# Role of aIF1 in Pyrococcus abyssi translation initiation

Auriane Monestier<sup>1</sup>, Christine Lazennec-Schurdevin<sup>1</sup>, Pierre-Damien Coureux<sup>1</sup>, Yves Mechulam<sup>1</sup> and Emmanuelle Schmitt<sup>1§</sup>

<sup>1</sup>Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France

## SUPPLEMENTARY DATA

## SUPPLEMENTARY TABLE

|                                     | Native             | KPtCl <sub>4</sub> derivative |  |
|-------------------------------------|--------------------|-------------------------------|--|
| Data collection                     |                    |                               |  |
| Space group                         | P6 <sub>1</sub> 22 | P6 <sub>1</sub> 22            |  |
| Cell dimensions                     |                    |                               |  |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)  | 51.4, 51.4, 146.1  | 50.9, 50.9,147.2              |  |
| $\alpha, \beta, \gamma(^{\circ})$   | 90.0, 90.0, 120.0  | 90.0, 90.0, 120.0             |  |
| Resolution (Å)                      | 32.9-2.1           | 28.3-2.85                     |  |
| R <sub>sym</sub>                    | 0.062 (0.578)      | 0.035 (0.40)                  |  |
| Ι / σΙ                              | 29.6 (5.5)         | 18.5 (2.4)                    |  |
| Completeness (%)                    | 99.8 (99.9)        | 97.3 (100)                    |  |
| Redundancy                          | 18.7 (17.9)        | 2.85 (2.98)                   |  |
| CC(1/2)                             | 100 (97.4)         | 99.9 (83.6)                   |  |
| Refinement                          |                    | . ,                           |  |
| Resolution (Å)                      | 47.4–2.1           |                               |  |
| No. reflections                     | 7272               |                               |  |
| $R_{\rm work}$ / $R_{\rm free}$     | 0.220/0.224        |                               |  |
| No. atoms                           |                    |                               |  |
| Protein                             | 627                |                               |  |
| Water                               | 38                 |                               |  |
| <i>B</i> -factors (Å <sup>2</sup> ) | protein 46         |                               |  |
|                                     | water 55           |                               |  |
| R.m.s. deviations                   |                    |                               |  |
| Bond lengths (Å)                    | 0.008              |                               |  |
| Bond angles (°)                     | 1.073              |                               |  |

Values in parentheses are for highest-resolution shell.

## Table S1: Data collection and refinement statistics for Mj-aIF1 structure determination.

$$R_{sym} (I) = \frac{\sum_{hkl} \sum_{i} |\langle I_{hkl} \rangle - I_{hkl,i}|}{\sum_{hkl} \sum_{i} |I_{hkl}|}, \text{ where i is the number of reflections hkl.}$$

CC(1/2) is the correlation coefficient between two random half data sets

$$R_{\text{work}} = \frac{\sum \left\| F_{obs} \right\| - \left| F_{calc} \right\|}{\sum \left| F_{obs} \right|}$$

 $R_{\rm free}$  is calculated with 5% of the reflections.

| Phylum        |                            | Number of sequences | % with a putative Zn site |
|---------------|----------------------------|---------------------|---------------------------|
| ТАСК          | Candidatus Korarchaeota    | 4                   | 50                        |
|               | Candidatus Lokiarchaeota   | 1                   | 100                       |
|               | Candidatus Bathyarchaeota  | 18                  | 100                       |
|               | Thaumarchaeota             | 48                  | 90                        |
|               | Crenarchaeota              | 78                  | 5                         |
| EURYARCHAEOTA | Aciduliprofundum           | 3                   | 0                         |
|               | Halobacteria               | 175                 | 42                        |
|               | Thermoplasmata             | 32                  | 59                        |
|               | Thermococci                | 29                  | 0                         |
|               | Theionarchaea              | 2                   | 100                       |
|               | Candidatus Altiarchaeales  | 9                   | 100                       |
|               | Hadesarchaea               | 5                   | 100                       |
|               | Candidatus Thalassoarchaea | 2                   | 100                       |
|               | Methanomicrobia            | 62                  | 100                       |
|               | Methanonatronarchaeia      | 2                   | 100                       |
|               | Archaeoglobi               | 8                   | 100                       |
|               | Methanobacteria            | 29                  | 100                       |
|               | Methanococci               | 16                  | 100                       |
|               | Methanopyri                | 1                   | 100                       |
|               | Others                     | 46                  | 89                        |
| DPANN         | Nanoarchaeota              | 3                   | 0                         |
|               | Candidatus Parvarchaeota   | 2                   | 100                       |
|               | Candidatus Aenigmarchaeota | 6                   | 100                       |
|               | Candidatus Diapherotrites  | 4                   | 100                       |
|               | Candidatus Micrarchaeota   | 12                  | 100                       |
|               | Candidatus Pacearchaeota   | 16                  | 94                        |
|               | Candidatus Woesearchaeota  | 16                  | 81                        |

# Table S2: Presence of a putative Zn site in aIF1 sequences from various phyla.

The analysis has been performed on 629 sequences using NCBI taxonomy.

#### SUPPLEMENTARY FIGURES



#### Figure S1: Characterization of aIF1.

A- SDS-PAGE analysis of purified Mj-aIF1 Molecular weight markers: 97, 66, 45, 30, 20.1, 14.4 kDa (GE-Healthcare). B- SDS-PAGE analysis of purified Pa-aIF1. C- Analysis of the zinc content of Mj-aIF1 by atomic absorption spectroscopy. A typical experiment is shown. The graphic shows the absorbance at 213.9 nm from the spectrometer as a function of sample concentration for Mj-aIF1 (red dots) and for a zinc standard (blue dots).



#### Figure S2: Chase titrations.

A-Chase of coumarin-labeled Pa-aIF1\* from its complex with Pa-30S by unlabeled Pa-aIF1\*. Initial concentrations were 90 nM (30S) and 15 nM (labeled Pa-aIF1\*). Data were fitted as described (Weeks and Crothers, 1992). A Kd of  $40 \pm 20$  nM for unlabeled Pa-aIF1\* was derived, in reasonable agreement with the Kd of  $12 \pm 4$  nM measured with the labeled factor.

B-Same experiment but in the presence of 180 nM wt-mRNA. A Kd of  $0.4 \pm 0.2$  nM for unlabeled PaaIF1\* was derived, in good agreement with the best fit of the data obtained with the labeled factor (Kd of 0.2 nM, Fig. 2).



Figure S3: Toeprinting analysis of 30S initiation complexes on wt-aEF1A-mRNA with wild-type and variants of Pa-aIF1.

Normalized toeprint signals obtained with Pa-aIF1-Y32A (green, concentrations were varied from 131.5 nM to 1052 nM from the left to the right), Pa-aIF1-K34A (red, 263 nM to 2104 nM), Pa-aIF1 wt (light blue, from 131.5 to 2104nM). The concentrations of 30S and of mRNA used in all experiments were 25.6 nM and 12.6 nM, respectively. Standard deviations are calculated from at least two independent experiments.



# Figure S4: A-Toeprinting analysis of 30S:aIF1 complexes on wt-aEF1A mRNA and on mRNAs mutated at position -6 and -7.

The sequences of the mutated mRNA are shown in Figure 3. The analysis shows that mutations -6 and -7 strongly modify the arrest signal obtained with wt-aEF1A-mRNA at positions +12,+13,+14. The signals observed at upper positions might be due to upstream SD-like sequences. Two concentrations of aIF1 have been tested; 263 nM (black squared boxes) and 5.2  $\mu$ M (unboxed lanes), corresponding to molar excesses of 10 and 200 respectively, relative to the ribosome concentration.

This experiment shows that positions -6 and -7 participate in the stabilization of the 30S:aIF1 complexes in the vicinity of the start codon.

B-Binding of mRNA-6/-7 3'-labeled with fluorescein to Pa-30S:aIF1 complex. Fluorescence anisotropy of mRNA (10 nM) was followed during titration with Pa-30S:aIF1 and the results were fitted using standard equations for Kd determination. The Kd is deduced from 2 independent experiments was  $100 \pm 25$  nM.



#### Figure S5: Initiator tRNAs.

A- Cloverleaf representations of Met-tRNAs<sup>Met</sup>. The  $A_1$ - $U_{72}$  base pair at the top of the acceptor stem and the three G-C base pairs in the anticodon stem characteristic of the initiator tRNAs are boxed in red and green, respectively. B- Toeprinting analysis of 30S initiation complexes, as described in Figure 4, assembled on wt-aEF1A-mRNA using Met-tRNA<sub>f</sub><sup>Met</sup>A<sub>1</sub>- $U_{72}$  or Pa-Met-tRNA<sub>i</sub><sup>Met</sup>. Means and standard deviations are calculated from 5 and 4 independent experiments with Met-tRNA<sub>f</sub><sup>Met</sup>A<sub>1</sub>- $U_{72}$  or Pa-Met-tRNA<sub>i</sub><sup>Met</sup>, respectively.



### Figure S6: aIF1 binding site on the 30S:mRNA complex.

The view shows the positioning of aIF1 (purple) loop 1 on the 30S:mRNA complex (pink and dark blue, respectively) as observed in the 5.4 Å resolution IC0-P<sub>REMOTE</sub> structure (2). Notably, conformation of aIF1 loop 1 in 30S:mRNA is different from that observed in free Mj-aIF1.

#### **Supplementary references**

- 1. Weeks, K.M. and Crothers, D.M. (1992) RNA binding assays for Tat-derived peptides: implications for specificity. *Biochemistry*, **31**, 10281-10287.
- 2. Coureux, P.D., Lazennec-Schurdevin, C., Monestier, A., Larquet, E., Cladiere, L., Klaholz, B.P., Schmitt, E. and Mechulam, Y. (2016) Cryo-EM study of start codon selection during archaeal translation initiation. *Nat Commun*, **7**, 13366.