

np∑
p=1

mpδ(xn − xp
n ), (38)

where ρp
n , V p

n , and mp are, respectively, the mass density, volume, and mass associated with the pth material point
located at xp

n ∈ Ωn. In order to distinguish nodes from material points, in the following superscripts {a, b} and p are
reserved for nodes and material points, respectively.

Material points are meshfree analogues of quadrature points in conventional FEM, where sampling is performed
for the purpose of numerical integration. At the initial step, the pth material point is assigned a density ρp

0 = ρ(x0)
based on the mass density field ρ in the initial configuration. The initial material point volume V p

0 is computed from
an ad-hoc triangulation of the initial configuration (which is discarded afterwards, as discussed below), akin to the
volume of an element in the FEM context. Here, we enforce the local conservation of mass (Li et al., 2010), so that
each material point carries a constant mass (mp = ρ

p
nV p

n = const. ∀ n ≥ 0), while the density and volume are updated
accordingly at every step, resulting in

ρ
p
n+1 =

ρ
p
n

det Fp
n→n+1

=
ρ

p
0

Jp
n+1

, V p
n+1 = V p

n det Fp
n→n+1 = V p

0 Jp
n+1, (39)

where Fp
n→n+1 = Fn→n+1(xp) is the incremental deformation gradient at the material point p. Nodes do not carry mass

nor volume and solely provide the kinematic interpolation required at the material points, while the constitutive laws
are evaluated at the material points only. Figure 3 illustrates the evolution of material points and nodes in the total-
and updated-Lagrangian settings.

Integration over the domain Ωn is now approximated by a sum over the material points weighted by the their
respective volumes: ∫

Ωn

φ(xn)dV ≈
np∑

p=1

φ(xp
n )V p

n , (40)
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Initial configuration

. . .

(n + 1)th configuration

F0→1 F1→2 F2→3 Fn→n+1

F1

F2

Fn+1

Figure 3: Illustration of the total-Lagrangian description (dashed arrows) where the current configuration is referenced to the initial configuration
via the total deformation gradient Fn+1, and of the updated-Lagrangian description (solid arrows) where the current configuration is referenced
to the previous configuration via the incremental deformation gradient Fn→n+1. The red and black points denote material points and nodes,
respectively.

where φ : Ωn → R is an arbitrary function. When applied to the meshfree governing equations, the update-Lagrangian
description with material point sampling leads to the following set of equations:

Fp
n→n+1(∆Un) = I +

nn∑
a=1

∆ua
n ⊗ ∇nNa(xp

n ) and Fp
n+1 = Fp

n→n+1Fp
n , (41a)

f a
int,n+1(∆Un) =

np∑
p=1

V p
n

Jp
n

P(Fp
n→n+1Fp

n )Fp
n

T
∇nNa(xp

n ), (41b)

f a
ext,n+1 =

np∑
p=1

ρ
p
nV p

n Bn+1(xp
n )Na(xp

n ) +

∫
∂ΩN

n

T̂n+1Na(xn)dS , (41c)

(
Tn+1

)ab

ik
(∆Un) =

np∑
p=1

Ci jkl(Fp
n→n+1Fp

n ) (F p
n )q j∇nNa

q (xp
n ) (F p

n )rl∇nNb
r (xp

n )
V p

n

Jp
n
−
∂
(

f a
ext,n+1

)
i

∂
(
∆ub

n

)
k

, (41d)

En+1(∆Un) =

np∑
p=1

V p
n

Jp
n

W(Fp
n→n+1Fp

n ). (41e)

2.3. Tensile instability

Belytschko et al. (2000) provided a unified analysis of stability for meshfree particle methods. In particular,
they identified two distinct instabilities – (i) an instability due to presence of spurious modes introduced by the
rank-deficiency of the discretization operator, and (ii) tensile instability. The first instability is particular to nodal
integration, and stress-point integration has been shown to eliminate this type of instability; see, e.g., (Dyka and Ingel,
1995; Dyka et al., 1997; Randles and Libersky, 1996; Belytschko et al., 2000). Similar to stress-points, material point
integration also alleviates the instability due to rank-deficiency by performing quadrature away from the nodes. By
contrast, tensile instability is more nefarious and appears when updated-Lagrangian/Eulerian discretization kernels
are used. Tensile instability can be eliminated by using (total) Lagrangian kernels (Belytschko et al., 2000), but this
defeats the purpose of using particle-based meshfree methods. Here, we study the tensile instability with local max-
ent shape functions in a simplified 1D setting, which will later motivate our solution for dealing with this type of
instability in general 3D problems.

As an instructive example, consider a 1D chain of nn = 50 equally-spaced nodes whose positions in the initial
configuration Ω0 = [0, 1] are xa

0 = a−1
nn−1 , a = 1, . . . , nn. Assume there is initially only a single material point (np = 1),

located at xp
0 = 0.5 and carrying an initial volume V1

0 = 1 equal to the unit length of the chain, and a constant unit
10
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Figure 4: For all shape functions evaluated at a material point initially at xp
0 = 0.5 on a 1D domain Ω0 = [0, 1] with constant locality parameter

β
p
n = 1, (a) values Na of all a = 1, . . . , nn shape functions, plotted for different stretch ratios λ = |Ωn |; (b) associated internal nodal force kernels

(F p
n∇nNaV p

0 ) of all shape functions evaluated for different stretches λ; (c) internal nodal force kernels of selected nodes vs. strain ε = λ − 1; (d)
internal nodal force on selected nodes vs. strain ε = λ − 1.

stiffness (linear elastic constitutive law). The chain is now stretched by a ratio λ > 1, while keeping the locality pa-
rameter β1 constant. Because the shape functions are dependent on the nodal positions, increasing the nodal spacings
under extension results in a localization of the shape function support at the material point, see Figure 4(a); i.e., fewer
and fewer nodes contribute to the approximation of the fields of interest at the material point.

Recall that the internal nodal forces (41b) are given by the product of the first Piola-Kirchoff stress tensor with a
discretization kernel Fp

n
T
∇nNa(xp

n )V p
n /Jp

n = Fp
n

T
∇nNa(xp

n )V p
0 . Figure 4(b) shows the changing nodal kernel values

with increasing nodal spacing (i.e., increasing applied stretch λ). From the point of view of any particular node,
increasing the stretch λ leads to changes in its kernel value (evaluated at the material point p), which first increases
strongly and then decays to zero as the shape function support increasingly localizes, as illustrated in Figure 4(c).
Internal nodal forces can be computed using the kernel values and the stress (from linear elastic constitute law). The
non-monotonic behavior of the kernel (with respect to stretch ratio λ) results in a non-monotonic nodal force that
starts to decrease after a certain strain, as shown in Figure 4(d). This phenomenon of non-physical stiffness is called
tensile instability, and is a purely numerical artifact arising due to the changing nature of the discretization kernel; see
Swegle et al. (1995) for a related discussion in the context of SPH. In summary, increasing nodal spacings causes a
localization of the shape function support, which in turn leads to tensile instability.
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Figure 5: (a) Internal nodal force kernels and (b) internal nodal forces of selected nodes vs. strain ε = λ − 1, with an adaptively modified locality
parameter βp

n ∝ h−2
n where hn is the (uniform) nodal spacing and with an initial βp

0 = 1.
.

As suggested by Arroyo and Ortiz (2006) and Li et al. (2010), the tensile instability can be overcome by evolving
the locality parameter of the local max-ent shape functions at every step. In their isotropic max-ent framework, those
authors introduced a non-dimensional constant γ such that β = γ/h2, where h is some appropriate measure of average
nodal spacing at a given time or load step4. In the simple problem of a 1D node set as in Figure 4, evolving β as per
the aforementioned scheme, i.e.,

β
p
n+1 =

γ(
hp

n+1

)2 = β
p
n

 hp
n

hp
n+1

2

, (42)

produces exactly coincident shape function support at every step and hence correctly reproduces constant nodal force
kernels and linear nodal force responses as shown in Figure 5. This adaptivity scheme can then be extended to higher
dimensions as

βp
n+1 =

1

(Jp
n→n+1)2/3β

p
n (43)

where βp
n is the locality parameter at nth step, and where it is assumed that (Jp

n→n+1)1/3 is a reasonable estimate of
the relative average nodal spacing around material point p. Although well suited for 1D, the isotropic nature of this
scheme does not properly account for direction-dependent changes in nodal spacing and hence is severely limited
in the amount of anisotropic deformation that can be simulated before the onset of tensile instability. As a simple
example, consider a uniaxial extension test in 2D, which leads to strongly increasing nodal spacings in the extension
direction, whereas the Poisson effect results in nodal spacings shrinking in the transverse directions at the same time.

Local updates of the locality parameter of type (43) have an essential consequence, which is key to the proposed
methodology and a departure from classical discretization schemes including the original maximum-entropy approx-
imants of Arroyo and Ortiz (2006). Here, βp is defined and updated only at each material point p, where it is needed
to evaluate shape functions Na(xp

n ) and their gradients ∇Na(xp
n ) for the numerical integration of energy, forces and

stiffness tensors according to (40). Therefore, neither a shape function Na nor a node a is associated with a specific
β but, depending on the material point p at xp where shape functions are to be evaluated, all shape functions Na

(a = 1, . . . , n) are computed using the very same βp of that material point. As a practical consequence, shape func-
tions cannot be evaluated at nodes, only at material points. It also means that there is no such thing as unique shape
functions Na(x), rather we have Na = Na(x,β) and β varies based on where the shape function is being evaluated –

4Note that Li et al. (2010) focused on dynamic problems solved by explicit updates, whereas we are concerned with a quasistatic formulation.
Therefore, the terminology of time vs. load steps is, in principle, interchangeable.
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here, Na(xp) = Na(xp,βp). Hence we also cannot plot the shape function Na for any node a (this is why we chose the
discrete visualization in Fig. 1). This choice is necessitated by the specific adaptivity scheme used here (see (43) and
its anisotropic generalization in Section 2.4 below).

While a node might inherit different βwhen computing shape functions at different material points, it will be equal
for all nodes in the context of the local approximation at a given material point. We also note that shape functions and
shape function derivatives at step (n + 1) are calculated based on the previous values βp

n . Therefore, we may drop the
spatial dependence on the shape functions through β when calculating their gradients in (13), as is also done for the
nodal locations in the updated-Lagrangian setting.

2.4. Anisotropic adaptivity and bounded shape function support
To eliminate tensile instability in higher dimensions, we need to anisotropically update the support of the max-ent

shape functions; i.e., the Pareto optimality between shape function width and information entropy should be updated
differently for each dimension based on the local deformation, which is exactly why a tensor-valued locality parameter
β was introduced in (3). Assuming the step size between configurations n and n+1 is sufficiently small, the invariance
of the shape function support in (10) implies

Na
n (xp

n ) = Na
n+1(xp

n+1) =⇒ (xp
n − xa

n) · βp
n (xp

n − xa) = (xp
n+1 − xa

n+1) · βp
n+1(xp

n+1 − xa
n+1). (44)

If the effective support size of Na is reasonably small to approximate the local deformation with an affine map, we
may exploit the incremental deformation gradient to obtain the approximation

βp
n+1 = (Fp

n→n+1)−Tβp
n (Fp

n→n+1)−1. (45)

Hence, even if we start with an isotropic shape function support, anisotropy is introduced incrementally through the
deformation gradient at a given material point p. We will refer to this scheme as anisotropic adaptivity of the shape
function support. Figure 6 compares the evolution of a representative shape function support based on a 2D node set
that is stretched uniaxially. It is evident from Figure 6(d) that the effective support size along the direction of stretch is
maintained for anisotropic adaptivity of the locality parameter, whereas it becomes localized for constant and isotropic
adaptive locality parameters in Figure 6(b) and Figure 6(c), respectively.

When local max-ent shape functions span over all nodes in the domain, their global support makes the implemen-
tation computationally impractical. However, shape functions decay exponentially with distance from their respective
node according to (10), implying that only a few nodes relatively close to a material point are significant to the ap-
proximation accuracy at that material point. Hence, it is practical to construct the approximation based only on nodes
that lie inside a cut-off region centered around each material point. An analogous remapping of nodes to material
points was discussed for the OTM method (Li et al., 2010). Since the shape functions decay as exp(−β‖x − xa‖

2),
the original formulation by Arroyo and Ortiz (2006) suggests the use of a cut-off sphere whose radius is given by
Rcut =

√
(− log ε)/β, where 0 < ε ≤ 1 is a small tolerance, so the shape function support is truncated beyond the

cut-off sphere.
In an updated-Lagrangian setting, the cut-off limits must evolve according to the local deformation; otherwise,

a loss in connectivity will effectively result in the localization of shape functions. For example, analogous to the
isotropic adaptivity scheme (43), the radius of a cut-off sphere centered at a material point p can be updated by

Rp
cut,n+1 = (Jp

n→n+1)1/3Rp
cut,n. (46)

However, it is not surprising that updating the cut-off radius isotropically as in (46) will result in a severe loss of
connectivity during anisotropic deformation and ultimately give rise to tensile instability. Instead, we propose the
use of cut-off ellipsoids to improve the connectivity updates. Using ellipsoidal cut-off regions also provides a better
approximation when the spatial distribution of nodes is highly anisotropic.

We define that, at the nth step, the connectivity of each material point xp
n includes all nodes xa

n which lie inside the
ellipsoid described by

(xa
n − xp

n ) · Mp
n (xa

n − xp
n ) ≤ 1, (47)

where Mp
n is a d×d matrix with d positive eigenvalues. At the initial configuration, the cut-off ellipsoid can be chosen

appropriately based on the tolerance ε and the average nodal spacing in each direction around the material point. To
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(a) Initial shape function with βp
0 = 15I (b) Constant locality parameter: βp

1 = βp
0

(c) Isotropically adapted locality parameter: βp
1 = J−2/3

0→1 β
p
0 (d) Anisotropically adapted locality parameter: βp

1 =

F−T
0→1β

p
0 F−1

0→1

Figure 6: Shape function support of a material point initially located at xp
0 = (0.5, 0.5)T under homogeneous anisotropic deformation described by

the total deformation gradient F0→1 =

(
3 0
0 1

)
.

■■

(a) Initial connectivity inside
a cut-off circle of radius Rp

0

■■

(b) The isotropic update (46) maintains a circular cut-
off region that causes loss in connectivity

■■

(c) The anisotropic update (49) gives an elliptical cut-
off region without a loss of connectivity

Figure 7: Evolution of the nodal connectivity surrounding a material point p (pink square) under significant affine shear deformation. Dashed
lines denote the convex boundary of the cut-off region surrounding all nodes (blue solid circles) included in the material point’s connectivity; nodal
points missed by the isotropic update are shown as open (red) circles. Since, the simple shear deformation is isochoric, the isotropic update (46),
shown as case (b), implies Rp

1 = Rp
0 .
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avoid any significant loss in connectivity, the ellipsoid is updated based on the deformation map at every material
point p according to

(xa
n − xp

n ) · Mp
n (xa

n − xp
n ) = (xa

n+1 − xp
n+1) · Mp

n+1(xa
n+1 − xp

n+1), (48)

which, under the assumption that the step size and changes in ellipsoid size are sufficiently small, gives the scheme
for updating the anisotropic connectivity:

Mp
n+1 = (Fp

n→n+1)−T Mp
n (Fp

n→n+1)−1. (49)

This is analogous to the update of the locality parameter β, see (45). Figure 7 illustrates how an anisotropic ellip-
soidal cut-off region better maintains connectivity compared to the isotropic scheme for the case of significant shear
deformation.

2.5. Treatment of essential boundary conditions and material interfaces

Local max-ent is not interpolatory, i.e., it does not satisfy the strong Kronecker property. However, it does satisfy
the weak Kronecker property on the boundary. Precisely, if x lies on the convex hull Ω of the domain, then Na(x) is
zero if the node located at xa lies in the interior of the Ω. This implies that interpolation on the boundary depends only
on boundary nodes and is independent of the interior nodes. Therefore, essential boundary conditions can be applied
without modifications of the shape function support. Note that the max-ent shape functions only satisfy consistency
up to first-order and hence can only impose at most affine boundary conditions exactly; however, this error vanishes
with h-refinement as the essential boundary conditions are recovered as a converging sequence of piecewise-linear
functions. Also, for problems involving non-convex domains, the weak Kronecker property is not satisfied on the
non-convex part of the boundary. Several techniques like the visibility criterion (Belytschko et al., 1994; Krysl and
Belytschko, 1997), diffraction method (Belytschko et al., 1996a; Organ et al., 1996) and the transparency method
(Organ et al., 1996) have been proposed to deal with non-convex domains in element-free Galerkin methods and
can be extended to max-ent approximants. However, all of those have limitations for interpolation on non-convex
boundaries; see, e.g., Belytschko et al. (1996b) for a review. Alternatively, the max-ent shape function support can
be seamlessly made highly local (by increasing the eigenvalues of the locality parameter β) in the proximity of a
non-convex boundary and hence minimizing the extraneous non-convex region included in the convex hull of shape
function support (González et al., 2010); but requires manual control for problems involving complicated geometries.

Discontinuous derivatives like material discontinuities also pose a challenge in meshfree methods. In conven-
tional FE methods, nodes can conveniently be chosen such that a discontinuity like a material interface does not pass
through any element. As a result, capturing solutions with discontinuous derivatives while ensuring displacement
continuity across the material interface is straightforward. In contrast, without proper treatment, the support of non-
local meshfree shape functions like max-ent spreads across any discontinuity, which leads to incorrectly smearing
out of the interface. The problem is fundamentally the same as the inability to apply essential boundary conditions.
Several complicated techniques have been introduced such as additional special shape functions with discontinuous
derivatives (Krongauz and Belytschko, 1998), including Lagrange multipliers (Cordes and Moran, 1996), and the
transition to finite elements near interfaces (Belytschko et al., 1995; Krongauz and Belytschko, 1996; Huerta and
Fernández-Méndez, 2000).

The local max-ent scheme allows for a straightforward solution for capturing discontinuous derivatives. Our
approach is inspired by the technique developed by Cordes and Moran (1996) for material interfaces in the element-
free Galerkin method. Consider the example problem of a 2D domain containing two materials separated by an
interface, as illustrated in Figure 8. The spatial discretization is chosen such that the interface contains only nodes
and no material points. Each material point and node is assigned uniquely to one material, while the interface nodes
belong to both and are shared by both regions5.

As a crucial step, the shape function support and the resulting connectivity of each material point is truncated to
include only those nodes that belong to the same material as the material point itself (see Figure 8(b)). This ensures

5Note that the assignment of nodes to the different materials occurs only for purpose of shape function definitions, whereas the materials’
constitutive models are evaluated only at the material points. This justifies the unique assignment of material points and the non-unique assignment
of nodes to the materials
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(a) Non-truncated nodal connectivity (b) Truncated nodal connectivity

Figure 8: Domains of nodal connectivity of four representative material points near an interface separating two different materials (indicated by
the red and blue regions). Material points and nodes are denoted by open and filled dots, respectively. The hatched area around each material point
indicates the cut-off region that encloses all nodes whose shape functions are contributing to the material point.

Figure 9: Shape function support for a material point (blue open dot) in the proximity of a non-convex material interface. The convex hull
(indicated by black solid line) extends beyond the interface. However, only nodes in the blue region (indicated by blue filled dots) are considered
during approximation construction. Nodes from the red region (indicated by red filled dots) that lie inside the convex hull are excluded from the
approximation.

that the kinematic interpolation at any material point does not explicitly depend on nodes from the other side of
the interface. Since the interfacial nodes are shared by both regions and because of the weak Kronecker property,
displacement continuity at the interface is automatically ensured. As a result, there is no smoothing nor spurious
oscillations across the discontinuity, and discontinuous derivatives are captured accurately (Section 3.3 presents a
numerical validation example). The simplicity and the fact that no additional computational costs are associated
with this scheme is particularly advantageous for higher-dimensional problems involving multiple material interfaces
such as polycrystals, high-volume-fraction composites (e.g., cermets or magneto-rheological elastomers), and fluid-
structure interactions.
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Note that in problems with complex geometry or large deformations, there may be curved material interfaces that
give rise to non-convex sub-regions (see e.g. Figure 9). As a result, the convex hull of the nodal connectivity extends
beyond the interface. However, as per the proposed scheme, nodes from the other side of the material interface are
still excluded and the approximation at the material point remains unaffected by the kinematics of nodes across the
interface. Analogous to the case of non-convex boundaries, the extraneous region of the convex hull will diminish
with h-refinement or, alternatively, can be minimized by seamlessly increasing the locality of the shape functions near
the interfaces.

3. Benchmark tests

We present a selection of benchmark simulations in three dimensions to study the performance of the proposed
enhanced local max-ent scheme in problems involving large deformation. The first benchmark test simulates the in-
homogeneous extension of a hyperelastic block to demonstrate the convergence rate and accuracy of the proposed
scheme. The second benchmark simulates the torsion of a hyperelastic cube to illustrate its ability to simulate se-
vere deformation and distortion. The third benchmark showcases the stretching of a periodic representative volume
element (RVE) of a two-phase laminate composite to demonstrate the capability to accurately capture discontinu-
ous derivatives using truncated shape function supports. The fourth benchmark simulates two spherical inclusions
in a high-volume-fraction composite RVE undergoing such severe deformation that the initially distant inclusions
get almost into Hertzian contact. The fifth and final benchmark simulates the elastoplastic response of a cylindrical
specimen impacting a wall at high speed, classically known as the Taylor anvil test. Importantly, all five benchmarks
demonstrate that the proposed adaptive use of anisotropic shape function supports successfully eliminates tensile insta-
bility in the updated-Lagrangian framework up to very large deformations. In fact, without the framework introduced
here, all benchmark simulations become unstable even for small deformations. Even with the best chosen parameters,
the non-adaptive updated-Lagrangian framework could only simulate no more than 10% of the deformations (in all
benchmarks shown here) that our new framework can handle.

All simulations follow the same protocol to set up the initial configuration. Once the initial set of nodes is defined,
an ad-hoc mesh is created by applying Delaunay triangulation to the initial node set. Next, a material point is inserted
at the barycenter of each simplicial element with an initial volume V p

0 equal to the product of simplicial quadrature
weight and volume of the containing simplex. The initial value of the locality parameter associated with each material
point is set to βp

0 = γh−2
p I, where hp is the average distance between the associated material point and nodes of the

surrounding element in the initial mesh6, and γ is a user input, as discussed in Section 2.3. The mesh creation is a
one-time process and the ad-hoc mesh is discarded after the initial material point setup. The initial connectivity of

each material point is given by the cutoff ellipsoid associated with Mp
n = R−2

cut,pI, where Rcut,p =
√

(− log ε)h2
p/γ,

and ε = 10−6. Only one material point is used per tetrahedron in the initial auxiliary mesh. The proposed scheme to
overcome tensile instability is, in principle, independent of the number of material points and certainly extensible to
higher-order integration (i.e., to larger numbers of integration points per tetrahedron in the auxiliary mesh). We have
experimented with using a higher number of material points per tetrahedron and, while minor improvements are seen,
we could not draw any general conclusions. Our focus here is on overcoming the tensile instability (which is achieved
with only a single integration point per initial tetrahedron in all examples shown). The effects of numerical quadrature
were studied by Arroyo and Ortiz (2006) in the context of (isotropic) local maximum-entropy approximants, which
also extend to our method.

As a representative example, all hyperelastic benchmark simulations (wherever applicable) use a compressible
Neo-Hookean constitutive model to incorporate material non-linearity. The specific strain energy density is given by

W(F) =
µ

2

[
tr

(
FT F

)
J−2/3 − 3

]
+
κ

2
(J − 1)2, (50)

where µ and κ are the shear and bulk moduli, respectively, and J = det F. For simplicity, all subsequent simulations
results are based on non-dimensional material and geometry parameters. We note that the presented max-ent and

6We note that all (structured and unstructured) node sets used in the following benchmark simulations have sufficient regularity for an isotropic
initial β. In case of strongly anisotropic initial configurations, it is straightforward to adapt the definition of βp

0 accordingly.
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updated-Lagrangian schemes are sufficiently general to apply to, in principle, arbitrary material constitutive laws
including elastoplasticity (see benchmark V in Section 3.5); and may make use of the extension in Li et al. (2010) for
general inelastic solids via variational constitutive updates (Ortiz and Stainier, 1999).

Newton-Raphson iteration is used to solve for the nodal displacements at each load step (or time step in case
of the fifth, dynamic benchmark in Section 3.5 where explicit time integration is used). After every load/time step,
the reference configuration is updated according to the updated-Lagrangian framework. Where applicable, obtained
simulation results are compared to those of (total-Lagrangian) FEM overkill simulations (using 10-node tetrahedral
elements). Since comparing quantities such as the strain energy entails ambiguity due to the different reference
configurations in the total- vs. updated-Lagrangian settings, we use force-displacement curves as a comparison metric,
because they are independent of the choice of reference configuration.

3.1. Benchmark I: extension of a hyperelastic block

The first benchmark test aims to reproduce the numerical experiment in the original formulation by Arroyo and
Ortiz (2006) as a baseline. We simulate a hyperelastic Neo-Hookean cube that is stretched vertically with the top and
bottom faces being fixed in all directions – due to symmetry it is sufficient to model one eighth of the block with
the top face fixed, two adjacent side faces traction-free and symmetry boundary conditions applied on the rest of the
faces, while the bottom face is vertically fixed and free to deform in-plane. The shear and bulk moduli are set to µ = 5
and κ = 10, respectively. The cube is deformed up to 100% extension in 50 load steps (see Video 1) and the total
vertical reaction force on the top face is recorded. Figure 10(a) and 10(b) show the final deformed state obtained
using local max-ent and FEM. For the purpose of a convergence study, the initial spatial discretization is a uniform
grid of nodes with varying degrees of nodal spacing (see Figure 10(d)), and different values of γ to initialize the
locality parameter β. Due to highly nonlinear deformations, an overkill FEM simulation with 20 × 20 × 20 elements
is used as a proxy for the exact solution. Figure 10(c) illustrates the convergence in the reaction force with refinement
of the spatial discretization. Three important observations are made: (i) The error produced by the local max-ent
simulations is always smaller than that of FEM, implying improved accuracy, as similarly observed by Arroyo and
Ortiz (2006) for the same benchmark. (ii) The shown errors corresponding to larger values of γ approach the FEM
errors, which is corroborated by the fact that larger γ implies higher locality in interpolation, thus tending towards
the affine interpolation of FEM. (iii) More importantly, the error produced by the updated-Lagrangian formulation
is lower than that obtained from total-Lagrangian calculations with the same γ, which is expected due to the large
deformations involved.

3.2. Benchmark II: torsion of a hyperelastic cube

We simulate the torsion response of a hyperelastic Neo-Hookean cube with fixed top and bottom faces (this time
the entire cube is modeled, see Figure 11(a)-11(d)). The cube is deformed in incremental torsion steps of 0.05 rad
≈ 2.86◦ twist angle per step (see Video 2). For added complication, the shear and bulk moduli are set to µ = 5 and
κ = 100, respectively. We note that Ortiz et al. (2010, 2011) have developed maximum-entropy meshfree methods
suited to near-incompressible and incompressible materials. However, to avoid issues related to volumetric locking,
we do not consider truly incompressible materials within the scope of this paper. The initial spatial discretization is
a uniform grid of nodes with varying degrees of nodal spacing. The initial locality parameter for each material point
is set isotropically using γ = 6.0. Figure 11(e) shows the total vertical reaction force on the top face in response
to the applied torsion. Remarkably, the enhanced local max-ent scheme is able to simulate up to 200◦ degrees of
torsion, which is significantly higher than the maximum torsion of 144◦ degrees achievable by our comparison FEM
simulation. Moreover, local max-ent achieves a similar level of accuracy with the number of material points being only
one-sixth the number of elements in FEM. These observations demonstrate the superior capability of the enhanced
local max-ent scheme to simulate problems that are highly prone to mesh distortion and tensile instability.

3.3. Benchmark III: hyperelastic laminate composite
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(a) Deformation at 100% ex-
tension using local max-ent

(b) Deformation at 100% ex-
tension using FEM

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

Initial nodal spacing

-1

0

1

2

3

4

5

6

7

8

9

S
ig

n
e
d
 r

e
la

ti
v
e
 e

rr
o
r 

in
 v

e
rt

ic
a
l 
fo

rc
e
 o

n
 t
o
p
 f
a
c
e

10
-3

Updated Lagrangian, initial  = 2.0

Updated Lagrangian, initial  = 2.5

Updated Lagrangian, initial  = 3.0

Updated Lagrangian, initial  = 4.0

Updated Lagrangian, initial  = 6.0

Total Lagrangian,  = 2.0

FEM

(c) Signed relative error in the vertical reaction force on the top face

Initial discretization Nodal spacing per side length Number of nodes Number of material points

6×6×6 0.1667 559 2592

8×8×8 0.1250 1241 6144

10×10×10 0.1 2331 12000

12×12×12 0.0833 3925 20736

14×14×14 0.0714 6119 32928
(d) Spatial discretization schemes for varying nodal spacing

Figure 10: Benchmark I: extension of a hyperelastic block

We simulate the response of an RVE made of a hyperelastic two-phase laminate composite subjected to uniaxial
extension with traction-free lateral faces. As illustrated in Figure 12(a), the RVE consists of a material interface
normal to the x-axis separating the two Neo-Hookean materials. To pronounce the discontinuity in derivatives across
the interface, the elastic moduli are chosen such that one phase is highly compressible (µ = 1, κ = 1), whereas the
other phase is relatively less compressible (µ = 5, κ = 100). Periodic boundary conditions are imposed on the RVE.
The initial spatial discretization is a uniform grid of 9 × 9 × 9 nodes. The locality parameter for each material point is
initialized using γ = 2.0. The normal strain along the x-axis is computed at each material point and node up to 25%
extension. The specific geometry admits an analytical solution within finite elasticity, which predicts homogeneous
deformation in each phase with a discontinuity in the deformation gradient at the material interface. A derivation of the
(semi-)analytical solution is presented in C. Figure 12 shows the strain distribution when computed with and without
shape function support truncation at the interface, respectively. With truncated support as discussed in Section 2.5,
the discontinuity is accurately captured by the numerical solution (Figure 12(b)), whereas spurious oscillations are
observed when the support truncation is deactivated (Figure 12(c)).

3.4. Benchmark IV: high-volume-fraction composite with spherical inclusion

We consider a hyperelastic composite consisting of a periodic array of spherical inclusions embedded in a matrix.
In order to accurately model the inclusions while approaching contact under straining, we simulate a cubic RVE
containing two hemispheres of the inclusion phase, each of radius 0.45 with a spacing of 0.1 in between (see Figure
13(a)). We are interested in the stress distribution inside the RVE under uniaxial extension with traction-free lateral
faces. Each inclusion (shown in red and green) is modeled by a stiff material (µ = 500, κ = 500) relative to a soft
matrix (µ = 1, κ = 1). Periodic boundary conditions are imposed on the RVE. The locality parameter for each
material point is initialized using γ = 6.0. The RVE is incrementally stretched as much as possible until the poles
of the hemispheres almost come into contact. Figure 13 shows the deformation and reports the normal Cauchy stress
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(a) Initial state at 0◦ applied torsion (b) Deformation at 65.9◦ applied torsion

(c) Deformation at 131.8◦ applied torsion (d) Deformation at 200.5◦ applied torsion
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Figure 11: Benchmark II: torsion of a hyperelastic cube
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(a) Deformation at 25% extension. The nodes are repre-
sented by yellow dots, and the material points for the two
laminates are shown as red and blue dots.
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Figure 12: Benchmark III: hyperelastic laminate composite in a periodic RVE
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distribution at different levels of extension. Remarkably, at 135% extension the inclusions almost come into contact,
which is accompanied by a significant and localized increase in the compressive stress near the apparent point of
contact (Figure 13(g)). Due to the relatively soft matrix, the stress distribution is akin to the Hertzian solution for
elastic bodies in contact. Note that the chosen material models do not capture phenomena like inelasticity or damage
near the point of contact; the purpose of this particular benchmark is to demonstrate the numerical capabilities of the
method. It becomes apparent that the proposed framework is capable of simulating matrix material being squeezed
out quasistatically between the inclusions to allow for contact to happen. By contrast, such simulation are not easily
feasible with FEM due to the large mesh distortion and entanglement in the narrow region between the two inclusions.

3.5. Benchmark V: Taylor anvil test

As our final example, we depart from hyperelastic constitutive laws and quasistatic simulations. We simulate the
elastoplastic dynamic response of a copper specimen impacting a wall at high speed (see Figure 14(a)), classically
known as Taylor’s anvil test (1948). The specimen is a homogeneous cylinder whose material response is described by
von Mises (J2) plasticity with linear isotropic hardening (the mass density is 8930 kg/m3, Young’s modulus 117 GPa,
Poisson’s ratio 0.35, yield stress 400 MPa, and plastic modulus 100 MPa). The wall is assumed to be frictionless and
oriented normal to the initial velocity of the specimen. A 3D simulation using explicit dynamics is performed. We
note that, when using explicit time integration, the proposed method is similar to the Optimal Transportation Meshfree
method of Li et al. (2010) with the exception of the anisotropic shape functions and adaptivity schemes proposed here.
The following two scenarios are simulated.

Case (A): a specimen of radius 3.2 mm and length 32.4 mm impacts the wall at a speed of 227 m/s (see Figure
14(a)). The cylinder is discretized into 11, 313 nodes and 52, 608 material points with the help of an initial tetrahedral
mesh. A stable time step of 0.01 µs is chosen and the results at time 80 µs are compared to those obtained by FEM
(Kamoulakis, 1990; Zhu and Cescotto, 1995; Camacho and Ortiz, 1997), EFG (Belytschko et al., 2000), and OTM
(Li et al., 2010) in Table 1. Figures14(b) and 14(c) show the time history of the mushroom radius and height of
the specimen, respectively (see Belytschko et al. (2000) for comparison). Figures14(d)-14(f) show the evolution of
effective plastic strain at different times during the impact. The results closely match those reported in the literature
and obtained using the aforementioned methods.

Case (B): a specimen of radius 3.2 mm and length 12.8 mm impacts the wall at a speed of 750 m/s (see Figure
15(a)). The cylinder is discretized into 5, 483 nodes and 26, 176 material points with the help of an initial tetrahedral
mesh. A stable time step of 0.0025 µs is chosen, and the evolution of the effective plastic strain at different times
during the impact is shown in Figure 15. While case (A) is a well-known benchmark with experimental validation,
(B) serves as a numerical experiment without validation, proposed by Li et al. (2010), to push the robustness of the
numerical scheme to extremes. In the latter case, due to considerably higher speed at impact, the specimen undergoes
severe plastic flow and flattens out. Particularly in the mushroom region, the nodal spacing increases rapidly, which
may cause tensile instability. In fact, without the anisotropic adaptive scheme outlined here, tensile instability emerges
early on during the simulation at around 2.75 µs.

This last benchmark shows that the proposed method equally applies to inelastic constitutive laws and that the
adaptivity scheme ensures the stability of the updated-Lagrangian kernel in scenarios exhibiting severe deformation

Final height
(mm)

Final mushroom
radius (mm)

Max. effective
plastic strain

Kamoulakis (1990): FEM 21.47-21.66 7.02-7.12 2.47-3.24
Zhu and Cescotto (1995): FEM 21.26-21.49 6.89-7.18 2.75-3.03
Camacho and Ortiz (1997): FEM 21.42-21.44 7.21-7.24 2.97-3.25
Belytschko et al. (2000): EFG using cell structures 21.46 7.13 3.33
Belytschko et al. (2000): EFG using stress points 21.46 6.98 3.18
Li et al. (2010): OTM 21.43 6.8 3.0
This method 21.45 6.84 2.69

Table 1: Benchmark V-(A): Comparison of results from Taylor anvil test
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 13: Benchmark IV: hyperelastic high-volume-fraction composite with periodic spherical inclusions. (a) Initial state of the RVE with two
hemispherical inclusions (both nodes and material points are shown in red and green) embedded in a matrix (both nodes and material points in
blue). (b, c), (d,e), (f,g) show the deformed configuration and the stress distribution at 45%, 90%, and 135% extension, respectively. The stresses
shown in (c,e, g) are the Cauchy stress component along the x-direction interpolated at the central plane of the RVE denoted by the red rectangles
in (b, d, f). Due to the large deformations involved, the stress plots use different scales at each step for improved visibility.
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32.4 mm

(a) Initial state of the specimen
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(b) Time history of mushroom radius
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(c) Time history of specimen height

(d) Effective plastic strains at time = 20 µs (e) Effective plastic strains at time = 40 µs (f) Effective plastic strains at time = 80 µs

Figure 14: Benchmark V-(A): Taylor anvil test, showing (a) the initial specimen, (b) the time history of the mushroom radius, (c) the time history
of the specimen height, and (d,e,f) cut-section views of the specimen near the wall with effective plastic strains evaluated at material points (nodes
are shown as gray dots).

such as during plastic flow. The benchmark further demonstrates that the adaptivity scheme is not limited to quasistatic
settings but can be extended without significant modifications to dynamics.

4. Conclusions

We have presented a meshfree simulation framework with significantly enhanced stability, particularly for bound-
ary value problems involving severe, finite deformations. We have formulated an updated-Lagrangian scheme based
on an incremental deformation map and material point sampling. The scheme utilizes an improved local maximum-
entropy approximation that is extended to admit anisotropic shape function support. This is achieved by establishing
an anisotropic compromise between minimal shape function widths and maximal information entropy via a tensorial
locality parameter, in an extension of the original max-ent scheme of Arroyo and Ortiz (2006). We have introduced
an adaptive scheme for the anisotropic evolution of shape function support and nodal connectivity, which jointly
suppress tensile instability up to large deformations, as demonstrated by several benchmark tests. The weak Kro-
necker property of the original max-ent formulation is retained, which allows for the direct application of essential
boundary conditions. We have also presented a scheme that utilizes truncated shape function connectivity to accu-
rately capture discontinuous derivatives across material interfaces as found, e.g., in composite materials. The entire
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750 m/s

Radius = 3.2 mm

12.8 mm

(a) Initial state of the specimen (b) Effective plastic strains at time = 5 µs

(c) Effective plastic strains at time = 10 µs (d) Effective plastic strains at time = 15 µs

Figure 15: Benchmark V-(B): Taylor anvil test, showing (a) the initial specimen, and (b,c,d) the effective plastic strains in the deformed sample,
evaluated at the material points (nodes are shown as gray dots).

simulation framework has been tested through several hyperelastic and elastoplastic benchmark problems involving
severe deformations, and we observed faster convergence and the ability to simulate significantly larger distortions
as compared to classical FEM and total-Lagrangian meshfree formulations. We also demonstrated the performance
of the methodology in dynamic problems and reported excellent agreement of simulated Taylor impact results with
those reported in the literature. The presented approximation scheme as well as the updated-Lagrangian setting are
sufficiently general to apply to other problems beyond the scope of the present investigation, including multi-physics
problems and incompressible materials, which will be presented in a subsequent study.
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The following derivation follows closely that presented by Arroyo and Ortiz (2006), here modified for the proposed
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zeroth-order consistency condition as

nn∑
a=1

Na(x)xa −

 nn∑
a=1

Na

 x =

nn∑
a=1

Na(x)(xa − x) = 0. (51)
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The Lagrangian associated with the constrained optimization in (9) istherefore given by

L
(
Nβ, λ0, λ

)
=

nn∑
a=1

f (Na,β) + λ0

 nn∑
a=1

Na − 1

 + λ ·

 nn∑
a=1

Na(xa − x)

 , (52)

where λ0 ∈ R and λ ∈ Rd are Lagrange multipliers, and

f (Na,β) = Na‖x − xa‖2β + Na ln Na(x). (53)

Stationarity of (52) with respect to Na(x) for a = 1, . . . , nn yields

∂L
∂Na(x)

= ‖x − xa‖2β + 1 + ln Na + λ0 + λ · (xa − x) = 0 ∀ a = 1, . . . , nn (54)

whose solution reads

Na(x) =
exp

(
−‖x − xa‖2β + λ · (x − xa)

)
exp(1 + λ0)

. (55)

Note that the exponential form ensures the positivity constraint on the shape functions. The Lagrange dual function is
given by

g(λ0, λ) = inf
Na(x)≥0, a=1,...,nn

L
(
Nβ

)
. (56)

The function conjugate of f (Na,β) is obtained as

f ∗(Qa,β) = sup
Na

(QaNa − f (Na,β)) . (57)

Stationarity with respect to Na requires

Qa − ‖x − xa‖2β − 1 − ln Na = 0 ⇒ Na = exp
(
Qa − ‖x − xa‖2β − 1

)
. (58)

Therefore, the conjugate function f ∗(Qa,β) is given by

f ∗(Qa,β) = exp
(
Qa − ‖x − xa‖2β − 1

)
. (59)

Rewriting the Lagrange dual function (56) in terms of the function conjugate (Boyd and Vandenberghe, 2004)
gives

g(λ0, λ) = −λ0 −

nn∑
a=1

f ∗ (−λ0 − λ.(xa − x),β) . (60)

Substituting (59) gives

g(λ0, λ) = −λ0 −

nn∑
a=1

exp
(
−λ0 − λ.(xa − x) − ‖x − xa‖2β − 1

)
. (61)

Maximizing the Lagrange dual function with respect to λ0 results in

exp(1 + λ∗0) =

nn∑
a=1

exp
(
−‖x − xa‖2β + λ · (x − xa)

)
= Z(x, λ), (62)

so that the Lagrange dual function reduces to

g(λ∗0, λ) = −λ∗0 − 1 = − ln Z(x, λ). (63)

Finally, maximizing the reduced Lagrange dual function with respect to λ gives

λ∗ = arg min
λ∈Rd

ln Z(x, λ). (64)
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B. Pseudo-code for hyperelastic boundary value problem

The following algorithms summarize the numerical realization of the presented updated-Lagrangian meshfree
framework for the example of a hyperelastic boundary value problem at finite strains.

Algorithm 1 Example algorithm for a hyperelasticity simulation using anisotropic local max-ent
1: Initialize the spatial discretization (Algorithm 2)
2: for each material point p = 1, . . . , np do
3: Set initial configuration as undeformed: Fp

0 = I
4: end for
5: for n = 0, . . . , # of quasistatic load or time steps do
6: Compute/update shape functions (Algorithm 3)
7: Compute nodal displacement increments ∆Un by assembly and iterative solution (Algorithm 4)
8: Update Lagrangian (Algorithm 5)
9: end for

Algorithm 2 : Initialize the spatial discretization
Input: γ, c

1: Create a simplicial mesh based on a given geometry
2: Initialize nn nodes at mesh vertices xa

0 (a = 1, . . . , nn)
3: Initialize np material points at the simplex quadrature points xp

0 (p = 1, . . . , np)
4: Initialize all material point densities: ρp

0 = ρ0(xp
0 )

5: Initialize all material point volumes: V p
0 = quadrature weight × simplex volume

6: Initialize the locality parameter for each material point: βp
0 = γ

(
hp

0

)−2
I, where hp

0 is the mean distance from xp
0

to nodes of the surrounding elements in the mesh
7: Initialize cut-off region (ellipsoid) for each material point: Mp

0 =
(
c hp

0

)−2
I

8: Discard the mesh

Algorithm 3 : Compute/update shape functions
1: for each material point p = 1, . . . , np do
2: Find nodal connectivity based on cut-off region S p

n = {xa
n : (xa

n − xp
n ) · Mp

n (xa
n − xp

n ) ≤ 1}
3: if size(S p

n ) ≥ (d + 1) and xp
n ∈ conv(S p

n ) then
4: // Compute shape functions:
5: Guess λ← (0, . . . , 0)T

6: while ln(Z(xp
n , λ)) > Tolerance do

7: λ← λ −
(
J(xp

n , λ) + ‖r(xp
n , λ)‖I

)−1
r(xp

n , λ)
8: end while
9: λ∗ = λ

10: Evaluate shape functions at xp
n : N p

βp
n

= {Na(xp
n ) : xa

n ∈ S p
n }

11: else
12: Error: Insufficient nodal connectivity
13: end if
14: end for
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Algorithm 4 : Assembly and solver
Input: ∆Un (initial guess = solution of previous step)

1: do
2: Initialize global force vector and tangent matrix: fn+1 ← 0, Tn+1 ← 0
3: for each material point p = 1, . . . , np do
4: Compute incremental deformation gradient: Fp

n→n+1 ← I +
∑

a∈S p
n

∆ua
n ⊗ ∇nNa(xp

n )
5: Compute total deformation gradient: Fp

n+1 ← Fp
n→n+1Fp

n
6: for all nodes a in S p

n do
7: Compute and assemble internal nodal forces: f a

n+1 ← f a
n+1 +

V p
n

Jp
n

P(Fp
n→n+1Fp

n )Fp
n

T
∇nNa(xp

n )
8: for all nodes b in S p

n do
9: Compute and assemble tangent matrix:

10:
(
Tn+1

)ab

ik
←

(
Tn+1

)ab

ik
+

∑np

p=1 Ci jkl(Fp
n→n+1Fp

n ) (F p
n )q j∇nNa

q (xp
n ) (F p

n )rl∇nNb
r (xp

n ) V p
n

Jp
n

11: end for
12: end for
13: end for
14: for each node a = 1, . . . , nn do
15: Assemble external forces: f a

n+1 ← f a
n+1 − f a

ext,n+1
16: for each node b = 1, . . . , nn do

17: Assemble external tangent matrix:
(
Tn+1

)ab

ik
←

(
Tn+1

)ab

ik
−

∂
(

f a
ext,n+1

)
i

∂(∆ub
n)k

,

18: end for
19: end for
20: Apply essential boundary conditions to force vector and tangent matrix
21: Newton-Raphson step: ∆Un ← ∆Un − T−1

n+1 fn+1
22: while (‖ fn+1‖ > Tolerance)
Return: ∆Un

Algorithm 5 : Update Lagrangian
Input: ∆Un (solution)

1: for each material point p = 1, . . . , np do
2: Compute incremental deformation gradient: Fp

n→n+1 = I +
∑

a∈S p
n

∆ua
n ⊗ ∇nNa(xp

n )
3: Compute total deformation gradient: Fp

n+1 = Fp
n→n+1Fp

n

4: Update material point density: ρp
n+1 = ρ

p
n

(
det Fp

n→n+1

)−1

5: Update material point volume: V p
n+1 = V p

n det Fp
n→n+1

6: Update locality parameter: βp
n+1 = (Fp

n→n+1)−Tβp
n (Fp

n→n+1)−1

7: Update cut-off region: Mp
n+1 = (Fp

n→n+1)−T Mp
n (Fp

n→n+1)−1

8: end for

C. Analytical solution of the finite-elasticity problem in benchmark III

Consider a hyperelastic cube of side length 1 composed of two perfectly bonded Neo-Hookean materials denoted
by symbols A and B, which are arranged into a laminate whose material interface is given by the plane x = 0.5 in the
initial configuration (see Figure 12). µi and κi denote the shear and bulk moduli, respectively, of material i. For the
prescribed boundary conditions, the overall deformation gradient of the laminate is given by

F =

λ1 0 0
0 λ2 0
0 0 λ3

 , (65)
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where λ1, λ2, and λ3 are the stretch ratios along the x-, y-, and z-axes, respectively. Note that λ3 is a known value
and is equal to the stretch applied by the boundary conditions. Assuming that no instability occurs, the deformation
is homogeneous within each material and the deformation gradient for each material region is given by

FA =

λ
A
1 0 0

0 λ2 0
0 0 λ3

 and FB =

λ
B
1 0 0

0 λ2 0
0 0 λ3

 , (66)

where λA
1 and λB

1 are the stretch ratios for each material along the x-axis. Since the initial thickness of each laminate
phase is the same, the overall stretch ratio λ1 is related to λA

1 and λB
1 via

λ1 =
1
2
λA

1 +
1
2
λB

1 . (67)

The overall strain energy density Π = 〈W〉 of the laminate block, using (50), is thus given by

Π(λA
1 , λ

B
1 , λ2, λ3) =

1
2

(
µA

2

[
tr

(
FATFA

)
(JA)−2/3 − 3

]
+
κA

2
(JA − 1)2

)
+

1
2

(
µB

2

[
tr

(
FBTFB

)
(JB)−2/3 − 3

]
+
κB

2
(JB − 1)2

)
.

(68)
The principle of minimum potential energy requires that for a given applied λ3

(λA
1 , λ

B
1 , λ2) = arg min Π(λA

1 , λ
B
1 , λ2, λ3), (69)

where the objective function being minimized is convex and admits a unique solution. Hence, the optimization
problem in (69) can be easily solved numerically to yield the required stretch ratios.
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