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PDZ domains generally bind short amino acid sequences at the C-terminus of

target proteins, and short peptides can be used as inhibitors or model ligands.

Here, we used experimental binding assays and molecular dynamics simulations

to characterize 51 complexes involving the Tiam1 PDZ domain and to test the

performance of a semi-empirical free energy function. The free energy function combined

a Poisson-Boltzmann (PB) continuum electrostatic term, a van der Waals interaction

energy, and a surface area term. Each term was empirically weighted, giving a Linear

Interaction Energy or “PB/LIE” free energy. The model yielded a mean unsigned deviation

of 0.43 kcal/mol and a Pearson correlation of 0.64 between experimental and computed

free energies, which was superior to a Null model that assumes all complexes have the

same affinity. Analyses of the models support several experimental observations that

indicate the orientation of the α2 helix is a critical determinant for peptide specificity.

The models were also used to predict binding free energies for nine new variants,

corresponding to point mutants of the Syndecan1 and Caspr4 peptides. The predictions

did not reveal improved binding; however, they suggest that an unnatural amino acid

could be used to increase protease resistance and peptide lifetimes in vivo. The overall

performance of the model should allow its use in the design of new PDZ ligands in the

future.

Keywords: molecular dynamics, continuum electrostatics, NAMD SOFTWARE, fluorescence anisotropy, peptide

design

1. INTRODUCTION

Protein-protein interactions (PPIs) are important for the information flow within and between
cells. A large and important class of PPIs are mediated by PDZ domains (for “post-synaptic density-
95/discs large/zonula occludens-1”). These are small, ∼90 amino acid domains, found in most
organisms from bacteria to vertebrates. The human genome encodes over 250 PDZ-containing
proteins, which participate in many cellular activities, including the control of cell migration,
invasion, proliferation, and polarity. PDZ domains usually recognize a peptide segment at the
target protein’s C-terminus, which binds as a β-sheet extension (Shepherd and Fuentes, 2011;
Subbaiah et al., 2011). Individual pockets within the domain are used to accommodate the side
chains of peptide residues and provide binding specificity. PDZ domains can also recognize the
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peptide segments in isolation, and the PDZ-peptide complexes
represent simpler model constructs to investigate binding.
PDZ domains have been widely studied, with over 200 X-ray
structures in the Protein Data Bank (PDB). However, our current
understanding and ability to engineer PDZ-peptide interactions
is still limited. Indeed, the binding affinity and specificity depend
on many factors, including short-range interactions between the
two partners, longer-range electrostatic interactions, dielectric
shielding by protein and solvent, ordered waters in the binding
site, the structure and flexibility of the unbound peptide, and the
conformational dynamics of the PDZ domain. All these effects
are difficult to quantify using experiments. Computer simulations
are a complementary tool, well-suited to study solvated proteins
and their structure, dynamics, and ligand binding. An important
advantage of simulations is the possibility of decomposing
overall binding free energies into contributions frommicroscopic
interactions to determine their structural origin.

Here, we used molecular dynamics (MD) simulations to
investigate the Tiam1 PDZ domain and its binding to a collection
of peptides. Tiam1, or “T-cell lymphoma invasion andmetastasis-
1,” is a guanine nucleotide exchange factor that specifically
activates the Rho-family GTPase Rac1 (Mertens et al., 2003).
Tiam1 is overexpressed in several kinds of tumors (Xu et al., 2010;
Li et al., 2016). The Tiam1 PDZ domain is a Class II domain,
capable of binding synthetic peptides with an -X-8-X-8 motif
at their C-terminus, where 8 represents a hydrophobic amino
acid. Our ligand collection contains 27 peptides, corresponding
to the C-terminus of Syndecan, Caspr4, CADM1 and Neurexin
proteins, several of their mutants, peptides from a combinatorial
library (Shepherd et al., 2011), and a “library-consensus” peptide
(Songyang et al., 1997). The complexes studied involve wildtype
and seven Tiam1 mutants. X-ray structures are known for four
of the complexes and the wildtype apo-protein. Experimental
binding affinities are known for most of the complexes; for
some others, binding is very weak and only a lower bound
for the dissociation constant is known. While the available
data have already given considerable insights, several effects are
difficult to quantify with experiments alone. In particular, we
hypothesize that subtle structural rearrangements in the solutes
and solvent can account for the observed range of binding
affinities, and that free energy simulations can provide structural
insight. To test the latter hypothesis, we have examined the
ability of the simulations to reproduce the known binding
affinities. Specifically, we performed molecular dynamics (MD)
simulations of 51 solvated complexes, then characterized them
using a semi-empirical free energy function that contains
a continuum electrostatic term, a solvent-accessible surface
area term (SA), and a van der Waals interaction term. The
electrostatic term used either a Poisson-Boltzmann (PB) or a
Generalized Born (GB) representation of the system. We used
the simulations to characterize the structure and dynamics of
several complexes and to predict the binding affinities of some
new variants. Conversely, the experimental dataset provide a
challenging test for the free energy function and reveal some of
its limitations.

The “PBSA/GBSA” class of free energy models, used here,
has been widely studied, and many variants exist (Srinivasan
et al., 1998; Brandsdal et al., 2003; Jorgensen, 2003; Carlsson
et al., 2006; Simonson, 2007, 2013; Gallicchio and Levy, 2011;
Baron and McCammon, 2013; Harris et al., 2015; Chakavorty
et al., 2016; Wang et al., 2016; Katkova et al., 2017). The
model has several adjustable parameters. Our variant uses
three weights, one for each of the free energy terms. Very
similar, “Linear Interaction Energy” (LIE) variants have been
widely-used for protein-ligand affinities (Zhou et al., 2001;
Brandsdal et al., 2003; Jorgensen, 2003; Carlsson et al., 2006).
We refer to the present variants as PB/LIE and GB/LIE models,
respectively. A difficulty with semi-empirical models is the need
to parameterize with a sufficiently broad and representative
set of experimental data. Here, we rely on a large number of
known binding affinities (44 in all), which span a modest free
energy range of about 2.2 kcal/mol (dissociation constants from
about 10 to 450 µM). Some of the affinities were measured
in this work, and one (involving a non-natural amino acid)
was estimated from a non-empirical, alchemical free energy
simulation approach, which does not involve any adjustable
parameters (Simonson et al., 2002; Chipot et al., 2007). A broader,
combinatorial library of several hundred peptides that bind
the Tiam1 PDZ domain has also been characterized (Shepherd
et al., 2011), indicating amino acid preferences at each position
within the peptide ligand, although the precise affinities were not
measured.

The ability of the semi-empirical models to reproduce the
experimental trends and affinities represents a good test of the
PBSA and GBSA class of models, and should be of general
interest. The PB/LIE andGB/LIEmodels gave very similar results.
The best PB/LIE model gave a mean unsigned error of 0.43
kcal/mol and a Pearson correlation of 0.64 between the computed
and experimental values. A simple Null model gave the same
mean error but no correlation. 99.94% out of 100,000 random,
or “Scrambled” models also gave poorer results. The Scrambled
models were obtained by associating each experimental binding
affinity with an arbitrary complex within our dataset—not the
one for which it was measured—then adjusting the free energy
weights to minimize the rms deviation between the computed
data and the scrambled experimental data. The model and
MD simulations also provided structural information regarding
the role of the α2 helix in specificity. A few of the MD
structures were validated by running rigorous, alchemical free
energy simulations: since these gave excellent agreement with
experiment, we conclude that the sampled structures are correct.
The simulations were used to predict the binding affinities of nine
new variants, including eight pointmutants of the natural peptide
Syndecan1 (Sdc1) binding to the WT Tiam1 PDZ domain.
Although none of the variants have increased binding compared
to theWT:Sdc1 complex, we predict that an unnatural amino acid
can be introduced at the C-terminus of both the Sdc1 and Caspr4
peptides without loss of binding. Such an amino acid might
provide protease resistance and increase the peptide stability
in vivo.
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2. METHODS

2.1. The Semi-empirical Free Energy
Function
To obtain the binding free energy estimate 1G, we used the
following ansatz for the free energy, or “scoring” function:

1G = α1EvdW + β1Gelec + γ1A+ δ (1)

Here, α, β , and γ represent adjustable constants. 1Gelec is
an electrostatic free energy difference between the bound and
unbound states, computed with either a PB or a GB model,
and averaged over structural snapshots taken at regular intervals
along anMD trajectory of the (explicitly) solvated complex.1A is
the change in the solutemolecular surface upon binding (which is
negative), averaged over the MD snapshots.1EvdW is the average
van der Waals interaction energy between the protein and
the peptide. Solute-solvent and solvent-solvent van der Waals
contributions are not explicitly included. In all three free energy
terms, to represent the unbound state, we took the snapshots
from the MD trajectory of the complex and simply moved the
protein and the peptide apart. The energies of the separated
protein and peptide were then computed. This is referred to as
the “single trajectory” approach. The last term, δ, is a constant
that vanishes when we consider the relative binding free energies
11G of the various complexes, using the Tiam1:Sdc1 complex as
reference. The MD trajectories were 40–100 ns long, depending
on the rate of convergence of1G.

2.2. Structural Models
We modeled 51 PDZ:peptide complexes based on four X-
ray structures involving four peptides: Sdc1, Caspr4, Neurexin,
and a “consensus” peptide that represents a typical sequence
from a combinatorial peptide library (Songyang et al., 1997).
The peptides were bound to either the wildtype Tiam1 PDZ
domain (WT) or a variant containing four amino acid changes
(quadruple mutant or QM). The four complexes are WT:Sdc1
(PDB 4GVD) (Liu et al., 2013), WT:consensus (PDB 3KZE)
(Shepherd et al., 2010), QM:Caspr4 (PDB 4NXQ) (Liu et al.,
2016), and QM:Neurexin (PDB 4NXR) (Liu et al., 2016). Ten
other complexes involving Caspr4 or its F0A mutant were
modeled starting from QM:Caspr4. Two complexes involving
Neurexin were modeled starting from QM:Neurexin. All the
other complexes were modeled starting from WT:Sdc1. In each
case, mutated peptide or protein side chains were positioned
using the Scwrl4 program (Krivov et al., 2009). In the QM:Caspr4
X-ray structure, the N-terminal peptide residue is disordered.
Here, its position was adapted from the WT:Sdc1 complex,
then adjusted through energy minimization and restrained MD.
The ten other Caspr4 complexes were based on this model. All
peptides had a neutral, N-terminal, acetyl capping group.

2.3. Molecular Dynamics Simulations and
Use of Restraints
For each complex, we ran an MD simulation with explicit
solvent. Starting structures were taken from one of the available
crystal complexes. Mutations appropriate for each complex were

introduced using the Scwrl4 program (Krivov et al., 2009). The
structural model was energy minimized through 1,000 steps of
conjugate gradient minimization. The resulting complex was
immersed in a large box of water and waters overlapping the
protein were eliminated. The solvated system was truncated to
the shape of a truncated octahedral box using the Charmm
graphical interface or GUI (Jo et al., 2008; Brooks et al.,
2009). A few sodium or chloride ions were included to ensure
overall electroneutrality. Protonation states of histidines were
assigned to be neutral, based on visual inspection of hydrogen-
bonding patterns in the 3D structure and calculations with the
PropKa program (Bas et al., 2008; Olsson et al., 2011). MD
was done at room temperature and pressure using a Nose-
Hoover thermostat and barostat (Nose, 1984; Hoover, 1985).
Long-range electrostatic interactions were treated with a Particle
Mesh Ewald (PME) approach (Darden, 2001). The Amber ff99SB
forcefield was used for the protein (Cornell et al., 1995) and
the TIP3P model (Jorgensen et al., 1983) was used for water.
Unless otherwise mentioned, simulations were run for 40–100 ns,
depending on the complex, using the NAMD program (Phillips
et al., 2005).

An important feature of the MD simulations is that they
included a weak, non-invasive restraint energy term that
maintained the N-terminal peptide residue close to the PDZ
protein. The restraint energy was zero, except when the peptide
moved beyond a certain threshold of separation, about 3 Å, at
which point the restraint energy began to increase harmonically
(flat-bottomed restraint) with a 3 kcal/mol/Å2 force constant.
Indeed, in trial simulations, we found that this part of the
peptide occasionally broke away from the protein, rebinding
later. This can lead to large energy fluctuations, impossible to
sample adequately in 100 ns. Rather, we make the hypothesis that
the relative binding affinities of the different complexes can be
estimated by scoring only the fully bound conformation. For 16
of the 51 complexes, even with the weak N-terminal restraint,
the structure shifted away from the initial, native-like geometry,
leading to a distorted conformation. Our single-trajectory PB/LIE
free energy function is not expected to accurately score structures
that present large differences in structure, for reasons discussed
further below. Therefore, we applied additional, weak, flat-
bottomed restraints to these complexes, which kept them within
the native conformational basin. We expect that by scoring
native-like conformations, we may underestimate slightly the
binding affinity. The mean restraint energies were included in
the bound state free energy estimate. They were less than 0.30
kcal/mol, except for one very weak binder (0.66 kcal/mol) and
one other complex (0.39 kcal/mol).

2.4. Poisson-Boltzmann and Generalized
Born Calculations
With the MD trajectories in hand, the electrostatic contribution
1Gelec to the peptide binding free energy was obtained by
either a PB or a GB method. For a given snapshot from the
MD, explicit waters were discarded and the electrostatic free
energy was computed from continuum electrostatics, treating the
protein and ligand as a single, homogeneous dielectric medium
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and the solvent as another. The same calculation was performed
for the separate peptide and protein (with structures taken
from the same MD snapshot), and the electrostatic binding
free energy was computed. Calculations were done for over
1,000 snapshots, 20 ps apart along each MD trajectory, and
averaged. With PB, the electrostatic potential was calculated for
each structure by solving the PB equation numerically, using
a cubic grid and a finite-difference algorithm, implemented
in Charmm (Im et al., 1998). The grid included 181 planes
in each direction, with a 0.8 Å spacing between planes. The
source charges were the atomic charges from the molecular
mechanics force field (Amber ff99SB, see above). The potential
on the outer grid boundary was approximated as the Debye-
Hückel potential produced by these charges. For each structure,
a second calculation was then performed using a smaller
grid, with a 0.4 Å spacing, with the potential on the grid
boundaries derived from the first calculation. The ionic strength
was 100mM (monovalent salt concentration). The solvent and
solute dielectric constants were set to 80 and 8, respectively.
GB calculations were done using a modified version of the
Xplor program (Brünger, 1992; Moulinier et al., 2003) that
implements the GB variant developed by Hawkins et al. (1995),
which is very similar to the main variants used in the Amber
software (Onufriev et al., 2002). It was optimally parameterized
earlier for use with the Amber atomic charges (Lopes et al.,
2007).

The statistical errors of the computed free energies were
obtained by splitting each MD trajectory into batches of 5 ns
each, giving N batches. Denoting var(1G) the variance of the
N corresponding 1G values, the uncertainty estimate for 1G
was then σ (1G) =

√

var(1G)/(N − 1) and the uncertainty
estimate for the relative binding free energy11G was computed
by adding the variances for the complex of interest and the
reference complex WT:Sdc1. All the uncertainties were between
0.1 and 0.2 kcal/mol, suggesting the simulation lengths were
sufficient.

For two complexes, WT:Sdc1 and QM:Caspr4, we also
computed the PB contribution to the binding free energy using
a three trajectory approach. Separate MD trajectories were
performed for the complex and the separate partners and solute
structures were extracted at regular intervals. The PB binding free
energy was then computed by summing three contributions: (1)
the free energy 1Gbound(ǫW = 80 → ǫW = ǫP) to change the
dielectric constant of the solvent from 80 to ǫP; (2) the free energy
1G(bound → unbound) to separate the partners, with the
solvent dielectric constant set to ǫP; (3) the free energy to restore
the solvent dielectric constant to its usual value ǫW = 80 for
the unbound partners. Contributions (1) and (3) were computed
by solving the PB equation with Charmm. Contribution (2)
was computed with Charmm by taking the Coulomb energy
difference between a bound conformation (from the bound
simulation) and an unbound conformation (from the separate
PDZ and peptide simulations), dividing by ǫP, and averaging over
the MD conformations. The MD trajectories were of length 500
ns (complex and unbound protein) or 400 ps (unbound peptide).
Conformations were taken every 40 ps. PB calculations were done
as above.

2.5. Peptide Preorganization Free Energy
We also considered a 2-trajectory model that explicitly takes
into account the structural reorganization of the peptide upon
binding.With this model, the binding reaction is divided into two
steps, schematized in Figure 1: (I) first, the peptide is restricted
to be in an extended conformation that will fit into the binding
pocket; (II) second, the binding occurs. The free energy for the
second step should be captured by the single trajectory of the
bound state, since the unbound → bound structural changes
are small by construction (small backbone adjustments and side
chain reorientations). The free energy for the first step,1GI , was
computed by considering a long MD simulation of the unbound
peptide and deducing what fraction of time f it spent in the
extended conformation. To determine the binding free energy
difference between two peptides, i and j, to the same Tiam1
variant, let fi and fj be the extended fractions of the two unbound
peptides. The contribution of step (I) to the binding free energy
difference is given by

11GI(i, j) = −kT log fi/fj (2)

To determine if the peptide was in the extended, bound
conformation, we measured the backbone torsion angles φ, ψ of
the five C-terminal peptide residues. If all the angles were within
the β region of the Ramachandran plot (ψ ≥ 60◦ or ≤ −150◦

and φ ≤ −30◦), the peptide was considered to be in the bound
conformation.

2.6. Lazaridis-Karplus Non-polar Free
Energy Term
The PB/LIE and GB/LIE models (Equation 1) use the van der
Waals and surface area terms to capture non-polar solvation
effects. An alternate model replaces the SA term with a gaussian
energy density proposed by Lazaridis and Karplus (1999):

1GLK =
∑

i

Gi

Gi = Gref
i −

∑

j 6=i

∫

Vj

gi(rij)dV

= Gref
i −

∑

j 6=i

gi(rij)Vj (3)

where the sum is over all solute atoms i and Vj is the volume
of atom j. Each contribution reflects the transfer of atom i from
a fully solvated state to its partially buried conformation within
the solute. The free energy of the fully solvated atom i is given
by an empirical reference value Gref

i . The same atom within the
solute is screened from solvent by the other solute atoms, which
reduce the solvation free energy of atom i. This reduction is
expressed as the integral of an energy density over the volume of
the surrounding solute atoms. The energy density has a gaussian
form:

gi(rij) =
Gfree
i

2π3/2λir
2
ij

e−(rij−Ri)2/λ2i (4)

Frontiers in Molecular Biosciences | www.frontiersin.org 4 September 2017 | Volume 4 | Article 65

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Panel et al. PDZ:Peptide Binding with PB/LIE

FIGURE 1 | Two-step binding process. In step 1, we restrain the unbound

peptide so that it occupies its bound conformation; in step 2 it binds. We

assume that removing the restraints in the bound state does not affect the free

energy.

where rij is the interatom distance, Ri is the radius of atom i, and
λi is a correlation length. The parameter Gfree

i is such that when i
is fully buried, the total solvation free energy becomes zero. The
overall free energy term has the form:

1GLK =
∑

i

Gref
i −

∑

i,j 6=i

gi(rij)Vj (5)

In this work, the LK term 1GLK used parameters optimized
elsewhere (Michael et al., 2017) and was multiplied by an
adjustable weight γ .

2.7. Alchemical Free Energy Simulations
The alchemical free energy simulation approach was used to
calculate the binding free energy differences between several pairs
of peptides that differed at a single position. To describe the
method, we assume one peptide is the wildtype Sdc1 peptide
while the other is a point mutant. For this pair, we considered
a “hybrid” peptide, which has two side chains at the mutated
position, one of each type. The corresponding energy function
U depends on a coupling coordinate λ that scales selected
electrostatic and van der Waals energy terms (Simonson, 2001).
When λ = 0 (respectively, 1), the mutant (respectively, the
wildtype) side chain was decoupled from its surroundings,
retaining only its covalent interactions with its own backbone
but not the protein or solvent. For intermediate λ values, both
side chains were present, with intermediate weights. The van der
Waals interactions of the side chain had a “soft-core” functional
form, ensuring a very gradual insertion/deletion (Zacharias et al.,
1994). Calculations were done with NAMD, using the “alch”
facility (Phillips et al., 2005; Liu et al., 2012), with the parameter
“alchElecLambdaStart” set to 0.4. 2 ns MD simulations (referred
to as “windows”) were done for λ = 0, 0.1, 0.2, · · · , 0.9, 1. This
set of 11 simulations (or windows) is referred to as a “run.”
Each run was initiated from the endpoints of a previous run;
typically, each λ window of run i was started from the endpoint
of a nearby window of run i− 1: either the same or an “adjacent”
λ value (λ± 0.1). The first run for each system was initiated from
MD simulations performed separately for the Sdc1 and mutant
complexes. We usually ran 10–12 runs, totalling about 250 ns

per system. The same procedure was applied to the unbound,
solvated peptide. For each system, the free energy difference
1G(λ → λ′) between two successive values of the coupling
constant was computed using Bennett’s Acceptance Ratiomethod
(BAR) (Lu and Woolf, 2007), implemented through a perl script.
Taking the difference between the free energy changes in the
complex and the unbound peptide gave the binding free energy
difference between the Sdc1 and the mutant peptide.

2.8. Experimental Binding Measurements
2.8.1. Protein Expression and Purification
Wild-type Tiam1 PDZ protein expression was achieved in
BL21(DE3) (Invitrogen) Escherichia coli cells. Typically, E.
coli cells were grown at 37◦C in Luria-Bertani (LB) medium
supplemented with ampicillin (100 µg/mL) under vigorous
agitation until an A600 of 0.6–0.8 was reached. Cultures were
subsequently cooled to 18◦C and protein expression was induced
by the addition of isopropyl 1-thio-β-d-galactopyranoside
(IPTG) to 1 mM final concentration. Induced cells were
incubated for an additional 16–18 h at 18◦C and harvested by
centrifugation. The Tiam1 PDZ domain was purified by nickel-
chelate (GE-Healthcare) and size-exclusion chromatography
(Shepherd et al., 2010). The N-terminal His6 affinity tag was
removed by incubation with recombinant tobacco etch virus
(rTEV) protease for 36 h at 4◦C. Undigested protein, cleaved
His6 tag and His-tagged rTEV were separated from Tiam1 PDZ
domain by nickel-chelate chromatography. The final yield was 20
mg of PDZ protein (>98% pure as judged by SDS-PAGE) from 1
L of culture. Samples were used immediately or lyophilized and
stored at 80◦C.

2.8.2. Synthetic Peptides for Fluorescence

Anisotropy-Based Binding Assays
All peptides were chemically synthesized by GenScript
Inc. (Piscataway, NJ) and judged to be >95% pure
based on analytical HPLC and mass spectrometry.
Peptides were dansylated at their N-terminus. Peptide
concentrations were determined by absorbance measurements
(A280) using their predicted extinction coefficient. The
peptides used in this study were Syndecan1 (Sdc1)
point mutants and double mutants: Sdc1 (residues
303–310 of the full Syndecan protein: TKQEEFYACOOH),
Sdc1-A0M (residues 303–310: TKQEEFYMCOOH),
Sdc1-F2R (residues 303–310: TKQEERYACOOH), Sdc1-
F2R/A0M (residues 303–310: TKQEERYMCOOH), Sdc1-F2A
(residues 303–310: TKQEEAYACOOH), Sdc1-F2N (residues
303-310: TKQEENYACOOH), Sdc1-F2I (residues 303–
310: TKQEEIYACOOH), Sdc1-E4L (residues 303–310:
TKQLEFYACOOH), Sdc1-E3D/Y1T (residues 303–310:
TKQEDFTACOOH), and Sdc1-E3T/Y1K (residues 303–
310: TKQETFKACOOH). Notice that here and below, for
the Sdc1 and other peptides, we number residue positions
counting backwards from the peptide C-terminus (position
0). Thus, Sdc1-F2R is mutated at the third position from the
C-terminus, which is usually called “position−2” (Shepherd and
Fuentes, 2011). We drop the negative sign to keep the notation
simple.
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2.8.3. In Vitro Binding Measurements and

Thermodynamic Analysis
Fluorescence anisotropy was used to monitor the binding of
Tiam1 PDZ domain proteins to dansylated peptides. Anisotropy
measurements were carried out on a Fluorolog3 (Jobin Yvon,
Horiba, NJ) spectrofluorimeter (γex = 340 and γem = 550
nm). All data collection, fitting, and thermodynamic analyses
were performed as previously described (Shepherd et al., 2011).
Binding experiments were conducted in 1.3mL of binding buffer
(20 mM sodium phosphate, 50 mMNaCl and pH 6.8) containing
peptide at a concentration of 5–10 µM. Measurements were
made in a 2 mL quartz cuvette that was stirred and maintained
at constant 25◦C temperature. The slit widths for the control
of excitation and emission intensity were adjusted to the signal-
to-noise ratio and maximum intensity and set in the range of
6–9 nm. A ratio of 1:100 and 1:10 dilutions of the stock PDZ
protein solution (∼1 mM) were prepared in binding buffer. For
each experiment, 20–30 individual titration steps were performed
until the sample had little or no change in anisotropy. The
change in fluorescence anisotropy was plotted against protein
concentration and fit to a standard hyperbolic ligand-binding
curve. Each titration was carried out in triplicate.

3. RESULTS

3.1. Target Data Set
Tables 1, 2 list the 44 peptide and protein variants for
which experimental binding data are available along with
the corresponding binding free energy differences (11G)
relative to the wildtype:Sdc1 complex (WT:Sdc1), taken as a
reference. Notice that positions within each peptide ligand are
numbered backwards from the C-terminus (“position 0”). For
two complexes, experimental measurements were not available
and 11G was obtained in this work using rigorous alchemical
free energy simulations (see below). Seventeen of the complexes
involve Tiam1 mutations at one or more of four positions.
These include the four Tiam1 point mutants L911M, K912E,
L915F, L920V, two double mutants, and the quadruple mutant
(QM) (Shepherd et al., 2011). The WT:Sdc1 Kd is 26.9 µM,
for a binding free energy of −6.70 kcal/mol (Shepherd et al.,
2011). The strongest binding in the dataset is for the mutant
L920V:Caspr4 complex, Kd = 10.8 µM, for a relative binding
free energy 11G of −0.54 kcal/mol (relative to WT:Sdc1). For
six “non-binding” peptides from the combinatorial library, only
a lower bound for the binding free energy could be given: 11G
≥ 1.32 kcal/mol. For the peptides Sdc1-F2R, -F2A, and -F2N,
the same lower bound was determined. For three other peptides,
very weak binding could be measured, 11G = 1.67, 1.59, and
1.56 kcal/mol for Sdc2, Sdc4, and Sdc1-A0M, respectively. The
other relative binding free energies were taken from earlier work
(Shepherd et al., 2011; Liu et al., 2013) and were between −0.54
and 1.33 kcal/mol.

X-ray structures were available for the apo protein and
the complexes WT:Sdc1, WT:consensus, QM:Caspr4, and
QM:Neurexin1, shown in Figure 2. The corresponding peptide
sequences are Sdc1: TKQEEFYA, consensus: SSRKEYYA, Caspr4:
ENQKEYFF, Neurexin: NKDKEYYV. Backbone rms deviations

TABLE 1 | Tiam1-PDZ:peptide complexes and free energies used for model

fitting.

Complex Exp.a Comp. Error PB VdW SA Rest.b Corr.c

Sdc1d 0.00 0.00 (0.1) 0.00 0.00 0.00 0.00 0.00 0.00

Sdc1.A0F 0.43 0.16 (0.1) −0.27 0.19 −4.21 −47.95 0.00 0.00

Sdc1.E4K 0.81 0.98 (0.2) 0.17 2.62 −0.17 −12.94 0.28 0.00

Sdc1.E4L 0.56e 0.49 (0.2) −0.07 1.95 −1.30 −8.08 0.00 0.00

Sdc1.E3D, Y1T 0.87e 0.41 (0.1) −0.46 1.67 2.08 12.05 0.00 0.00

Sdc1.E3T, Y1K 1.33e 0.38 (0.1) −0.95 1.49 3.49 15.64 0.00 0.00

Sdc1.F2I 0.80e 0.26 (0.1) −0.54 0.38 −0.44 −42.27 0.00 0.00

Sdc1.A0mA 0.04f 0.62 (0.1) 0.58 2.06 2.46 −13.51 0.00 0.00

Sdc3 0.13 0.21 (0.1) 0.08 0.38 1.38 −23.06 0.00 0.00

Consensus 0.84 0.48 (0.1) −0.36 2.72 3.35 67.97 0.00 0.00

YAAEKYWA 0.72 0.36 (0.1) −0.36 2.10 4.73 64.29 0.00 0.00

YAAKAFRF 1.17 1.35 (0.1) 0.18 4.70 5.02 53.73 0.29 0.00

YAAYRYRA 1.32g 1.26 (0.1) −0.06 4.07 1.66 −18.18 0.14 0.00

YAARKFAK 1.32g 1.30 (0.1) −0.02 3.81 7.13 5.44 0.23 0.00

YAAKRTYV 1.32g 1.14 (0.1) −0.18 3.72 8.01 49.20 0.25 0.00

YAAGRKHF 1.32g 1.52 (0.2) 0.20 3.49 2.11 14.15 0.66 0.00

YAALIHKF 1.32g 0.98 (0.1) −0.34 2.70 1.16 −2.87 0.27 0.00

YAAQKHFH 1.32g 0.92 (0.2) −0.40 2.59 −1.74 −34.81 0.17 0.00

QM:CADM1 0.87 1.43 (0.2) 0.56 5.74 4.77 24.95 0.00 0.00

L911M:Sdc1 0.15 0.32 (0.2) 0.17 0.62 −1.03 −45.29 0.00 0.00

K912E:Sdc1 0.97 0.58 (0.2) −0.39 2.27 −0.99 −8.66 0.00 0.00

L911M,K912E:Sdc1 1.21 0.54 (0.1) −0.67 1.71 −1.52 −35.42 0.00 0.00

L915F:Sdc1 0.65 0.05 (0.2) −0.60 0.04 −0.98 −13.78 0.00 0.00

L920V:Sdc1 0.31 −0.07 (0.2) −0.38 −1.10 0.17 −48.56 0.01 0.00

L915F,L920V:Sdc1 1.32 0.19 (0.2) −1.13 −0.24 1.03 −27.04 0.12 0.00

QM:Sdc1 0.89 0.27 (0.1) −0.62 −0.02 −0.83 −71.82 0.00 0.00

QM:Sdc1.A0F 0.22 0.20 (0.2) −0.02 0.26 1.50 −26.96 0.00 0.00

QM:Caspd −0.23 −0.23 (0.1) 0.00 3.35 1.86 10.98 0.00 −1.06

WT:Casp −0.21 −0.37 (0.1) −0.16 2.04 2.77 32.77 0.26 −1.06

WT:Caspr.F0A 0.52 −0.57 (0.1) −1.09 2.90 3.61 77.81 0.00 −1.06

L911M:Casp −0.39 0.00 (0.1) 0.39 2.81 3.49 24.68 0.39 −1.06

K912E:Casp 0.46 0.09 (0.1) −0.37 2.70 −0.44 −50.13 0.28 −1.06

L911M,K912E:Casp 0.04 −0.01 (0.1) −0.05 3.41 2.57 22.74 0.24 −1.06

L915F:Casp 0.48 −0.45 (0.1) −0.93 2.33 0.78 −2.68 0.00 −1.06

L920V:Casp −0.54 −0.51 (0.1) 0.03 2.29 −0.28 4.82 0.00 −1.06

L915F,L920V:Casp 0.62 −0.37 (0.1) −0.99 2.49 −0.07 −17.92 0.00 −1.06

QM:Caspr.F0A 1.09 −0.22 (0.1) −1.31 4.59 3.78 95.58 0.00 −1.06

Experimental and computed (PB/LIE) binding free energies, their deviation, and the
computed components (PB, van der Waals, SA terms). Energies in kcal/mol; SA in Å2.
Protein is WT unless otherwise mentioned. Peptide positions are numbered backwards
from the C-terminus (position 0). aFrom earlier work (Shepherd et al., 2011; Liu et al., 2013)
unless otherwise mentioned. bRestraint energy. cFree energy correction (Equation 6).
dThe Sdc1 sequence is TKQEEFYA. The Caspr4 sequence is ENQKEYFF. eThis work.
fFrom alchemical FEP simulations, this work. gLower bound.

between the four structures were in the range 0.5–1.5 Å (for
the 19 residues within 5 Å of the peptide). Each of the
other complexes was modeled using whichever of these four
structures was deemed closest, by adopting the X-ray backbone
and rebuilding the modified protein and/or peptide side chains
with the Scwrl4 program (see Methods). Each complex was
then immersed in a box of water and subjected to a molecular
dynamics (MD) simulation. The trajectory length was between
40 and 100 ns (75 ns on average), depending on the rate of
convergence of the free energy components, except for the
WT:Sdc1 and QM:Caspr4 complexes, which were simulated for
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TABLE 2 | Tiam1-PDZ:peptide complexes and free energies not used for model

fitting.

Complex Exp.a Comp. Error PB VdW SA Rest.b Corr.c

Sdc1.A0M 1.56d −0.05 −1.61 −0.51 −3.27 −36.08 0.00 0.00

Sdc1.A0V 1.90e 0.80 −1.10 1.30 −2.40 −81.36 0.20 0.00

Sdc2 1.67 0.37 −1.30 2.10 4.32 61.59 0.00 0.00

Sdc4 1.59 0.50 −1.09 1.69 4.46 59.45 0.23 0.00

QM:Neur 0.32 0.20 −0.12 0.70 3.98 12.96 0.00 0.00

L911M,K912E:Neur 1.25 0.29 −0.96 0.40 1.36 −39.92 0.00 0.00

L915F,L920V:Neur 1.08 0.17 −0.91 0.25 2.90 −11.94 0.00 0.00

Sdc1.A0Q NA 0.18 NA 1.06 −2.72 7.76 0.00 0.00

Sdc1.F2C NA 0.44 NA 1.15 0.81 −33.84 0.00 0.00

Sdc1.F2M NA 0.01 NA 0.06 0.87 5.57 0.00 0.00

Sdc1.F2T NA 0.17 NA −0.05 −0.13 −45.20 0.00 0.00

Sdc1.F2V NA 0.06 NA −0.46 −1.09 −48.83 0.00 0.00

Sdc1.F2Y NA −0.04 NA −0.57 −1.63 −33.98 0.00 0.00

Casp.F0mA NA 0.09 NA 4.55 2.25 8.80 0.00 −1.06

Free energies and components as in Table 1. Protein is WT unless otherwise mentioned.
Energies in kcal/mol; SA in Å2. aFrom earlier work (Shepherd et al., 2011; Liu et al., 2013)
unless otherwise mentioned. bRestraint energy. cFree energy correction (Equation 6).
dMeasured in this work. eFrom alchemical FEP simulations.

FIGURE 2 | X-ray structures of the Tiam1 PDZ domain, ribbon view of

backbone. Blue, apo-WT; orange, WT:Sdc1 (with peptide in lighter orange);

red, apo-QM; green, QM:Caspr4. The peptide ligand, two helices, and certain

residues are labeled. The peptide’s last residue is labeled P0 (for position 0).

500 ns. The backbone rms deviations between the 51 MDmodels
were 0.6–2.1 Å. The deviations from the X-ray structures were
0.7–1.5 Å (for residues within 5 Å of the peptide).

Two groups of systems had a special treatment. (1) Four
complexes with very weak binding (11G > 1.5 kcal/mol)
were excluded from the parameter fitting. Indeed, with such
weak binding, we found that the peptide C-terminus tended
to detach itself from the protein during MD unless restraints
were applied. The single trajectory PB/LIE method assumes that
conformational differences between complexes are small, and

can be scored by a simple continuum dielectric model. This
will not be the case if one complex is well-ordered and another
undergoes large excursions of the peptide C-terminus. (2) Ten
other complexes, involving the Caspr4 peptide, also exhibited a
systematic structural difference compared to the others, related
to the peptide N-terminus. Their structure was modeled based on
the QM:Caspr4 crystal structure, where the peptide N-terminus
is disordered. We positioned their N-terminal residues through
model building and MD (see Methods), and this led to a distinct
backbone conformation for these ten complexes. Therefore, we
decided to score them relative to the QM:Caspr4 reference
complex, instead of the WT:Sdc1 reference. This reduces the
number of independent experimental observations by one. In
practice, it is equivalent to correcting the computed 11G
values for the ten Caspr4 complexes, by adding the experimental
QM:Caspr411G and subtracting the computed one:

11Gcomp(X)
′ = 11Gcomp(X)+

[

11Gexpt(QM:Caspr4)

−11Gcomp(QM:Caspr4)
]

(6)

where X is a complex involving Caspr4 (or its F0A mutant).
In all, excluding the four very weak binders, there were

40 experimental free energies. Since WT:Sdc1 and QM:Caspr4
were taken as reference systems, we were left with 38 11G
values. Three complexes involving the Neurexin peptide were
set aside for testing (Table 2). The other 35 values formed
the experimental target data for fitting the free energy models
(Table 1).

3.2. Model Fitting
The free energy models included three adjustable parameters:
the coefficients α, β , and γ (Equation 1). They were chosen
to minimize the rms deviation between the 35 experimental
and computed relative binding free energies in our target data
set. With the PB electrostatic treatment, the optimal coefficients
were α = 0.020 (van der Waals term), β = 0.25 (electrostatic
term), and γ = −4 cal/mol/Å2 (surface term). The negative
γ value means that surface burial upon binding is unfavorable.
Similar (Tounge and Reynolds, 2003) or somewhat larger (Zhou
et al., 2001) α values were used in some earlier models. The
electrostatic coefficient β is comparable to those used in several
earlier models (Tounge and Reynolds, 2003; Huang and Caflisch,
2004; Kolb et al., 2008; Singh and Warshel, 2010), if one takes
into account the solute dielectric constant used here (ǫP = 8).
The experimental and computed free energies are compared in
Figure 3. For ten complexes involving Caspr4, the computed
values included a correction term (in brackets on the right of
Equation 6). The model parameters and error statistics are given
in Table 3. The mean experimental and computed 11G values
are 0.70 and 0.40 kcal/mol, respectively, so that the PB/LIE
model has a small systematic error, overestimating the binding
affinities by 0.30 kcal/mol on average. This tendency is visible for
the Caspr4 complexes and for the four very weak binders (not
included in the model fit) (Figure 3).

The rms and mean unsigned errors (mue) were 0.55 and
0.43 kcal/mol, respectively. The Pearson correlation between the
experimental and computed values was R = 0.64. The three
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FIGURE 3 | Computed vs. experimental relative binding free energies

(kcal/mol). WT:Sdc1 is the reference system. Red, complexes involving

Caspr4; green, complexes involving Neurexin; gray, complexes with very weak

binding (not included in parameter fitting); black, all other complexes. The

vertical line separates the weakest binders from the others. All but the weak

binders (gray) and the three Neurexin complexes (green) were used for model

fitting.

TABLE 3 | Free energy model parameters and error statistics.

vdW Elec SA, LK Energy Model rmsd mue R Errmax 〈 Err 〉

α β γ terms name

NA NA Null 0.52 0.44 Zero 1.1 Zero

0.000 0.26 −2 vdW+PB+SA PB/LIE 0.55 0.44 0.64 1.1 −0.30

0.020 0.25 −4 vdW+PB+SA PB/LIE 0.55 0.43 0.64 1.2 −0.30

0.014 0.14 −5 vdW+GB+SA GB/LIE 0.66 0.55 0.56 1.3 −0.43

0.130 0.20 0.05 vdW+GB+LK GBLK 0.69 0.59 0.54 1.3 −0.48

Energies in kcal/mol; SA in Å2. Errmax is the average of the three largest unsigned errors.

largest errors were 1.31, 1.13, and 1.09 kcal/mol and included
two Caspr4 complexes. For the Caspr4 systems, the mue was 0.59
kcal/mol, slightly higher than the overall value. For comparison,
we considered a Null model that assumes all the complexes have
the same affinity. With this model, all the complexes have a11G
of 0.70 kcal/mol, which is the average of the 35 experimental
values. The Null model gave an rms error of 0.52 kcal/mol and a
mue of 0.44 kcal/mol, almost the same as the PB/LIE model, but
with no correlation, by construction. The three largest errors with
the Null model were 1.24, 1.09 and 0.91 kcal/mol and the mue
for the Caspr4 systems was 0.56 kcal/mol. We also constructed
100,000 random, “Scrambled” models (Huang et al., 2006). These
models were obtained by associating each experimental binding
affinity with an arbitrary complex within our dataset—not the
one for which it was measured—then adjusting α, β , and γ to
minimize the rms deviation between the computed data and the
scrambled experimental data. 99.94% of the Scrambled models

FIGURE 4 | Error statistics for 100,000 random, Scrambled models obtained

by fitting scambled experimental data. The number density of models in each

region of the plot is color coded from red (high) to blue (low), and contour lines

delimit regions that each contain 10% of the models. The PB/LIE model is

shown as a red dot; only 63 scrambled models (0.06%) have better R and

rmsd values. Histograms of R and rmsd values for the scrambled models are

shown along the upper and right edges of the plot.

gave larger errors and/or smaller correlations than the PB/LIE
model (Figure 4).

Systematic cross-validation tests were done by partitioning the
data into eight equal, random subsets, leaving out one subset and
fitting to the remaining data. This was done for each subset, and
led to error statistics for the omitted subset that were very similar
to the overall errors: mue = 0.47 and rmsd = 0.55 kcal/mol,
compared to 0.44± 0.03 and 0.56± 0.03 kcal/mol for the training
sets, with free energy coefficients very similar to the overall fit:
α = 0.02± 0.03, β = 0.25 ± 0.02, and γ = −4 ± 2 cal/mol/Å2.
We also applied the model to three Neurexin complexes left out
of the fit; the mue was 0.66 kcal/mol, compared to 0.44 kcal/mol
for these complexes with the Null model.

With the GB electrostatic treatment, the error magnitudes
were slightly larger than with PB/LIE, with a mue of 0.55
kcal/mol, an rms error of 0.66 kcal/mol, and a correlation of
R= 0.56. The van der Waals free energy coefficient was larger:
α = 0.14, the electrostatic coefficient was smaller: β = 0.14, and
γ was similar (Table 3). The free energies predicted with PB/LIE
and GB/LIE had a mutual correlation of R = 0.87 and a mutual
rms deviation of 0.29 kcal/mol.

3.3. Alternate Free Energy Models
3.3.1. Alchemical Free Energy Perturbation

Calculations
We applied a rigorous alchemical free energy perturbation
method (FEP) to six complexes involving Sdc1 variants binding
to WT, listed in Table 4. For four of them, A0M, A0F, F2I, and
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TABLE 4 | Alchemical free energy simulation (FEP) results.

Peptide Exp. FEP Error

Sdc1.E4K 0.81 1.7 0.9

Sdc1.F2I 0.80 0.7 −0.1

Sdc1.A0F 0.43 0.5 0.1

Sdc1.A0M 1.56 1.8 0.2

Sdc1.A0V NA 1.9 –

Sdc1.A0mA NA 0.0 –

WT binding free energy differences relative to Sdc1 in kcal/mol.

E4K, experimental binding constants were available. The other
two were new: A0V and a variant where A0 had its Hα changed
to a methyl. This gives an unnatural amino acid called α-amino
isobutyric acid or α-methyl alanine, which we abbreviate Aib or
mA. Such an amino acid might increase the peptide stability in
vivo by providing protease resistance (Welch et al., 2007). For
the four known variants, A0M, A0F, F2I, and E4K, agreement
with experiment was excellent, with three 11G errors of 0.1–
0.2 kcal/mol, comparable to the experimental uncertainty. For
the fourth known variant, E4K, the error was larger, 0.9 kcal/mol.
This variant involves a change of the peptide charge by +2, and
the deviation from experiment might indicate a limitation of the
force field employed. The E4K free energy includes a correction,
described elsewhere (Lin et al., 2014; Simonson and Roux, 2016),
for the use of a PME treatment of long-range electrostatic
interactions and associated “tin foil” boundary conditions. The
mue for the four variants is 0.4 kcal/mol.

The computed free energies are listed in Table 4. The good
agreement with experiment indicates that the MD structures
(which were also used for the PB/LIE modeling of the four
known variants) are accurate. It also provides validation for FEP,
which was then applied to two new variants. For Sdc1-A0V, the
computed 11G of 1.9 kcal/mol indicates a very weak binding.
This is consistent with the absence of Val at position 0 in the
combinatorial library of Tiam1 binding peptides (Shepherd et al.,
2011). For Sdc1-A0mA, FEP predicts a binding free energy equal
to Sdc1, 11G = 0 kcal/mol, indicating that the Aib amino acid
can be used for protease protection without loss of affinity. This
last variant was included in the dataset used to fit the PB/LIE and
GB/LIE models, above.

3.3.2. Alternate Non-polar Treatments
The PB/LIE model uses the protein–peptide van der Waals
interaction energy (1EvdW in Equation 1), without explicitly
including solute–solvent or solvent–solvent interactions. While
the small PB/LIE errors support this approach, we also directly
compared the non-polar PB/LIE terms (van der Waals + SA)
to the solute van der Waals energy, which has been used in
some other LIE models. The comparison was possible for ten
peptides, for which bound and unbound MD trajectories were
both available. Figure 5 shows the peptide van der Waals energy
change upon binding for the ten peptides, and compares it to the
PB/LIE non-polar free energy term, α1EvdW + γ1A. The two
quantities are well correlated.

FIGURE 5 | PB/LIE non-polar free energy term as a proxy for the peptide van

der Waals energy change upon binding (including peptide–protein and

peptide–solvent components). Each dot corresponds to one peptide, for

which both bound and unbound MD simulations were available. The

complexes all involve the WT protein. The dashed line is a linear fit

(slope = 0.07), shown for clarity.

An alternate PB/LIE free energy model that omitted the van
der Waals contribution altogether was also obtained. It gave
the same rms and mean unsigned errors as the 3-term model
(Table 3). It used a negative coefficient γ = −2 cal/mol/Å2 for
the SA term, meaning that surface burial upon binding was
penalized. In the absence of a van der Waals term, the PB term
was then the only term that favored binding.

We also considered an alternative to the surface area free
energy term (Lazaridis and Karplus, 1999; Michael et al., 2017).
We refer to it as the Lazaridis-Karplus or LK model (see section
Methods). Combining the GB, van der Waals and LK terms, we
obtained an rms error of 0.69 kcal/mol, a mue of 0.59 kcal/mol,
and R= 0.54, close to GB/LIE (Table 3).

3.3.3. Alternate Sampling Methods
For two complexes, WT:Sdc1 and QM:Caspr4, we performed
much longer MD simulations and applied a 3-trajectory method
to the PB free energy component (see section Methods). The
unbound peptides were simulated for 400 ns, the two complexes
for 500 ns, and the unbound proteins for 1,000 ns each. The
binding free energy difference between the two variants was
computed to be 1.04 kcal/mol, in excellent agreement with
the value of 0.99 kcal/mol obtained with the single trajectory
method using the 500 ns simulation. These values both exclude
the empirical correction defined in Equation (6). The single
trajectory value is just 0.16 kcal/mol higher than the one obtained
from the 100 ns trajectories, which is within the MD uncertainty
estimated earlier (Table 1). Solvent–solute and solvent–solvent
van der Waals interactions were treated implicitly, as above.
While they could in principle be calculated with three MD
trajectories, the appropriate values for the free energy coefficients
α, β , γ are not known.

We also considered a 2-trajectory model that explicitly takes
into account the structural reorganization of the peptide (but
not the protein) upon binding. With the single trajectory model,
the unbound peptide conformations were taken from the bound
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MD simulation, where the peptide has an extended, β strand
conformation. Structural changes in the unbound state were
described implicitly, through the solute dielectric constant. This
implicit description is expected to be accurate for solutes that
undergo only small rearrangements upon binding (Swanson
et al., 2004; Simonson, 2013). If the peptide is highly unstructured
in the unbound state, a more sophisticated, model may be
necessary (Figure 1), where the binding process is divided into
two steps, with two distinct free energy contributions. The
first, “preorganization” contribution, 1GI , is deduced from the
fraction of bound conformations found in MD simulations of
the unbound peptide (Equation 2). The second contribution is
computed from the PB/LIE or GB/LIE model as before.

To apply the 2-trajectory model, we simulated 12 unbound
peptides: 11 of the 16 peptides that have known WT binding
free energies, plus one “non-binding” peptide for which only
a lower free energy bound is known (Sdc1-F2R). Each peptide
was subjected to two simulations of 100 or 200 ns ns each. The
11GI values ranged from 0.0 (Sdc1) to 1.2 kcal/mol for the 12
peptides (0.7 kcal/mol on average; Table 5). The positive values
indicate that the peptide variants are all slightly less structured
in solution than the reference Sdc1 peptide. The uncertainties,
estimated by comparing the two MD runs, were between ±0.1
and ±0.7 kcal/mol (±0.4 kcal/mol on average) except for one
peptide. For the YAAEKYWA peptide, despite 400 ns of MD
simulation, the 1GI uncertainty was ±1.6 kcal/mol. The 12
peptides participate in 25 complexes in our dataset. We fitted the
free energy coefficients α, β , γ to this smaller dataset, with or
without the 1GI contribution. When the 1GI contribution was
included, the rms error did not improve, but increased from 0.60
to 0.68 kcal/mol, while the correlation R decreased from 0.52 to
0.26 (Table 3).

3.4. Analysis of Selected Structures and
Free Energies
3.4.1. Selected Structures
The MD simulations were done with explicit solvent and provide
structural models for all 51 complexes (Tables 1, 2). We briefly
discuss a few of them. The Sdc1 peptide and three variants
have the side chains Ala, Val, Met, and Phe, respectively, at
position 0. The WT:Sdc1-A0V complex was not characterized
experimentally, but alchemical free energy simulations (above)
predicted a very weak binding, 11G = 1.9 kcal/mol, and Val0
is completely absent from the experimental combinatorial library
(Shepherd et al., 2011). The Val side chain does not lead to
obvious steric overlap or structural changes compared to the
wildtype Ala0. However, eight PDZ complexes in the PDB that
have Val at the peptide C-terminus all have a different orientation
of their α2 helix, which may increase slightly the volume of the
P0 binding pocket. The structure of the QM:Neurexin complex
supports this idea, as the Neurexin peptide contains Val at
position 0 and the α2 helix orientation is changed relative to
that in WT Tiam1 PDZ (Liu et al., 2016). With the larger
Met0 side chain, WT:Sdc1-A0M also binds very weakly, 11G
= 1.56 kcal/mol. The MD model for this variant is supported
by alchemical free energy simulations (above), which gave good

TABLE 5 | Relative peptide preorganization free energies.

Peptide % Foldedb 11 GI

aSdc1 5.8/3.8 0.0 (0.2)

A0F 3.4/0.3 0.9 (0.8)

A0N 3.6/0.6 0.7 (0.7)

A0M 4.0/0.8 0.6 (0.6)

E4K 5.0/3.2 0.1 (0.3)

F2I 1.1/1.1 0.9 (0.1)

E3D,T1T 4.6/0.6 0.6 (0.7)

Sdc2 2.0/0.8 0.8 (0.4)

Sdc3 0.7/0.6 1.2 (0.1)

aCaspr4 2.6/8.6 0.0 (0.5)

aCaspr4-F0A 5.7/1.6 0.3 (0.5)

aYAAEKYWA 8.4/0.1 1.0 (1.6)

1GI (kcal/mol) corresponds to step I in Figure 1. Here, we tabulate the relative values
11GI, compared to Sdc1. aThese peptides were simulated for 2 × 200 ns, the others
for 2 × 100 ns. bThe “folded” peptide has the extended conformation seen in the bound
state.

agreement with experiment for 11G. In the MD simulations,
the Met0 side chain interacts with Leu915 at the C-terminus
of the α2 helix, which exhibits a partial unwinding of its last
turn. The WT:Sdc1-A0F complex binds more strongly, 11G
= 0.43 kcal/mol. The large Phe0 side chain also perturbs the
α2 C-terminus, but this may be counterbalanced by a favorable
stacking of Phe0 on the protein Phe860, which occurs 50% of the
time during MD.

We studied several Sdc1 variants with mutations at position
−2. TheWT:Sdc1-F2I complex has a significantly weaker binding
than wildtype Sdc1, with 11G = 0.80 kcal/mol. In the MD, Ile2
remains in the P−2 pocket with the same orientation as wildtype
Phe. However, Ile has a greater mobility within the pocket,
indicating a looser packing, and its interaction with Leu911 in
the α2 helix induces some deformation of the helix. We also note
that Ile has more possible rotamers than Phe, so that its loss of
side chain entropy upon binding is probably greater than that of
wildtype Phe. The Sdc1-F2R variant does not have a detectable
affinity for WT, even though Arg is found at this position in
the combinatorial library. During the MD, Arg2 interacts with
the peptide Glu4 side chain, so that this side chain in turn
does not interact as strongly with the protein. In particular, the
Glu4–Arg871 salt bridge is present 46% of the time in WT:Sdc1
but only 3% of the time in WT:Sdc1-F2R. The WT:Sdc1-E4K
complex has 11G = 0.81 kcal/mol, which reflects the loss of
the Glu4–Arg871 and Glu4–Ser908 interactions, found in the
WT:Sdc1 X-ray and MD structures. The E4K mutation also leads
to repulsion with nearby Lys912, within the α2 helix. Finally,
the Sdc1-E3T,Y1K double mutant binds WT very weakly, 11G
= 1.33 kcal/mol. Thr3 rarely contacts the protein, whereas the
wildtype side chain Glu3 interacts with Asn876 16% of the time.
Lys1 leads to repulsion with Lys879, 9.0 Å away.

3.4.2. Prediction of New Peptide Variants
We explored Sdc1 variants binding to WT where Phe2 was
mutated to Cys, Met, Thr, Val, and Tyr. For F2C, the predicted
PB/LIE binding free energy was poorer than wildtype Sdc1 by
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0.4 kcal/mol. For the other variants, the predicted binding free
energies were the same as Sdc1 or slightly higher, 0.2 kcal/mol
at most. We also predict that the unnatural amino acid Aib
can replace Phe at the C-terminus of Caspr4 with a loss of
affinity of just 0.1 kcal/mol compared toWT:Sdc1, or 0.3 kcal/mol
compared to QM:Caspr4. This is very close to the binding
free energy predicted by rigorous FEP calculations for Sdc1-
A0mA. Such an amino acid could perhaps provide protease
resistance and increase peptide lifetime in vivo (Welch et al.,
2007). In the WT:Sdc1-A0mA complex, the peptide C-terminus
has shifted slightly outwards, with a water molecule moving into
the interface and forming hydrogen bonds to both the peptide C-
terminus and the side chain of Lys850 (Figure 6). The shift was
reproduced in several independent simulations.

4. CONCLUDING DISCUSSION

The main goal of this study was to test and improve a class of
simple free energymodels for PDZ:peptide binding. Suchmodels,
if successful, can provide understanding and help design new
peptide ligands. However, accurate calculation of protein:ligand
binding free energies remains challenging, despite many efforts.
Rigorous alchemical free energy perturbation approaches (or
FEP) have no adjustable parameters but are costly, especially if
one compares peptides that differ at multiple positions, like Sdc1
and Caspr4. Therefore, we focussed here on a class of semi-
empirical models that are less expensive and can be applied
to many complexes. They combined MD simulations of each
complex in water (explicitly represented) and a free energy
scoring function that uses continuum electrostatics and has a
clear (albeit approximate) physical basis. Free energy models
of this class have often been used, with both PB and GB
solvents, with and without van der Waals and surface terms, with
widely different choices for the solute dielectric constant, and
sometimes with additional terms that describe hydrogen bonding
or vibrational entropy. Several published variants are arguably
unphysical, and there is a continuing need to clarify and test the
validity and performance of this class of models.

Protein:peptide complexes have the advantage that well-
established molecular mechanics force fields are available. They
pose specific difficulties due to the large and complex binding
interface and the flexibility of the unbound peptide ligand.
We relied on 37 experimental binding affinities, measured for
the wildtype and mutant Tiam1 PDZ domains, that included
eight Sdc1 and two Caspr4 variants. The model had just three
adjustable parameters. Several other variants were tried, with
either GB or PB electrostatics and with either van der Waals
and SA non-polar terms or a Lazaridis-Karplus non-polar
term. We deliberately chose a strategy that used a single MD
trajectory to model both the bound and unbound states, since
a three-trajectory approach with separate bound and unbound
simulations would have been several times more costly. With
this approach, solvent van der Waals interactions were treated
implicitly.

An important ingredient was the set of structural models
constructed for the complexes that had no X-ray structure (all but

four). A poor choice of side chain rotamers for a mutant position
could lead to a bad free energy estimate. To ensure high-quality
models, we tested model stability in rather long MD simulations
(up to 100 ns). For four variants, rigorous alchemical FEP gave
excellent agreement with experiment, validating the structures.
A second important model ingredient was the use of restraints
during theMD simulations.We applied very weak, flat-bottomed
restraints to a few protein:peptide distances at the N-terminus of
all the peptides, to suppress rare unbinding events that would not
have been reliably scored with PB/LIE and 100 ns simulations. In
addition, for ten complexes (out of the 37 used for model fitting),
we used weak, flat-bottomed restraints to maintain the α2 helix in
a native-like conformation, instead of a slightly distorted or bent
one. It may seem disruptive to prevent the system from adapting
its conformation in response to a mutation. However, the single
trajectory free energy method can only compare two complexes
if they have similar conformations; large conformational changes
cannot be properly scored. By imposing a binding mode that
is possibly suboptimal, we may underestimate the affinity of
the ten complexes. This was partly or entirely compensated by
including the restraint energy in the bound state free energy, and
may have been further compensated by the empirical parameter
optimization. We emphasize that the flat-bottomed restraints
only acted when rare fluctuations away from the native-like
structure occurred, and the mean restraint energies were very
small.

Four especially weak (millimolar) binders (gray dots in
Figure 3) could not be predicted reliably. In MD simulations,
these complexes spent a significant amount of time in partly
unbound conformations. Eliminating these conformations by
applying restraints would be unrealistic, and would not
accurately capture their conformational entropy or interaction
energy, leading to an inaccurate score. Scoring the partly-bound
conformations with PB/LIE would also be inaccurate, omitting
much of the conformational entropy and oversimplifying the
contributions from individual, partly-ordered water molecules
located between the protein and peptide.

The PB/LIE model had three adjustable parameters and
gave rms and mean unsigned errors of 0.55 and 0.43
kcal/mol, respectively, and a Pearson correlation of 0.64 for 35
experimental free energies. A Null model with one adjustable
parameter gave similar mean errors but zero correlation.
We can assume the deviations from experiment arise from
a superposition of errors in the PB/LIE free energy model,
statistical noise from the MD simulations, and random
experimental errors. If we assume the mean experimental error
is δexp = 0.2 kcal/mol and the MD simulations introduce a
statistical error of δMD = 0.2 kcal/mol, and we denote σtot the
rms deviation and δmodel the mean error in the free energymodel,
then we have σ 2

tot = 0.552 = δ2exp + δ2MD + δ2model, which leads to
a mean model error δmodel = 0.47 kcal/mol. This is about twice
the experimental uncertainty and 1/4 of the experimental free
energy range. Model variants that used a GB electrostatic term
and a Lazaridis-Karplus non-polar term gave very similar results.
A two-trajectory model that treated the peptide preorganization
step explicitly did not give improved results, and had a significant
uncertainty, despite 200–400 ns simulations of the unbound
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FIGURE 6 | WT complex with Sdc1-A0mA (above) and Sdc1 (below). Closeup of the peptide C-terminus. Selected residues are labeled; peptide positions are

numbered backwards from the C-terminus.

peptides. Estimates of the protein vibrational entropy based
on the MD trajectories and the quasi-harmonic approximation
were completely unreliable with the present (≤100 ns) trajectory
lengths (data not shown). None of the model variants was able to
score reliably the weakest, millimolar binders.

We expect our PB/LIE and GB/LIE models to be applicable
to other complexes between the Tiam1 PDZ domain, its close
homologs and a variety of peptide ligands. Model transferability
to other, less homologous systems remains to be established.
Similar LIE models have been applied to other systems, but
with different values for the free energy coefficients, additional
or fewer free energy terms, and/or different conformational
sampling methods. Single-trajectory models with the same three
free energy terms used similar values (Tounge and Reynolds,
2003) or larger values (Zhou et al., 2001) for all three coefficients.
Similar values of the electrostatic coefficient β have been used
in combination with larger van der Waals coefficients (α around
0.3) and no surface term (γ = 0) (Tounge and Reynolds, 2003;
Huang and Caflisch, 2004; Kolb et al., 2008; Singh and Warshel,
2010). The small van der Waals coefficient used here multiplies
the protein–peptide van der Waals energy. This free energy term
along with the SA term can serve as a proxy (Figure 5) for the
difference in van der Waals energies between the bound and
unbound states, which is harder to compute as it requires at
least two MD simulations per complex. The small α value used
here can be understood as the result of cancellation between the
bound and unbound contributions. Overall, while our free energy
function differs from some earlier ones, its form is supported

by the small errors obtained above, and it may be applicable to
other protein–peptide complexes with a β-sheet interaction and
possibly to other, less homologous systems.

We made PB/LIE predictions for seven complexes without
experimental affinities and alchemical FEP predictions for two
others. These did not reveal any candidates for strong peptide
binding, but they suggest that an unnatural, Aib amino acid
can be inserted at the C-terminus of both the Sdc1 and Casrp4
peptides with little or no loss of binding affinity. This could lead
to an increased protease resistance and longer peptide lifetimes
in vivo. The good model performance suggests that PB/LIE can
be used in the future to search for new candidate peptides, and to
filter or interpret experimental peptide libraries.
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