
HAL Id: hal-01924408
https://polytechnique.hal.science/hal-01924408

Preprint submitted on 15 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal insurance coverage of low probability-high
severity risks

Alexis Louaas, Pierre Picard

To cite this version:
Alexis Louaas, Pierre Picard. Optimal insurance coverage of low probability-high severity risks. 2018.
�hal-01924408�

https://polytechnique.hal.science/hal-01924408
https://hal.archives-ouvertes.fr


Optimal insurance coverage
of low probability - high severity risks

Alexis Louaas∗ and Pierre Picard†

November 15, 2018

Abstract: Catastrophic risks are often characterized by a low probability
and a high severity. Taking these specificities into account, we analyze the
intrinsic reasons for which catastrophic risks may be more or less insurable,
independently from the market failures frequently observed in practice. On
the demand side, we characterize individual preferences under which the will-
ingness to pay for the coverage of large losses remains significant, although
their occurrence probability is very small. On the supply side, the correlation
between individual losses affects the insurance pricing through the insurers’
cost of capital. Analyzing the interaction between demand and supply yields
the key determinants of insurability and of a socially optimal risk sharing
strategy.
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1 Introduction
The insurability of catastrophic risks is at the heart of many economic policy
debates and the aggregate consequences of these risks, be they natural or
man-made, are often emphasized. Rietz (1988) and Barro (2006) for example,
documented significant effects on asset prices while Gourio (2012) and Farhi
& Gabaix (2015) highlighted effects on business cycles and interest rates.
In the context of global climate change, Weitzman (2009) also illustrated
the potentially disastrous consequences of uninsured catastrophic risks on
welfare. The coverage of these risks is therefore a crucial question, at the
intersection of government decision making and market mechanisms.

In practice, catastrophic risks often remain poorly insured, as shown by
an important body of literature following Kunreuther (1973). The expla-
nations for these low coverage rates have ranged from departures from the
expected utility paradigm (Kunreuther & Slovic (1978), Kunreuther et al.
(2001) and Hertwig et al. (2004)) to the crowding-out of private insurance
demand by public relief (Raschky et al. (2013), Kousky et al. (2013) and
Grislain-Letrémy (2018)). Imperfect capital markets are also often presented
as a significant impediment to the insurability of catastrophic risks (Jaffee
& Russell (1997), Froot (2001), Niehaus (2002), Zanjani (2002), Cummins
et al. (2002) and Kousky & Cooke (2012)).

If market failures are needed to justify government interventions, they
are not necessary a priori to rationalize low insurance take-up rates. As
we will show, covering risks that have a systemic component is, by nature,
particularly costly, even in a perfectly competitive set-up. Disentangling
the role of market failures from the intrinsic characteristics of the risk that
may make it uninsurable is therefore an important pre-requisiste to adequate
policy intervention.

The present paper consequently remains upstream of market failures and
departures from expected utility, and our objective is to highlight the intrinsic
determinants of demand and supply in the insurance market for catastrophic
risks. To some extent, this does not differ from a standard market analysis,
where explanatory factors determine demand and supply. However, as we
will see, the insurance coverage of events that are, at the same time, very
rare (low probability) and simultaneously highly damaging to many people
(high severity) requires a specific approach. On the demand side, the severity
of the losses incurred by individuals makes insurance particularly valuable,
but low probabilities reduce the propensity of individuals to purchase insur-
ance. The willingness to pay for the coverage of such risks results from these
counter-balancing effects. On the supply side, the fact that many individ-
uals are affected at the same time when a disaster occurs makes insurance
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costlier to provide since capital must be raised to maintain the insurer’s sol-
vency. Our objective in this paper is to analyze these specificities, in order to
bring out the key determinants of insurance coverage for catastrophic risks.
We find that these key determinants are the degree of risk aversion that indi-
viduals feel when they experience the highest possible loss and the correlation
between individual risks.

Our analysis shows that, in a perfectly competitive insurance market
without transaction costs, low probability risks that entail serious losses for
victims are (at least partially) covered, in spite of their systemic nature.
From a positive economics perspective, this suggests that substantial market
failures or transaction costs are likely to play a key role in the explanation
of low catastrophic insurance take-up rates. From a normative standpoint,
our analysis emphasizes the favorable welfare effects of policies that seek to
organize insurance schemes against catastrophic risks by lowering transaction
costs or by mitigating the various form of market failures that may be at
stake.

As a preliminary step, we investigate how low probability - high severity
risks can be viewed through the lens of insurance microeconomics. To do so,
we first extend the Arrow (1963) and Pratt (1964) approximation of the risk
premium to account for potentially large deviations from the mean and we
provide an asymptotic characterization of the willingness to pay for a very low
probability risk. We show that, when individuals display decreasing absolute
risk aversion (DARA), a high absolute risk aversion (or, equivalently, a low
risk tolerance) in the accident state may entail a significant willingness to
pay to avoid risk, even if the accident probability is very low (an extreme
case being infinite absolute risk aversion in the loss state, as in Weitzman
(2009)).

We then investigate the optimal insurance coverage of an individual who
faces the risk of an accident with a very low probability. We extend the
canonical model of the optimal insurance literature (Mossin (1968) and Raviv
(1979)) by considering a general insurance pricing rule, and we characterize
the asymptotic optimal insurance coverage when the loss probability tends
to zero.

We subsequently study the supply side of the insurance market by con-
sidering the risk of a low probability catastrophe affecting a large number
of individuals at the same time. To maintain its solvency, the insurance
provider raises capital on financial markets and, since the catastrophe is sys-
temic, capital is costly to obtain and features a positive risk premium. This
cost of capital is passed onto the policyholders through the insurance pre-
miums, that are therefore above the actuarially fair prices. Low levels of
coverage rates may consequently occur in equilibrium when the catastrophe
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is highly systemic, even in a complete financial market setting and in the
absence of other forms of market failures. We show however, that except for
the case of perfectly correlated losses, the optimal insurance coverage remains
positive for low probability risks.

Our conclusions may also be presented in a more normative perspective,
by focusing on their policy implications. Removing the barriers to catas-
trophic risk insurability is a multi-faceted challenge, including the promotion
of adequate financial innovations, and the targeting of government policy to-
wards risk prevention and the assistance of the most vulnerable groups. Our
approach is restricted to the preliminary question as to whether, and under
which conditions, the coverage of catastrophic risks by insurance mecha-
nisms is a socially optimal objective. As shown in this paper, the answer
to this question is positive if the perspective of incurring a large loss leads
the individuals to display a degree of risk aversion that is large enough to
compensate the high price of insurance induced by the systemic nature of the
risk. This condition would always be satisfied if there were no transaction
costs associated with the insurance mechanisms itself (e.g., distribution and
claim handling costs). Reducing transaction costs is thus a crucial step to-
ward insurability. Put differently, in the presence of large transaction costs,
assuming as a matter of principle, that individuals should be protected by
state-sponsored insurance mechanisms, whatever their willingness to pay and
the cost of capital, is not the appropriate way to approach the catastrophic
risk insurance issue.

Finally, we complete these theoretical foundations by simulating the opti-
mal insurance coverage. Our simulations yield significant levels of coverage.
We also show that the optimal coverage converges rapidly to its limit, which
corroborates the relevance of the asymptotic approach used in the previous
sections. This also suggests that differences in accident probabilities between
individuals may result in relatively small differences in the optimal coverage
choices (as long as all loss probabilities are sufficiently low). This result has a
practical importance to design collective insurance schemes against low prob-
ability - high severity disasters when people face different loss probabilities
due, for example, to the geographical distance between their residential areas
and the source of a potential risk (e.g., a nuclear power plant).

The rest of the paper is organized as follows. Section 2 and 3 respectively
analyze the risk premium and the insurance demand for a low probability -
high severity risk and Section 4 illustrates the relevance of our results with
numerical simulations. Section 5 concludes by summarizing our results and
relating them to public policy issues. Section 6 gathers the proofs.
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2 The risk premium of low-probability and
high-severity risks

The Arrow (1963) and Pratt (1964) approximation of the risk premium holds
for small risks, with little variation around the mean. As a preliminary
analysis of our study of optimal insurance against catastrophic risks, this
section extends the characterization of the risk premium to high severity
risks.

Consider an expected utility risk-averse individual with a von Neumann-
Morgenstern utility function u(x) such that u′ > 0 and u′′ < 0, where x is
the individual’s wealth. Let A(x) = −u′′(x)/u′(x) and T (x) = 1/A(x) be his
indices of absolute risk aversion and of risk tolerance, respectively. He holds
an initial wealth w, and faces the risk of a loss L < w with probability p.
Thus m(p, L) = pL and σ2(p, L) = p(1− p)L2 are the expected loss and the
variance of the loss, respectively. The certainty equivalent C(p, L) of this
lottery is defined by

u(w − C) = (1− p)u(w) + pu(w − L).

Straightforward calculations give

C ′p(p, L) = u(w)− u(w − L)
u′(w − C) > 0,

C ′′p2(p, L) = −C ′p(p, L)2A(w − C) < 0.

Thus, C(p, L) is increasing and concave with respect to p, and of course we
have C(0, L) = 0. We also denote

θ(p, L) ≡ C(p, L)−m(p, L)
σ2(p, L) ,

the normalized risk premium, that is the risk premium per unit of variance.
Put informally, the risk (p, L) may be considered catastrophic for the

individual if C(p, L) is non-negligible although p is very small. Risk aversion
implies that C(p, L) > pL. L’Hôpital’s rule allows us to write the limit ratio
of certainty equivalent to expected loss as

lim
p→0

C(p, L)
pL

=
C ′p(0, L)

L
,

which is proportional to C ′p(0, L) for L given. Using l’Hôpital’s rule again
gives

θ(0, L) ≡ lim
p−→0

θ(p, L) =
C ′p(0, L)− L

L2 . (1)
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Thus, analyzing the determinants of θ(0, L) is an intermediate step to under-
standing why C ′p(0, L) may be large and thus why C(p, L) may be significant
although p is very small.

When L is small, we know from the Arrow-Pratt approximation that the
risk premium per unit of variance is proportional to the index of absolute
risk aversion. Indeed, we have

lim
L−→0

θ(p, L) = A(w)
2 for all p ∈ (0, 1),

which of course also holds when p goes to 0, that is

lim
L−→0

θ(0, L) = A(w)
2 .

When L is large, it is intuitive that the size of the risk premium depends on
function A(x) not only in the neighborhood of x = w, but over the whole
interval [w − L,L]. This is confirmed by Proposition 1 and its corollaries.
Proposition 1 provides an exact formula for θ(0, L) which is a weighted av-
erage of A(x) exp{

∫ w
x A(t)dt}/2 when x is in [w−L,w]. Corollary 1 directly

deduces a lower bound for θ(0, L), and Corollary 2 considers the case where
L = w and the index of relative risk aversion R(x) is larger or equal to one.1
In this case, the lower bound of θ(0, L) is the (non-weighted) average of A(x)
when x ∈ [0, w].

Proposition 1 For all L > 0, we have

θ(0, L) = 1
2

∫ w

w−L
[k(x)A(x) exp{

∫ w

x
A(t)dt}]dx

where k(x) = 2[x− (w − L)]/L2 and∫ w

w−L
k(x)dx = 1.

Corollary 1 For all L > 0, we have

θ(0, L) > 1
2

∫ w

w−L
k(x)A(x)dx.

1Most empirical studies usually lead to values of R(x) that are larger (and sometimes
much larger) than one, and thus the assumption made in Corollary 2 does not seem to be,
in practice, very restrictive.
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Corollary 2 If L = w, R(x) ≡ xA(x) ≥ 1 for all x and u(0) ∈ R then

θ(0, L) > 1
2w

∫ w

0
A(x)dx.

With the natural case of Decreasing Absolute Risk Aversion (DARA) in
mind, Proposition 1 and its corollaries suggest that θ(0, L) may be large if
A(x) is large when x goes to w − L.

Symmetrically, Proposition 2 shows that, under non-increasing absolute
risk aversion, the normalized risk premium θ(p, L) may be large when p is
close to zero only if A(w−L) is very large, that is, only when the individual’s
risk tolerance is very small in the accident state.
Proposition 2 Assume R(x) ≡ xA(x) ≤ γ for all x ∈ [w − L,w]. Then,
under non-increasing absolute risk aversion, we have

θ(0, L) < (γ + 1)A(w − L)
2 ,

and
C(p, L) < pL

[
1 + (γ + 1)A(w − L)

2 L

]
.

Proposition 2 provides upper bounds for the normalized risk premium
θ(0, L) and for the certainty equivalent C(p, L) when the individual displays
non-increasing risk aversion. γ is an upper bound for the index of relative
risk aversion R(x) when x is in the interval [w − L,w]. The upper bound
of θ(0, L) is proportional to A(w − L), which is the index of absolute risk
aversion in the loss state. Consequently, C(p, L) may be non-negligible when
p is very small, say as a proportion of loss L, only if A(w−L) is large. On the
contrary, assume A(w − L) = A(w), i.e., the index of absolute risk aversion
remains constant in [w − L,w]. In that case, we would have R(x) < R(w)
for all x < w, and thus γ = R(w), which implies

C(p, L) < pL

[
1 + R(w)

2 + R(w)2

2

]
.

Assuming R(w) = 2 or 3 would give C(p, L) < 4pL or C(p, L) < 7pL,
respectively. Thus, if p is very small, then C(p, L)/L is very small.2

2For the sake of numerical illustration, consider the case of a large scale nuclear disaster
that may occur with probability p = 10−5, with total losses of $100b evenly spread among
1 million inhabitants (think of people living in the neighborhood of the nuclear plant). In
the case of an accident, each inhabitant would suffer a loss L = $100, 000, with expected
loss pL equal to $1, and certainty equivalent less than $4 or $7, which would be negligible,
say as a proportion of their annual electricity expenses. Assuming larger but still realistic
values of the index of relative risk aversion would not substantially affect this conclusion.
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Thus, under non-increasing absolute risk aversion, we may conclude that
the risk premium of low-probability high-severity accidents may be non-
negligible (and thus that the coverage of such a risk is a relevant issue)
if and only if the risk tolerance is very low in such catastrophic cases.

CRRA preferences are an instance of such a case with T (x) = x/γ,
where γ is the index of relative risk aversion. We then have T (x) −→ 0 and
A(x) −→ ∞ when x −→ 0. However, CRRA preferences are not very sat-
isfactory from a theoretical standpoint, since the utility is not defined when
wealth is nil. This corresponds to discontinuous preferences in which any
lottery with zero probability for the zero wealth state is preferred to any
lottery with a positive probability for this state. If preferences are of the
HARA type, then risk tolerance is a linear function of wealth, and we may
write T (x) = η + x/γ, with 0 < η < 1 and γ > 0. In such a case, we have
A′(x) < 0, A(0) = 1/η and R(x) > 1. In particular, the individual’s abso-
lute risk aversion index is decreasing but upper bounded. A straightforward
calculation then gives

1
2w

∫ w

0
A(x)dx = γ

2w ln
(

1 + w

γη

)
,

and thus, Corollary 2 shows that for all M > 0, we have θ(0, L) > M if

η <
w

γ[exp(2wM/γ)− 1] .

The right-hand side of the previous inequality is positive, decreasing in M
and increasing in γ. Thus, θ(0, L) is arbitrarily large if η = T (0) and/or
1/γ = T ′(x) are small enough.

3 Insurance demand for catastrophic risks
We now assume that the individual can purchase insurance for a risk (p, L).
Insurance contracts specify the indemnity I in the case of an accident, i.e.,
when the individual suffers a loss L, and the premium D(p, I) to be paid to
the insurer depends on the loss probability p and the indemnity I. As an
example, the standard insurance pricing model specifies a price proportional
to the expected indemnity D(p, I) = (1+λ)pI, where λ is the loading factor.
More generally, we call

d(p, I) = D(p, I)− pI
pI

,
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the unit cost of insurance with d(p, I) = λ in the case of a constant loading.
In the case of catastrophic risk however, d(p, I) is strongly affected by the
cost of providing the capital that guarantees the solvency of the insurance
scheme and it is likely to depend on p and I. We assume non-decreasing
marginal costs D′′I2(p, I) ≥ 0, and D′I(p, I) ∈ (p, 1) rules out corner solutions
with I = 0 or I = L. We also assume that the marginal cost of coverage
becomes null as p tends to zero, that is

lim
p→0

D′I(p, I) ≡ D′I(0, I) = 0,

and consistency conditions D(p, 0) = D(0, I) = 0.
The policyholder faces the lottery (w1, w2), with corresponding probabil-

ities 1− p and p, where w1 and w2 denote the wealth in the no-loss and loss
states respectively, with

w1 = w −D(p, I) (2)
w2 = w −D(p, I)− L+ I (3)

The full coverage lottery w1 = w2 = w − D(p, L) is preferred to the no
coverage lottery (w,w − L) if and only if the willingness to pay C(p, L) is
higher than the price of full coverage D(p, L), that is

C(p, L) ≥ D(p, L).

When p goes to zero, l’Hôpital’s rule allows us to rewritte the previous con-
dition as

C ′p(0, L)− L
L

= θ(0, L)L ≥ d(0, L),

where d(0, I) = limp→0 d(p, I). Hence the following Lemma.

Lemma 1 θ(0, L)L ≥ d(0, L) is a necessary and sufficient condition for the
agent to prefer full insurance to no insurance when p goes to zero.

Lemma 1 illustrates the importance of the normalized risk premium θ(0, L)
analyzed in the previous section. For insurance to remain attractive despite
the vanishingly low probability of accident, the normalized risk premium
has to be larger than the unit cost of insurance d(0, L) divided by the loss.
A direct consequence of Lemma 1 is that θ(0, L)L ≥ d(0, L) is a sufficient
condition for the optimal (partial) insurance cover to remain positive as p
goes to zero.3

3Indeed, if the individual prefers full coverage to no coverage, extending his opportunity
set does not make him switch to zero coverage. It is easy to check that the optimal limit
cover (denoted I∗ below) is positive when d(0, L) < [u′(w − L) − u′(w)]/u′(w) and that
this condition is implied by θ(0, L)L ≥ d(0, L).
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Combining Corollary 1 and Lemma 1 yields Corollary 3 that provides
conditions on relative risk aversion under which insurance remains valuable
for low probability events with high severity.

Corollary 3 Assume R(x) is non decreasing. If limx→0 R(x) ≥ limL→w d(0, L),
then for L smaller than w but large enough, the individual prefers full in-
surance to no insurance (and therefore the optimal cover is positive) when p
goes to zero.

Let us now characterize the optimal insurance coverage for a low prob-
ability accident. In the (w1, w2) plan represented in Figure 1, the set of
feasible lotteries is delimited by a concave curve (drawn for p = 0.1, p = 0.25
and p = 0.5) that represents equations (2) and (3), together with the sign
condition

w2 − w1 + L ≥ 0, (4)

(or I ≥ 0). For illustrative purpose, Figure 1 displays the case of a simple
pricing rule that relates the premium to the expected value and variance of
the loss.4 The optimal lottery maximizes the individual’s expected utility

(1− p)u(w1) + pu(w2),

in this set of feasible lotteries. It is such that the marginal rate of substitution
−dw2/dw1|Eu=ct. = (1 − p)u′(w1)/pu′(w2) is equal to the slope (in absolute
value) of the feasible lottery locus, that is

(1− p)D′I(p, I)u′(w1) = [1−D′I(p, I)]pu′(w2), (5)

where w1 and w2 depend on I through (2) and (3). Figure 1 shows the locus
of optimal lotteries in the (w1, w2) plane when p changes. Each lottery is
at the tangency point of a convex indifference curve with the concave curve
that delimits the set of feasible lotteries for a particular probability p. Point
A represents the situation with no insurance, and point B represents the
asymptotic optimal lottery when p goes to zero.

Let w1(p, L), w2(p, L) denote the optimal state-contingent wealth levels
when I > 0, that is, when d(p, I) is not too large. Equation (5) can be
rewritten as

u′(w2(p, L))
u′(w1(p, L)) = (1− p)D′I(p, I)

p(1−D′I(p, I)) .

4Section 4 will be dedicated to analyzing the supply side of the market and will derive
a pricing function.
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Figure 1: Comparative statics in the space of lotteries

Each thick black circle represents an optimal lottery for a given probability, from p high
in point A to p close to zero in point B. Optimal lotteries are at the tangency point of
the indifference curve and the cost curve. In B, the optimal insurance coverage is positive
even-though the loss probability is infinitesimally small. The calibration is w = 1, 000, 000,
L = 800, 000, u(x) = −x−2

2 , and D(p, I) = (1 + λ)pI + αp(1 − p)I2 with λ = 0.3 and
α = 3× 10−6.

Denoting

w∗1(L) ≡ lim
p−→0

w1(p, L) = w

w∗2(L) ≡ lim
p−→0

w2(p, L),

and using L’Hôpital’s rule yields

u′(w∗2(L)) = D′′Ip(0, I∗)u′(w∗1(L)), (6)

which implies w∗2(L) < w = w∗1(L) if and only if D′′Ip(0, I∗) > 1. Thus, when
p goes to 0, the optimal insurance contract (P, I) goes to a limit (P ∗, I∗),
with P ∗ = D(0, I∗) = 0 and I∗ = w∗2(L) + L − w∗1(L) < L. When p is
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positive but close to 0, we still have I < L and P = D(p, I) ' D(p, I∗).
Since w∗2(L) = w − L+ I∗, (6) gives

u′(w − L+ I∗) = D′′Ip(0, I∗)u′(w), (7)

which defines I∗ when I∗ > 0, that is when u′(w − L) > D′′Ip(0, 0)u′(w)
(otherwise I∗ = 0).

Straightforward calculations allow us to characterize the effect of a change
in L and/or w on the asymptotic optimal insurance coverage. An increase
dL > 0 for w given induces an increase dI∗ < dL. A simultaneous increase
dw = dL > 0 induces an increase dI∗ > 0 in coverage, while an increase in
wealth with unchanged loss dw > 0, dL = 0 entails a decrease in optimal
coverage dI∗ < 0 under DARA preferences, i.e. when A′ < 0. Of course,
there is nothing astonishing here. These are standard comparative statics
results, which are extended to the asymptotic characterization of catastrophic
risk optimal insurance. They are summarized in Proposition 3.

Proposition 3 Assume that D′′Ip(0, 0) ≤ u′(w−L)
u′(w) . Then, when p goes to 0,

the optimal insurance coverage I goes to a limit I∗ > 0 and when p is close to
0, I and P are close to I∗ and D(p, I∗), respectively. A simultaneous uniform
increase in L and w induces an increase in I and an increase in L induces
a lower increase in I∗. Under DARA, an increase in w with L unchanged
induces a decrease in I and P .

4 Insurance supply for catastrophic risk
This section determines the pricing rules D(p, I) - taken as given in the
previous section - and the corresponding insurance market equilibrium in an
economy with a continuum of individuals, complete financial markets and
correlated risks.

Assume that a catastrophe occurs with probability π and, in such a case,
a fraction κ̃ of the population is affected by the loss L (the same for all
victims). In order to allow for different severity levels, we assume that κ̃ is
a random variable, with expected value µκ and variance σ2

κ. For notational
convenience, we define

K̃ =
{
κ̃ with probability π
0 with probability 1− π ,

the (unconditional) fraction of the population affected by the loss L. Con-
ditionally on the realization of K̃, we assume that all individuals have the
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same probability to incur the loss L. Therefore, the individual (uncondi-
tional) probability of facing a loss L is p = πµκ.

In this setting, the variability of the average loss is associated with a
positive coefficient of correlation between individual losses which, as shown
in Appendix 7.5, is equal to

ρ = σ2
κ + (1− π)µ2

κ

µκ − πµ2
κ

. (8)

The coefficient of correlation ρ increases with σ2
κ and since κ̃ is distributed

over the interval [0, 1], the highest variance is achieved when κ̃ is a Bernouilli
variable, equal to 0 or 1. The probability that κ̃ equals one in this case is
simply µκ, and we have σ2

κ = µκ(1− µκ), hence ρ = 1. The highest possible
variance σ2

κ therefore yields perfect correlation across losses.5
Another knife-edge case arises when σ2

κ = 0 and π = 1 that is, the same
fraction of the population is always affected by the loss. This corresponds to
the standard situation where the law of large number applies : the average
loss is constant, and the correlation coefficient is ρ = 0.

More generally, the correlation coefficient depends on the parameters µκ,
σ2
κ and π and converges to

σ2
κ + µ2

κ

µκ
, (9)

when π → 0.
For a given probability distribution of K̃, the insurance provider offers a

coverage I at price D to all agents in the economy. For each indemnity paid,
the insurer incurs a proportional cost at rate λ because of administrative
expenses such as auditing and expertise, or other forms of transaction costs.
Furthermore, in order to avoid a default,6 the insurance provider has to col-
lateralize the random total indemnity costs K̃(1+λ)I. This may be achieved
through various forms of contracting such as raising equity, in which case the
insurance company’s equity holders are liable for the policy payments, or by
raising capital on financial markets, in which case the risk is transferred to
dedicated market investors. Formally, this is equivalent to assuming that
the insurers collateralize indemnities by purchasing an asset that delivers a
random payoff ỹ = K̃(1 + λ), whose price defines D.

5When π > 0, this corresponds to the degenerate case where the catastrophe may be
completely harmless. Only two events are then relevant : either there is a catastrophe
that affects all individuals, either nobody suffers a loss, hence the perfect correlation.

6This paper abstracts from the possibility of default, examined in Charpentier &
Le Maux (2014) and Zanjani (2002) for example. In other words, we consider unlimited
liability for all agents in the economy and in particular for the insurance provider.
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In order to characterize this price, we consider a setting with complete
financial markets, where all individuals have the same utility function u.
The value of the asset ỹ can be estimated with a standard one factor model
written as

D = Eỹ − A(z0)cov(ỹ, z̃). (10)

In Equation (10), z̃ is the representative agent’s random wealth (defined
below) and A(z0) is his index of absolute risk aversion evaluated at z0 de-
fined by u′(z0) = Eu′(z̃). We normalize the utility function by assuming
Eu′(z̃) = 1 and thus u′(z0) = 1.7 Under market completeness, the exposure
of investors to idiosyncratic risks have been eliminated from the economy
thanks to adequate contracting. As a consequence, equation (10) indicates
that only systemic risks give rise to a risk premium in equilibrium. The co-
variance term of equation (10) captures the idea that investors, who accept
to provide the necessary capital to sustain the insurance scheme, require a
risk premium to provide a payoff which is high when the average wealth is
low.

The representative agent has a wealth equal to the average wealth in the
economy:

z̃ = w − K̃L, (11)

which is the difference between the exogeneously given level of initial wealth
w and the average loss per individual in the economy. A simple calculation
using (8), (10) and (11) with p = πµκ and Eỹ = pI gives

D(p, I) = ψ(p)pI ∀p ∈ [0, µκ], (12)

where
ψ(p) = (1 + λ)[1 + A(z0)L(1− p)ρ], (13)

7In an economy with complete financial markets, D = Eỹ + cov(ỹ, u′(z̃)
Eu′(z̃) ) defines the

price of the asset ỹ (see Gollier (2004)). Using the normalization Eu′(z̃) = 1 and ap-
proximating u′(z) in the neighbourhood of z0 defined by u′(z0) = Eu′(z̃), gives equation
(10). The relationship holds exactly if investors have quadratic utility functions, or if they
have CARA utility functions and returns are normally distributed. With any other util-
ity function, it remains a good approximation if the risk ỹ is sufficiently small compared
to the market’s wealth. Catastrophic risks such as floods, hurricanes, or even nuclear
accidents may have systemic consequences that remain small compared to the level of
aggregate wealth. As an example, the Japanese government expects the total cost of the
Fukushima-Daichi accident in 2011 to amount to a 177 billion euros bill. At least part of
this cost is systemic but its size, when compared to a 4300 billion euros annual GDP, re-
mains limited. For larger risks, the exact one factor model could be used without altering
our main message.
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is the total loading that reflects both the transaction and capital costs of
the insurance coverage. Everything else constant, the larger L and/or ρ the
larger the insurance price, which reflects the systemic nature of the risk.

Since p → 0 when π → 0 with µκ given, the condition that guarantees
that insurance take-up remains positive in the limit when π tends to 0 can
be derived from Proposition 3 as8

ψ(0) ≤ u′(w − L),
or equivalently

(1 + λ)[1 + A(w)Lρ] ≤ u′(w − L). (14)
In addition, Equation (7) from the previous section also delivers a closed-

form solution for the optimal asymptotic coverage

I∗ = u′−1(ψ(0))− w + L, (15)

where
ψ(0) = (1 + λ)[1 + A(w)Lρ].

An increase in the correlation coefficient ρ reduces the equilibrium coverage
I∗ since it makes insurance more expensive. An increase in L has a potentially
ambiguous effect. Since in our model, policyholders also provide the capital
that sustain the insurance scheme, higher losses increase the equilibrium
premium. Similarly, an increase in the index of absolute risk aversion is
associated with a high demand but also with high premiums.

In order to focus attention on the cost of capital, the following paragraphs
restrict attention to the case λ = 0. When ρ = 0, we obtain full coverage in
this case, i.e. I∗ = L, and Proposition 4 with Corollary 4 characterize the
asymptotic coverage when ρ > 0.

Proposition 4 If λ = 0, then, for any utility function u such that u′′′ > 0
and any risk characteristics (L, µκ, σ2

κ), the asymptotic insurance coverage I∗
is positive.

Corollary 4 Assume λ = 0, and let β∗(L) = I∗(L)/L be the optimal asymp-
totic rate of coverage, written as a function of L, everything else given. Then,
for any utility function u such that u′′′ > 0 and any risk characteristics
(L, µκ, σ2

κ), we have
dβ∗

dL
> 0.

8When we consider economies that differ through the value of π, we maintain the
normalizing assumption Eu′(z̃) = 1 for the economy. Due to this normalization, the
utility function depends on π and u′(w)→ 1 when π → 0.
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Furthermore, β∗ is decreasing when ρ is increasing, everything else given and
we have

β∗(L) > 1− ρ for all L.

Proposition 4 shows that, when agents are prudent, and in the absence
of transaction costs, a systemic risk generates a positive level of coverage in
equilibrium. Corollary 4 further shows that the equilibrium rate of coverage
depends on the correlation between losses. When ρ is large, the lower bound
1 − ρ of the coverage rate β∗ is low. Hence, in the absence of transaction
costs, competitive insurance markets with prudent individuals, backed by
complete financial markets, should lead to some coverage of low probability
- high severity risks, in spite of the systemic nature of such risks. The larger
the loss incurred by victims in the case of a catastrophe, the higher the
coverage rate but this coverage rate decreases with the correlation between
individual losses.

In contrast with these results that provide a positive view on the ability of
insurance markets to cover catastrophic risks, transaction costs and market
failures, deliberately ignored here, are likely to play a significant role when
the observed coverage of low probability - high severity risks is weak. In par-
ticular, limited liability and concerns about default may play an important
role as suggested in Zanjani (2002) and Cummins et al. (2002). High trans-
action costs between insurers and reinsurers also limit the ability of insurers
to pay for "the big one" as suggested in Froot (2001) and Niehaus (2002).
Imperfect information on risk exposure or biases in beliefs about such risks
may also deter individuals from purchasing insurance.

5 Numerical application
This section conducts numerical simulations that illustrate our theoretical re-
sults. We assume that policyholders display harmonic absolute risk aversion
(HARA) preferences, characterized by

u(x) = ζ
(
η + x

γ

)1−γ
,

whose domain is such that η + (x/γ) > 0, and with the condition ζ(1 −
γ)/γ > 0, that guarantees that u(x) is increasing and concave. HARA
preferences correspond to affine risk tolerance T (x) = 1/A(x) = η + x/γ,
and the coefficient of relative risk aversion is

R(x) = x
(
η + x

γ

)−1
. (16)
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The HARA class nests the constant relative risk aversion (CRRA) case when
η = 0, and the constant absolute risk aversion (CARA) case when γ →
+∞. Using the CRRA specification, studies on individual data, such as Levy
(1994) and Szpiro (1986), have isolated a plausible range between 1 and 5 for
the index of relative risk aversion. We therefore perform simulations over this
plausible range of values. In particular, we calibrate the coefficient of relative
risk aversion in the no-loss state R(w) ≡ R = 3 and we let the coefficient of
relative aversion in the loss state R(w−L) ≡ R, vary between 1 and 5. When
R = R, the HARA specification boils down the CRRA utility function.

Solving the agent’s optimization program in the HARA case and with the
pricing rule (12) yields a closed form solution for all acceptable values of p

I∗∗(p) = L+ (ηγ + w)(χ(p)− 1)
1 + ψ(p)p(χ(p)− 1) , where χ(p) =

[ 1− ψ(p)p
ψ(p)(1− p)

] 1
γ , (17)

which indeed converges to the value given by (15) when p→ 0.
We simulate these optimal coverage levels for a catastrophe of probability

π = 1% and µκ = 0.1. That is, the fraction of the population expected to
incur a loss in case of catastrophe is 10 %. The individual loss probability
is therefore p = 0.1%. In addition, the variance of κ̃ is set at σ2

κ̃ = 0.001,
which gives a coefficient of correlation ρ = 0.109.9 We also compute the pre-
mium ψ∗∗(p) associated with the optimal levels of coverage and the relative
difference

ε(p) = I∗∗(p)− I∗
I∗∗(p) ,

between the true optimal coverage I∗∗(p) and its asymptotic value I∗, char-
acterized by Equation (17) and Proposition 3, respectively.

These simulations are reported in Table 1. The size of the loss L varies
across lines from 200, 000 euros to 800, 000 euros to capture the monetary
consequences of a severe accident. Initial wealth w is set at one million euros,
which represents roughly the average lifetime discounted earnings of a French
citizen. We assume R = 3 and R varies across columns between 1 and 5.
Finally, the insurance provider’s costs are captured by a proportional loading
factor λ = 0.3.

Optimal coverage increases with the size of the loss and with the coef-
ficient of risk aversion R. For a given level of risk aversion R = 3, it rises
from 97, 010 to 647, 899 euros when L increases from 200, 000 to 800, 000 eu-
ros. Fixing the loss at 800, 000 euros results in a limited increase in optimal

9For simplicity, our calibration uses the first-order approximation E(u(z̃)) = u(E(z̃)),
which is valid for a small risk (see footnote 9). This allows to calibrate the utility function
with the first two moments of the distribution of z̃.
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L
R 1 2 3 4 5

I∗∗ 37,117 85,163 97,010 102,325 105,338
200,000 ψ∗∗ 1.38 1.39 1.39 1.39 1.39

ε (0.35) (0.07) (0.07) (0.07) (0.07)
I∗∗ 253,296 273,467 279,373 282,189 283,836

400,000 ψ∗∗ 1.47 1.47 1.47 1.47 1.47
ε (0.07) (0.07) (0.07) (0.08) (0.08)
I∗∗ 448,941 459,697 463,056 464,696 465,667

600,000 ψ∗∗ 1.56 1.56 1.56 1.56 1.56
ε (0.07) (0.07) (0.07) (0.07) (0.08)
I∗∗ 641,562 646,347 647,899 648,668 649,126

800,000 ψ∗∗ 1.64 1.64 1.64 1.64 1.64
ε (0.07) (0.07) (0.07) (0.07) (0.07)

Table 1: Optimal coverage I∗∗ in euros, optimal loading ψ∗∗, and relative
error ε, at π = 1%, µκ = 0.1 and σ2

κ = 0.001 (hence ρ = 0.109).

coverage from 641, 562 euros when R = 1 to 649, 126 euros when R = 5.
The comparative statics with respect to R is of particular interest because
it summarizes two distinct effects. One the one hand, higher risk aversion
pushes toward higher demand levels. On the other hand, it also also yields
higher supply prices through the risk premium required in equilibrium. In
our simulation, the demand effect dominates the price effect because the risk
considered are very large at the individual level but remain limited compared
to the overall wealth of the economy.

Coverage rates are limited for lower losses levels, but they increase rapidly
with the size of the loss. Because we have fixed relative risk aversion in the
loss state R = (w−L)A(w−L), the index of absolute risk aversion becomes
large as the loss L gets closer to initial wealth w. These higher levels of
absolute risk aversion in the loss state explain the higher coverage rates
observed for higher loss levels, as we have shown in the previous sections.

The second number of each box represents the total loading ψ∗∗ associated
with the optimal coverage. For L = 800, 000 and R = 3, policyholders pay a
premium equal to 1.64 times their expected loss. Since the exogenous loading
factor λ was set at 0.3, this implies that the cost of capital is responsible
for a 34 percentage points increase in the loading factor. The loading factor
increases with both L and R but the effect of R is quantitatively very limited
because R only affects the insurance cost through A(z0) = R(z0)/z0. As long
as the marginal utility certainty equivalent wealth z0 remains a significant
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number, a unit change in R(z0) only leads to limited changes in A(z0). In
contrast, an increase in L directly affect the cost of insurance as Equation
(13) shows.

Finally, bracketed numbers report the error in percent, ε(p), that one
would be making by approximating I∗∗(p) with I∗. It varies between 0.35%
when L = 200, 000 euros and R= 1 and 0.07% in most scenarios, which is
negligible.

These low errors confirm that I∗ is an interesting quantity to look at
when considering insurance decisions for low probability risks. In addition,
large catastrophes often affect people with sometimes widely different (but
small) probabilities. Our result suggests that such differences in risk exposure
may actually result in very limited differences in optimal coverage values.
Similarly, conflicting expert opinions concerning the true probability of a
catastrophe would also be irrelevant for the choice of an optimal level of
coverage, as long as experts agree that the probability π is very small.

L
R 1 2 3 4 5

I∗∗ 20,827 76,844 90,363 96,385 99,785
200,000 ψ∗∗ 1.42 1.42 1.42 1.42 1.42

ε (0.72) (0.06) (0.05) (0.06) (0.06)
I∗∗ 235,101 260,051 267,255 270,672 272,665

400,000 ψ∗∗ 1.53 1.53 1.53 1.53 1.53
ε (0.06) (0.06) (0.07) (0.07) (0.07)
I∗∗ 428,376 442,128 446,386 448,458 449,683

600,000 ψ∗∗ 1.65 1.65 1.65 1.65 1.65
ε (0.06) (0.06) (0.07) (0.07) (0.07)
I∗∗ 619,162 625,395 627,410 628,405 628,999

800,000 ψ∗∗ 1.77 1.77 1.77 1.77 1.77
ε (0.06) (0.06) (0.07) (0.07) (0.07)

Table 2: Optimal coverage I∗∗ in euros, optimal loading ψ∗∗, and relative
error ε, at π = 1%, µκ = 0.1 and σ2

κ = 0.005 (hence ρ = 0.149).

As a final exercise, Table 2 considers the case of a higher variance σ2
κ =

0.005 and therefore of a higher correlation ρ = 0.149. The role of the systemic
component of the risk is well illustrated here. With a higher variance σ2

κ, it
is more costly to provide insurance, so all loadings are higher. At the same
time, the expected probability of loss for a given individual remains constant,
hence the lower levels of coverage optimally purchased.
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6 Conclusion
The purpose of this paper was to analyze the key determinants of the optimal
insurance for catastrophic risks associated with low-probability high-severity
events. Considering the limit case of a vanishingly low probability of loss,
we have analyzed how insurance demand is affected by the degree of risk
aversion when individuals face large scale risks, and the price of insurance.
On the supply side, the correlation of losses that characterizes catastrophic
risks results in a risk premium in equilibrium. Added to transaction costs,
this translates into higher prices for policyholders.

This cost is a well-known impediment to the insurability of catastrophic
risks. Our analysis however, demonstrates that this impediment alone hardly
explains why some low probability - high severity risks remain uninsured. In
particular, in the absence of transaction costs and under complete financial
markets, the cost of capital itself should not prevent the insurability of catas-
trophic risks when individuals are prudent. The larger the loss incurred by
victims and/or the lower the correlation between individual losses, the larger
the equilibrium rate of insurance coverage. Insurance transaction costs and
capital market imperfections, increasing further the cost and lowering the
availability of capital therefore play an important role in explaining the fail-
ure to insure catastrophic risks. Other market failures, such as asymmetries
of information or lack of competition may also contribute to the absence of
insurance markets for the more systemic lines of risk. From a normative
economics perspective, our analysis also suggests that it is possible and so-
cially desirable for economic policies to organize coverage schemes against
catastrophic risks, when transaction and capital costs are offset by the high
degree of risk aversion of individuals who face the risk of possible large scale
losses.

This may go through policy measures that reduce transaction costs or
capital costs for risks that would otherwise be uninsurable. For example,
the U.S. National Flood Insurance Program aims to lower insurance trans-
action costs, by making underwriting and claims handling easier, while also
encouraging local communities to take prevention measures that reduce fu-
ture flood damage. In the field of nuclear risk, international conventions
have endorsed a common nuclear corporate liability law, thereby reducing
the claims handling costs in the case of a nuclear accident. As for the re-
duction of capital costs, insurance pools provide examples of what proactive
policies can do. This is the case for natural disaster risk (e.g., Flood Re in
the UK, or the Caribbean Catastrophe Risk Insurance Facility for hurricanes
and earthquakes, to mention just two examples), for large-scale terrorism
risk (e.g., the GAREAT pool in France), and for the nuclear risk in almost
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all countries with nuclear power plants. By contrast, failing to pass onto pol-
icyholders the cost of capital due to the systemic component of catastrophic
risks would send biased signals to policyholders. The consequences of such
an approach on risk prevention behaviors and on the perception of the size of
cross-subsidization between more or less exposed individuals are sometimes
at the origin of criticisms made towards state-sponsored insurance regimes,
such as the natural disaster insurance regimes in France and Spain.

Coming back to more specific results, our numerical analysis only re-
veals very small differences between the optimal insurance schemes and their
asymptotic values, hence validating the relevance of the asymptotic approach.
It also suggests that heterogeneity of belief or heterogeneity of exposure to
low probability - high severity risks may yield only limited disagreements
when it comes to the design of an optimal insurance scheme. This finding is
of practical importance for the design of state insurance schemes related to
emerging risks such as climate related disasters, large scale terrorism, cyber
risks and nuclear accidents.
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7 Proofs

7.1 Proof of Proposition 1
From equation (2), we have

C ′p(0, L) = u(w)− u(w − L)
u′(w) =

∫ w

w−L

u′(x)
u′(w)dx.

Since
u′(x) = u′(w)−

∫ w

x
u′′(t)dt,

for all x ∈ [w − L,w], we may write

C ′p(0, L) = L−
∫ w

w−L

[∫ w

x

u′′(t)
u′(w)dt

]
dx

= L+
∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx,

and thus

θ(0, L) = 1
L2

∫ w

w−L

[∫ w

x
A(t) u

′(t)
u′(w)dt

]
dx.

Integrating by parts gives

θ(0, L) = 1
2

∫ w

w−L
k(x)A(x) u

′(x)
u′(w)dx, (18)

where k(x) = 2[x− (w − L)]/L2, with∫ w

w−L
k(x)dx = 1.

In addition, we have

u′(x) = u′(w) exp{
∫ w

x
A(x)dx},

which completes the proof.

7.2 Proof of Corollary 2
When L = w, we have

θ(0, L) > 1
w

∫ w

0

xu′(x)
wu′(w)A(x)dx,
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from Proposition 1. Furthermore, we have

d[xu′(x)]
dx

= xu′′(x) + u′(x)

= −u′(x)[R(x)− 1],

and thus
d[xu′(x)]

dx
≤ 0 if R(x) ≥ 1.

We deduce
θ(0, L) > 1

w

∫ w

0
A(x)dx if R(x) ≥ 1.

7.3 Proof of Proposition 2
Using A′ ≤ 0 in equation (18) allows us to write

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
[x− (w − L)]u′(x)dx

Using R(x) ≤ γ and u′′(x) < 0 yields

d

dx
[(x− (w − L))u′(x)] = u′(x)

[
1−R(x)− u′′(x)

u′(x) (w − L)
]

≥ u′(x)[1−R(x)]
≥ u′(x)(1− γ)
≥ u′(w)(1− γ),

for all x ∈ [w − L,w]. Hence, we have[
x− (w − L)

]
u′(x) + (w − x)u′(w)(1− γ) ≤ [w − (w − L)]u′(w)[

x− (w − L)
]
u′(x) ≤ Lu′(w) + (w − x)u′(w)(γ − 1)

= u′(w)[L+ (w − x)(γ − 1)],

for all x ∈ [w − L,w]. Consequently,

θ(0, L) ≤ A(w − L)
L2u′(w)

∫ w

w−L
{u′(w)[L+ (w − x)(γ − 1)]} dx

= A(w − L)
L2

[
L2(γ + 1)

2

]

= A(w − L)(γ + 1)
2 .
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Using C ′′p < 0 and C(0, L) = 0 allows us to write

C(p, L) < C ′(0, L)p
= pL+ θ(0, L)pL2

≤ pL

[
1 + A(w − L)(γ + 1)L

2

]
.

7.4 Proof of Corollary 3
Combining Lemma (1) with Corollary (1), shows that

d(0, L) ≤ L

2

∫ w

w−L

k(x)
x

R(x)dx

is a sufficient condition insurance take-up to be positive.
If R(x) is non decreasing, then

L

2

∫ w

w−L

k(x)
x

R(x)dx ≥ LR(w − L)
2

∫ w

w−L

k(x)
x

dx

= R(w − L)
L

∫ w

w−L

x− (w − L)
x

dx

= R(w − L)[1− (w − L
L

) ln w

w − L
]

≡ Ψ(L) L ∈ [0, w].

Noticing that limL→w ψ(L) = limx→0 R(x) provides the result.

7.5 Coefficient of correlation ρ

Let L̃i and L̃j be two random variables that represent the losses of individuals
i and j. Conditionally on a realization κ of the random variable κ̃, losses are
assumed identically and independently distributed, hence

L̃iL̃j|κ =
{
L2 with probability πκ2

0 with probability 1− πκ2 .

As a consequence E(L̃iL̃j|κ) = L2πκ2 and E(L̃iL̃j) = L2πEκ̃2. Similarly,

L̃i|κ =
{
L with probability πκ
0 with probability 1− πκ ,

for all i, hence EL̃i = Lπµκ and EL̃iEL̃j = (Lπµκ)2. The co-variance between
two losses is therefore written as

cov(L̃i, L̃j) = L2π[Eκ̃2 − πµ2
κ].
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Also, since

L̃i
2|κ =

{
L2 with probability πκ
0 with probability 1− πκ ,

implies E(L̃i
2) = πL2µκ, we find the variance of L̃i

V(L̃i) = L2πµκ(1− πµκ).

Since V(L̃i) = V(L̃j) for all i, the coefficient of correlation is finally equal to

ρ = cov(L̃i, L̃j)
V(L̃i)

= Eκ̃2 − πµ2
κ

µκ(1− πµκ)

= σ2
κ + µ2

κ(1− π)
µκ(1− πµκ)

,

where the last line is obtained using σ2
κ = Eκ̃2 − µ2

κ.

7.6 Proof of Proposition 4
With λ = 0, inequality (14) is rewritten as

1 + A(z0)Lρ ≤ u′(w − L). (19)

Making use of the normalization E(u′(z̃)) = 1,10 then yields

−u′′(w)Lρ ≤ u′(w − L)− u′(w)

= −
∫ w

w−L
u′′(x)dx. (20)

If u′′′(x) > 0, we have u′′(x) < u′′(w) ∀x ∈ [w − L,w]. So∫ w

w−L
u′′(x)dx < u′′(w)L

For (20) to hold, it is therefore sufficient that

−u′′(w)Lρ ≤ −u′′(w)L,

which is always true since ρ ≤ 1 and u′′ < 0.
10See footnote 8.
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7.7 Proof of Corollary 4
Equation (15) with λ = 0 gives

β∗(L) = 1 + u′−1(1 + A(w)Lρ)− w
L

, (21)

from which we derive

dβ∗

dL
= A(w)Lρ/u′′(u′−1(1 + A(w)Lρ))− [u′−1(1 + A(w)Lρ)− w]

L2 .

dβ∗/dL is therefore positive if

A(w)Lρ
−u′′(u′−1(1 + A(w)Lρ)) < w − u′−1(1 + A(w)Lρ). (22)

Also, u′′′ > 0 and u′′ < 0 implies that u′−1 is decreasing convex. Therefore

u′−1(1 + A(w)Lρ) < u′−1(1) + A(w)Lρ
u′′(u′−1(1 + A(w)Lρ)

For (22) to hold, it is sufficient that

A(w)Lρ
−u′′(u′−1(1 + A(w)Lρ)) ≤ w − u′−1(1) + A(w)Lρ

−u′′(u′−1(1 + A(w)Lρ) , (23)

which is true since our normalization changes with π in such a way that
u′(w) → 1 when π → 0. Finally, since u′−1 is decreasing, (21) shows that
β∗(L) is decreasing in ρ. Furthermore, using L’Hôpital rule yields:

lim
L→0

β∗(L) = 1 + lim
L→0

A(w)ρ
u′′(u′−1(1))

= 1− ρ.
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