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Abstract

We propose an elasto-plastic model coupled with damage for the behavior of geomaterials in
compression. The model is based on the properties, shown in [2], of micro-cracked materials
when the micro-cracks are closed with a friction between their lips. That leads to a macroscopic
model coupling damage and plasticity where the plasticity yield criterion is of the Drucker-
Prager type with kinematical hardening. Adopting an associative flow rule for the plasticity
and a standard energetic criterion for damage, the properties of such a model are illustrated in
a triaxial test with a fixed confining pressure.
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1. Introduction

Many works have been devoted to the modeling of the mechanical behavior of geo-materials
like concrete, rocks and soils and many phenomenological models have been proposed to give an
account of the main aspects of the observed phenomena, namely dilatancy and stress softening,
while those materials are submitted to triaxial compressions. The majority of these approaches
is based on elasto-plastic formalism with some of them having resort to damage coupling. For
instance, in soil or rock mechanics one generally uses elasto-plastic or more generally (thermo)-
elasto-viscoplastic models without introducing damage variables [12, 7, 6], whereas it is generally
admitted that one cannot reproduce the experimental results observed for concrete without
considering a damage evolution law [14, 15, 18, 22, 5, 21, 23]. In all the cases the elasto-plastic
models are based on a restricted choice of yield criteria (like Drucker-Prager one or some variants
like Hoek-Brown criterion [12, 7] or the cap model [3]), with common feature being the hypothesis
of a non associative flow rule. The reason generally invoked to put aside the normality rule for
the plasticity evolution is that otherwise a too important dilatancy effects would be obtained in
the evolution of the volumetric strain once the normality rule is used, for instance for a standard
Drucker-Prager type criterion.

This, evoked earlier, macroscopic elasto-plastic coupled behavior is interpreted on a lower
scale as the consequence of the presence of microcracks inside the material. Because of the
compression, a part of or all those cracks are closed and a friction between the lips of the cracks
can prevent a free sliding of the lips. This impossibility to relax to the initial strain state results
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at the macro-level to the presence of residual plastic strains. Moreover, if one assumes that
the sliding with friction between the lips follows Coulomb law, then a Drucker- Prager type
criterion for the plasticity law is naturally obtained. Finally, the growth of the microcracks
is in straight relation to the observed progressive loss of rigidity of the samples and can be
reproduced at the macro-level by using a damage model. But if those mechanisms related to
the microcracking are usually invoked to build macroscopic models, very few works have been
devoted to an authentic micro-mechanical approach. An exception is [2] where such an attempt
is made by using Coulomb friction law for the sliding of the crack lips and Griffith law for the
crack propagation, see also a more recent paper [24] where a full 3D approach is proposed. Even
if the analysis in [2] is conducted in a simplified two-dimensional setting where the uncracked
material is assumed isotropic, elastic and homogeneous whereas the microcracks are assumed
straight and small enough to neglect their interactions, some general properties are obtained
and can be used to construct more general macroscopic models. In particular the authors show
that the elastic energy stored in the microcracked material reads as the following function of the
total strain ε, the plastic strain p:

ψ̂(ε,p) = 1
2 A0(ε− p) · (ε− p) + 1

2 A1p · p. (1)

In the expression above one uses the notations precised at the end of the present section. In
particular, A0 denotes the stiffness tensor of the sound material whereas A1 represents a loss of
stiffness due to the microcracks. Therefore, the micromechanical approach leads to a term in the
elastic energy which corresponds to the energy blocked by the contact with friction of the lips
of the cracks. Let us note that this latter term involves only the plastic strain (and eventually
the damage state via A1 dependence) and the damage state, not the total strain. The damage
state is supposed not to enter in the first term of the energy expression (1) and consequently,
even if the stress-strain relation still reads as

σ = A0(ε− p),

the stress which appears in the plasticity yield criterion deduced from Coulomb friction law is
not σ but the tensor X given by

X = σ − A1p.

In other words, the yield criterion is of the Drucker-Prager type with a kinematical hardening
where the back stress A1p depends linearly on the plastic strain but also non linearly on the
damage state. These two particularities (the presence of a kinematical hardening in the plas-
ticity yield criterion and the fact that damage appears only in the blocked elastic energy) can
generally not be seen in the various models proposed in the literature, see however [23, 13] where
kinematical hardening is also introduced. It turns out that they have fundamental and rather
unexpected consequences on the response of the material under triaxial compression tests. In
particular, one can account for reasonable contractance and dilatancy effects without leaving an
associate flow rule. The goal of the present paper is to study the specificity of the responses of
this type of models.

The paper is organized as follows. In Section 2 we consider the elasto-plastic model without
damage. Presenting first the general ingredients of an associative plasticity law, we progres-
sively refine the model by introducing the particularities coming from the micro-mechanical
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considerations. We finally study the response of a volume element submitted to a triaxial test
at fixed a confining pressure. The damage is introduced in Section 3, still on the basis of the
micro-mechanical considerations. Using a standard law for the damage evolution law, we obtain
the complete model of elasto-plasticity coupled with damage. After establishing some general
properties, we then consider a family of particular models to finally calculate the response of
the volume element submitted to the triaxial test at fixed confining pressure.

Throughout the paper, we use the following notations (see also Table 1): The summation
convention on repeated indices is implicitly adopted. The vectors and second order tensors are
indicated by boldface letters, like n and σ for the unit normal vector and the stress tensor.
Their components are denoted by italic letters, like ni and σij . The fourth order tensors as
well as their components are indicated by a sans serif letter, like A0 or A0ijkl for the stiffness
tensor. Such tensors are considered as linear maps applying on vectors or second order tensors
and the application is denoted without dots, like A0ε whose ij-component is A0ijklεkl. The inner
product between two vectors or two tensors of the same order is indicated by a dot, like a · b
which stands for aibi or σ · ε for σijεij .

ε tensor total strain tensor
p tensor plastic strain tensor
α scalar damage variable
ε̇ tensor rate of the total strain
ṗ tensor rate of the plastic strain
σ tensor stress tensor
X tensor thermodynamical force associated with p
Y scalar thermodynamical force associated with α
ψ scalar free energy per unit volume

ψ̂ function free energy state function
M3
s set linear set of 3× 3 symmetrical matrices

K set convex set of admissible X
πK function support function of the convex set K
D scalar dissipated power by unit volume

εD tensor deviatoric part of the stain tensor
εT scalar transversal strain
εz scalar axial strain

εv = Tr ε scalar volumetric strain = trace of the strain tensor
pD tensor deviatoric part of the plastic stain tensor
pT scalar transversal plastic strain
pz scalar axial plastic strain

Tr p scalar trace of the plastic strain tensor
σD tensor deviatoric part of the stress tensor
p0 scalar confining pressure
σz scalar axial stress
σm scalar mean stress = Trσ/3

Table 1: Table of the notation used throughout the paper for main mechanical quantities
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2. The elasto-plastic behavior at fixed damage state

This section describes a pure elasto-plastic behavior law. Even so the damage is not explicitly
present in this formulation, the latter could be considered as the model at fixed damage state.
The idea is to identify all the relevant coupling terms which influence dilatancy and softening
behavior.

2.1. General considerations

An associative model of elasto-plasticity is defined by two potentials:

1. The volume free energy function of the state variables;

2. The dissipation potential or equivalently the convex set in which the thermodynamical
forces associated with the internal variables must lie.

Here we will only consider isothermal processes and a plastic behavior with linear kinematical
hardening. Accordingly the state variables are constituted by the strain tensor ε and the plastic
tensor p without other internal variables (the damage variable will be introduced later, in
Section 3). Therefore the free energy density ψ is given by

ψ = ψ̂(ε,p), (2)

where the state function ψ̂ is assumed to be convex and at least continuously differentiable. By
differentiation, one obtains the stress tensor σ and the tensor X of the thermodynamical forces
associated with the plastic strain tensor:

σ =
∂ψ̂

∂ε
(ε,p), X = −∂ψ̂

∂p
(ε,p). (3)

From the mathematical point of view, ε, p, σ and X are order 2 symmetrical tensors which
can be identified with 3 by 3 symmetrical matrices after the choice of an orthonormal basis. In
other words, those tensors will be considered as elements of M3

s.
The plasticity (or yield) criterion is defined by giving the (closed with non empty interior)

convex set K of M3
s where the thermodynamical forces X must lie. Here we make the strong

assumption that this domain is fix, that is independent of time and of the plasticity evolution.
(However, we will see in the next subsection that the image of this domain in the stress space
evolves with the plastic strain.) In practise the convex K is characterized by a convex function
f : M3

s 7→ R so that the plasticity criterion reads as

X ∈ K = {X∗ ∈M3
s : f(X∗) ≤ 0}. (4)

The interior points of K correspond to the forces X∗ such that f(X∗) < 0 and the points on the
boundary of K to the forces X∗ such that f(X∗) = 0.

Since we only consider an associative model, the evolution of the plastic strain follows the
normality rule. When the convex set K has a smooth boundary without angular points, the
function f is differentiable and the flow rule can read as

ṗ = η̇
∂f

∂X
(X) with η̇ =

{
0 if f(X) < 0

≥ 0 if f(X) = 0
, (5)
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where η̇ denotes the plastic multiplier. If the boundary of K is not smooth and the normal is
not defined at some points, then the normality rule is extended by using the Hill maximal work
principle. In such a case, the flow rule is given by

X ∈ K, (X−X∗) · ṗ ≥ 0, ∀X∗ ∈ K. (6)

The inequality (6) says that ṗ must belong to the cone of the outer normals to K at the point
X of the boundary. That inequality leads to (5) when the normal is well defined at X.

From the energetic point of view, the energy which is dissipated by plasticity can be defined
in terms of the support function of the convex K. Specifically, let us introduce the support
function πK of K:

p ∈M3
s 7→ πK(p) = sup

X∗∈K
X∗ · p ∈ R̄. (7)

By construction πK is convex and positively homogeneous of degree 1,

πK(λp) = λπK(p), ∀λ > 0, ∀p ∈M3
s.

Moreover πK vanishes at p = 0, is non negative provided that 0 ∈ K and can take the value
+∞ when K is not bounded. Its interpretation as the volume dissipated power by plasticity
comes from Clausius-Duhem inequality. Indeed, in isothermal condition, the dissipated power
(by volume unit) D is defined by

D = σ · ε̇− ψ̇

and the second principle of thermodynamics requires that D be non negative. Owing to (2)-(3),
D reads as

D = X · ṗ.

By virtue of Hill maximal work principle (6) and the definition (7) of the support function, one
gets

D = πK(ṗ), (8)

which means that πK plays also the role of the dissipation potential. Furthermore, it is sufficient
to have 0 ∈ K for Clausius-Duhem inequality to be satisfied, i.e. D ≥ 0.

2.2. Choice of the form of the free energy state function

Guided by the micromechanical considerations presented in [2] for microcracked materials,
we consider that the plastic strain is due to the friction between the lips of the (closed) mi-
crocracks. However, we do not assume that Tr p = 0 and hence abandon the usual plastic
incompressibility condition. Consequently, the plastic strain is a full symmetric second order
tensor and no more a pure deviator. Moreover the spherical part of p which comes from the
normal displacements between the lips of the microcracks will be also governed by an irreversible
evolution law. Accordingly, we choose for the free energy the following quadratic function of
(ε,p):

ψ̂(ε,p) = 1
2 A0(ε− p) · (ε− p) + 1

2 A1p · p. (9)

In (9) the first term represents the elastic energy and A0 denotes the (fourth order) stiffness
tensor of the sound material. The second term in (9) represents the blocked energy by friction
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and the (fourth order) stiffness tensor A1 represents the loss of stiffness due to the presence of
microcracks. As one will see later, this loss of stiffness is visible only when the sliding or the
opening between the lips of the cracks are active, i.e. when ṗ 6= 0.

The tensor A0 is positive definite and the tensor A1 is assumed to be non negative. In fact,
A1 is also positive definite as soon as the material is microcracked as it is shown in [2]. But, we
will also consider the case when A1 vanishes to emphasize the strong influence of the blocked
energy on the mechanical behavior of the microcracked material. Consequently, ψ̂ is a (strictly)
convex function of (ε,p).

To simplify the presentation, we will assume that the material remains isotropic (even when
the damage grows). Therefore both tensors A0 and A1 have only two independent moduli.
Decomposing the strain and the plastic strain tensors into their spherical and deviatoric parts

ε = 1
3 Tr ε I + εD p = 1

3 Tr p I + pD, (10)

the free energy finally reads as

ψ̂(ε,p) = 1
2 K0(Tr ε− Tr p)2 + µ0(ε

D − pD) · (εD − pD) + 1
2 K1(Tr p)2 + µ1p

D · pD , (11)

where K0 > 0 and µ0 > 0 are the compressibility and shear moduli of the sound material whereas
K1 ≥ 0 and µ1 ≥ 0 will be called the kinematical hardening moduli. The elastic moduli K0 and
µ0 are related to the Young modulus E0 and the Poisson ratio ν0 of the sound material by:

3K0 =
E0

1− 2ν0
, 2µ0 =

E0

1 + ν0
. (12)

By differentiation of (11), the stress-strain relation is linear and reads as

σ = A0(ε− p). (13)

Decomposing the stress tensor into its spherical and deviatoric parts,

σ = σm I + σD, σm = 1
3 Trσ, (14)

the relation (13) becomes {
σD = 2µ0(ε

D − pD)

σm = K0(Tr ε− Tr p)
. (15)

Still by differentiation, the thermodynamical forces associated with the plastic strains read as

X = σ − A1p (16)

and they differ in general from the stresses when A1 6= 0. Decomposing the forces X into their
spherical and deviatoric parts,

X = Xm I + XD, Xm = 1
3 Tr X, (17)

the relation (16) becomes {
XD = σD − 2µ1p

D

Xm = σm − K1 Tr p
. (18)
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2.3. Choice of the plasticity criterion

Drucker-Prager criterion (or some variants like Mohr-Coulomb or Hoek-Brown criteria) is
widely used in the modeling of the behavior of geo-materials under compression, see [15, 12, 7].
In general those criteria are used in a non standard context, i.e. with a non associative flow
rule for the plasticity evolution, like in [6]. The main usual argument which is evoked to use a
non associative flaw rule is that one overestimates the dilatancy effect with the normality rule
associated with Drucker-Prager criterion. On the contrary, we propose in the present paper to
keep an associative flaw rule but with a Drucker-Prager criterion which contains a kinematical
hardening. One of the main goals is to show how a kinematical hardening can lead to relevant
dilatancy effects.

Specifically, in the present context, the Drucker-Prager criterion reads in terms of the ther-
modynamical forces X as

f(X) := 1√
6

∥∥XD
∥∥+ kXm − τc ≤ 0 . (19)

In (19) k ∈ (0, 1) is a dimensionless coefficient associated with the internal friction, τc ≥ 0
represents a critical stress which vanishes in absence of cohesion and

∥∥ · ∥∥ denotes the euclidean

norm of a second order tensor (whereas the factor
√

6 is introduced for convenience in order to
simplify forthcoming expressions), ∥∥XD

∥∥ =
√

XD ·XD.

Consequently, the elastic domain

K = {X ∈M3
s : f(X) ≤ 0}

is really a closed convex subset of M3
s (with non empty interior). In fact, K is a convex cone

which has an angular point at (XD, Xm) = (0, τc/k) and which is unbounded in the direction
of hydrostatic compressions. Furthermore, even if the elastic domain is fix in the space of the
thermodynamical forces, it varies with the plastic strain in the stress space. Indeed, by virtue
of (16), the elastic domain expressed in term of σ becomes the set K(p) given by

K(p) =

{
σ ∈M3

s :
1√
6

∥∥σD − 2µ1p
D
∥∥+ k(σm − K1 Tr p) ≤ τc

}
.

Thus K(p) is subjected to a linear translation when the plastic strain evolves:

K(p) = A1p + K.

Starting from (7), the support function πK of the convex K is obtained after tedious calcu-
lations which are not reproduced here and finally reads as

πK(p) =


τc
k

Tr p if Tr p ≥ k
√

6
∥∥pD

∥∥
+∞ otherwise

. (20)
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Since we adopt the normality rule, the evolution of the plastic strain is directly deduced from
(19). Considering first a regular point of the boundary of K, the flow rule reads as follows

At X such that f(X) = 0, X 6= (0, τc/k),

ṗD =
Tr ṗ

k
√

6

XD∥∥XD
∥∥

Tr ṗ ≥ 0

. (21)

Let us note that at such a point one has Tr ṗ = k
√

6
∥∥ṗD

∥∥. At the angular point, the rate of the
plastic strain tensor must belong to the cone of the outer normal to K. That leads to

At X = (0, τc/k), Tr ṗ ≥ k
√

6
∥∥ṗD

∥∥ . (22)

Consequently, the normality rule forces the trace of the plastic strain to only increase with time,
a fundamental property to account for the dilatancy effects.

2.4. Response under a triaxial test with a confining pressure

The elasto-plastic behavior of a material governed by the associative Drucker-Prager pre-
sented in the previous subsections is illustrated by considering the response of a volume element
during a triaxial test with a confining pressure. Assuming that the volume element starts from
a natural reference configuration without plastic strain, the test is divided into the following
three stages:

1. First, the volume element is submitted to an hydrostatic compression where the pressure
is progressively increased from 0 to a final value p0 > 0;

2. Then, maintaining the lateral pressure to the value p0, one compresses in the axial direction
z by prescribing the axial strain εz with ε̇z < 0. Accordingly, the response will be purely
elastic as long as |εz| is small enough so that the plastic yield criterion is not reached;

3. Finally, when |εz| is larger than a critical value, the volume element plastifies.

Let us determine the evolution of the strains, the plastic strains and the stresses during those
different stages in respect of |εz| (which could be considered as the loading parameter)1.

2.4.1. Confining stage

During this stage the strain and stress tensors are purely spherical and the plastic strain
remains equal to 0. At the end of this stage, the stresses and the strains are given by

σ = −p0I, ε = − p0
3K0

I, p = 0. (23)

Since p = 0, one has X = σ and Ducker-Prager criterion gives

f(X) = −kp0 − τc < 0.

1Note that, contrarily to a frequent use in Civil Engineering, we keep the convention used in Mechanics of
Continuous Media for the sign of the strains and the stresses: the traction are positive and the compression
negative.
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The axial strain εz decreases from 0 to−p0/3K0 whereas the volumetric strain εv = Tr ε decreases
from 0 to −p0/K0. During all this stage, one has

ε̇v = 3ε̇z < 0

and hence a contractance due to the hydrostatic compression.

2.4.2. Elastic stage at fixed confining pressure

During this stage, the plastic strain remains equal to 0 :

p = 0.

By symmetry, the stress and the strain tensors are of the following form2:

X = σ =

 −p0 0 0
0 −p0 0
0 0 σz

 , ε =

 εT 0 0
0 εT 0
0 0 εz

 ,

where p0 and εz are prescribed. The deviatoric parts read as

σD = (σz + p0)J, εD = (εz − εT )J

with

J =

 −1/3 0 0
0 −1/3 0
0 0 2/3

 ,
∥∥J∥∥ =

√
2

3
.

It remains to determine σz and εT . They are given by (13) with the help of (12):

εT = −ν0 εz − (1− 2ν0)(1 + ν0)
p0
E0
, σz = E0εz − 2ν0p0. (24)

One deduces in particular the evolution of the volumetric strain:

ε̇v = (1− 2ν0)ε̇z < 0 . (25)

This stage stops when the stresses reach the yield criterion, i.e. when f(σ) = 0. Since

f(σ) =
1

3
|σz + p0|+

k

3
(σz − 2p0)− τc

and since σz + p0 < 0, the yield surface is reached when

σz = −1 + 2k

1− k
p0 −

3τc
1− k

. (26)

The corresponding value of εz is deduced from (24):

εz = −1− 2ν0 + 2(1 + ν0)k

1− k

p0
E0
− 3τc

(1− k)E0
. (27)

2Throughout the paper, all the tensors are represented by matrices in the basis (ex, ey, ez) where z denotes
the axial direction whereas x et y denote the transversal direction.
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2.4.3. Plastification stage

Then, if the confining pressure is maintaining constant and if one prescribes ε̇z < 0, the
material will plastify. This plastification stage strongly depends on the presence or not of the
kinematical hardening. Therefore we will distinguish between the two situations by considering
first the case where the hardening moduli µ1 and K1vanish, i.e. the case without hardening.

1. Case without kinematical hardening. In such a case, one gets X = σ and since
the elastic domain is fix in the stress space, the stresses will remain blocked to the value
reached at the end of the elastic stage. In other words, the lateral pressure is equal to p0
and the axial stress σz is given by (26). Since σ̇ = 0, one gets

ṗ = ε̇

and hence p takes the form

p =

 pT 0 0
0 pT 0
0 0 pz

 , pD = (pz − pT )J, Tr p = pz + 2pT . (28)

Since σz + p0 < 0, the flow rule (21) gives

ṗT − ṗz =
1

2k
(ṗz + 2ṗT ) ≥ 0.

Since ṗz = ε̇z et ṗT = ε̇T , one gets

ε̇T = ṗT = − 1 + 2k

2(1− k)
ε̇z > 0.

Therefore, the volumetric strain rate is given by

ε̇v = − 3k

1− k
ε̇z > 0 . (29)

Thus the normality rule predicts a dilatancy of the material during the plastification
stage. In general this predicted dilatancy is too large by comparison with experimental
observations and that leads people to use a non associative flow rule. We will see just
below that the kinematical hardening can strongly modify these results.

2. Case with kinematical hardening. In such a case, the stresses do not remain blocked.
Their evolution is obtained by assuming that the strain tensor remains of the form (28)
and that the yield criterion is always satisfied at a non angular point, i.e.

f(X) = 0 with Xz < XT .

Let us note that this assumption is not restrictive because we can use the general result of
uniqueness of the response in the case of an associative law with kinematical hardening.
Indeed, if we find a solution, then we are sure that is the good one. (Note that such a
uniqueness result is no more ensured in the case of non associative flow rule.)
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Accordingly, one gets

XD = (Xz −XT )J, 3Xm = Xz + 2XT

and
XT −Xz + 3kXm = 3τc.

Differentiating these relations with respect to time and taking into account (18) lead to
ẊT − Ẋz + 3kẊm = 0

Ẋz − ẊT = σ̇z − 2µ1(ṗz − ṗT )

3Ẋm = σ̇z − 3K1 Tr ṗ

The flow rule (21) gives

ṗz − ṗT = −Tr ṗ

2k
. (30)

Combining the four previous relations gives the following relationship between σ̇z and Tr ṗ:

σ̇z = −µ1 + 3k2K1

(1− k)k
Tr ṗ . (31)

Differentiating the stress-strain relations (13) gives
σ̇z = 2µ0(ε̇z − ε̇T + ṗT − ṗz)
σ̇z = 3K0(ε̇v − Tr ṗ)

ε̇v = ε̇z + 2ε̇T

.

Eliminating ε̇T and using the flow rule give two other relations between σ̇z, Tr ṗ, ε̇v and
ε̇z:

σ̇z = µ0

(
3ε̇z − ε̇v +

Tr ṗ

k

)
, σ̇z = 3K0(ε̇v − Tr ṗ). (32)

Using (31) allows us to determine σ̇z, Tr ṗ and ε̇v in terms of ε̇z. We finally get

Tr ṗ = − 3kε̇z

1− k +
3(µ1 + 3k2K1)

(1− k)E0

> 0 , (33)

ε̇v =

(
1− µ1 + 3k2K1

k(1− k)3K0

)
Tr ṗ . (34)

Therefore (33) shows that the kinematical hardening tends to decrease Tr ṗ and even (34)
shows that the sign of ε̇v depends on the intensity of the hardening. Specifically, if the
hardening moduli are small enough (by comparison with the elastic moduli), then ε̇v > 0
and there is dilatancy. But, if the hardening moduli are large enough, then ε̇v < 0 and
there is contractance. Moreover let us note that if µ1 = K1 = 0, then we recover that
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ε̇v = Tr ṗ and the relation (29). But, if µ1 and K1 are very large by comparison to µ0 and
K0, then one gets

ε̇v ≈ (1− 2ν0)ε̇z < 0,

which is nothing but the relation (25) obtained in the elastic stage for the volumetric strain
change. In conclusion, according to the ratio between the hardening moduli and the elastic
moduli, the volumetric strain evolution can lead to a strong dilatancy effect corresponding
to perfect plasticity as well as a contractance effect like in elasticity. This last conclusion
leads to a foretaste consideration (developed in details in the next section) for a relevant
damage coupling - once the damage affects A1 tensor it then directly impacts the dilatancy
strength of the given law.

3. The elasto-plastic behavior coupled with damage

In this section we introduce the damage into the elasto-plastic model. As mentioned above
at the end of Section 2 the coupling could be introduced purely from macroscopic considerations.
We made a choice for more physical approach starting from a set of hypothesis which will finally
lead to the same coupling. Let us first present a list of assumptions used in that construction
before particularize the model.

3.1. Main assumptions on the damage dependence

Although there exists an infinite number of manners to couple damage with plasticity [15,
18, 21, 22, 5], we will make the simplest choices. Specifically, the main assumptions are the
following ones:

1. The damage state is characterized by a scalar variable α which can grow from 0 to 1, α = 0
corresponding to a sound material and α = 1 to a full damaged material.

2. The damage state enters in the expression of the free energy, but not in the plasticity
criterion. In other words, the convex domain K is independent of α.

3. The dissipated energy by damage is only function of the damage state.

By virtue of these assumptions, the state of the material point is characterized by the triple
(ε,p, α) and the free energy is still a function of state which now be read as

ψ = ψ̂(ε,p, α) (35)

The function ψ̂ is still assumed to be continuously differentiable from which one deduces the
stresses σ and the thermodynamical forces X and Y associated with the plastic strain and the
damage. Specifically one sets

σ =
∂ψ̂

∂ε
(ε,p, α), X = −∂ψ̂

∂p
(ε,p, α), Y = −∂ψ̂

∂α
(ε,p, α). (36)

In (36), Y can be interpreted as the free energy release rate associated with a growth of the
damage at constant strain. Since it is natural to assume that the release of energy is really non
negative, one adds the following condition of positivity for Y :

−∂ψ̂
∂α

(ε,p, α) ≥ 0, ∀ε,∀p ∈M3
s, ∀α ∈ [0, 1], (37)
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condition which restricts the dependence of the free energy on α.
Since the plasticity criterion is assumed to be independent of α (hypothesis (2)), the plastic

dissipation potential still read as

πK(ṗ) = sup
X∗∈K

X∗ · ṗ,

where K is a closed convex subset of M3
s. Finally, by hypothesis (3), the damage dissipated

energy d reads as
d = D̂(α), (38)

where D̂ is a non negative differentiable function of α which vanishes at α = 0:

D̂(0) = 0, D̂′(α) > 0, ∀α ∈ [0, 1].

This assumption is also motivated by the micro-mechanical approach of [2]: indeed, if one con-
siders microcracked materials whose microcraking evolution is governed by Griffith’s criterion,
then dissipated energy by damage corresponds to the Griffith surface energy.

Therefore, the part ḋ of the dissipated power due to the evolution of damage simply reads
in terms of the damage state and the damage rate as

ḋ = D̂′(α)α̇,

whereas the total dissipated power due to the evolution of both the plastic strain and the damage
is given by

D = πK(ṗ) + D̂′(α)α̇.

It remains to formulate the damage evolution law. As for the elasto-plastic behavior, we adopt
a standard law in the sense of the concept of Generalized Standard Materials proposed by [11]
or [10] in a general context and particularized by [16, 17] for damaging materials. Specifically,
the evolution of the damage consists in the following three items:

1. The irreversibility condition: damage can only grow and hence one requires that α̇ ≥ 0 at
any time;

2. The damage criterion: the free energy release rate must remain less or equal to the critical
value D̂′(α) given by the damage dissipated power:

Y ≤ D̂′(α); (39)

3. The consistency relation: damage can only evolve when the free energy release rate is
equal to its critical value, condition which can read as

(Y − D̂′(α))α̇ = 0. (40)

3.2. The associative elasto-plastic Drucker-Prager model with kinematical hardening coupled
with damage

Let us particularize now the model that we will use for geo-materials in compression.

13



3.2.1. Choice of the free energy and of the dissipated energy by damage

Let us first introduce the damage variable into the expression (9) of the free energy. The
micro-mechanical approach developed by [2] for a micro-cracked material with contact and
friction between the lips of the cracks shows that only the hardening tensor A1 depends on
the crack state, the tensor A0 representing the stiffness of the sound material. Therefore we
will assume that A1 only depends on the damage variable and hence the expression of the free
energy becomes

ψ̂(ε,p, α) = 1
2 A0(ε− p) · (ε− p) + 1

2 A1(α)p · p. (41)

Moreover, if we assume that the material is isotropic, then one gets

ψ̂(ε,p, α) = 1
2 K0(Tr ε− Tr p)2 + µ0(ε

D − pD) · (εD − pD) + 1
2 K1(α)(Tr p)2 + µ1(α)pD · pD .

(42)
The positivity of the stiffness tensor A0 and of the hardening tensor A1 requires that K0, µ0,
K1(α) and µ1(α) satisfy the following inequalities

K0 > 0, µ0 > 0, K1(α) ≥ 0, µ1(α) ≥ 0, ∀α ∈ [0, 1].

The energy release rate reads as

Y = −1
2 K
′
1(α)(Tr p)2 − µ′1(α)pD · pD (43)

and hence it depends only on the plastic strain and the damage, not on the total strain. In
order that Y be non negative, cf the condition (37), it is necessary and sufficient that

K′1(α) ≤ 0, µ′1(α) ≤ 0, ∀α ∈ [0, 1].

The damage criterion becomes then

−1
2 K
′
1(α)(Tr p)2 − µ′1(α)pD · pD ≤ D̂′(α).

Since the Drucher-Prager yield criterion is assumed to be independent of damage, the model
will be complete once the three functions α 7→ K1(α), α 7→ µ1(α) and α 7→ D̂(α) are given for
α ∈ [0, 1]. In fact since the choice of the damage variable is arbitrary, it is always possible, after
a suitable change of variable, to fix one of the three functions. Here we choose to fix the function
D̂ by setting

D̂(α) = D1α (44)

where D1 is a positive constant which has the dimension of a stress (or equivalently an energy
by volume unit). Accordingly, the dimensionless damage variable α can be interpreted as the
fraction of the volume energy dissipated by damage at the current damage state by comparison
to D1 which represents the volume dissipated energy by damage when the volume element is
totally damaged.
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3.2.2. The complete model

Finally, the associative elasto-plastic Drucker-Prager model with kinematical hardening cou-
pled with damage consists in the following set of definitions and relations:

The state variables : (ε,p, α) ∈M3
s ×M3

s × [0, 1]

The free energy density :
ψ = 1

2 K0(Tr ε− Tr p)2 + µ0(ε
D − pD) · (εD − pD) + 1

2 K1(α)(Tr p)2 + µ1(α)pD · pD

The stress-strain relationships:{
σD = 2µ0(ε

D − pD)

σm = K0(Tr ε− Tr p)

The plasticity evolution law:

The plasticity thermodynamical forces:

{
XD = σD − 2µ1(α)pD

Xm = σm − K1(α) Tr p

The plasticity yield criterion : f(X) := 1√
6

∥∥XD
∥∥+ kXm − τc ≤ 0

The plasticity flow rule :


ṗD =

Tr ṗ

k
√

6

XD∥∥XD
∥∥ , Tr ṗ ≥ 0 if f(X) = 0, XD 6= 0

Tr ṗ ≥ k
√

6
∥∥ṗD

∥∥ ≥ 0 if f(X) = 0, XD = 0

The damage evolution law:
The irreversibility condition : α̇ ≥ 0

The damage criterion : Y := −1
2 K
′
1(α)(Tr p)2 − µ′1(α)pD · pD ≤ D1

The consistency condition : (Y − D1)α̇ = 0

Remark 3.1. This model can be written in a variational form following the general presentation
proposed by [19] for rate independent evolution laws. After the choice of the expression of the
total energy, sum of the free energy and the dissipated energy, as a function of the state variables,
the evolution of the internal variables is deduced from three general physical principles: (i) an
irreversibility principle, (ii) a stability criterion, (iii) an energy balance. The interested reader
for such an approach could refer to [1, 8, 9] where its application to elasto-plasticity and damage
models is developed. That approach can even be used to construct non associative plasticity
model, see [3] for an example. Note also that the model has a stress-softening character induced
by the damage evolution. That means that the present local model must be regularized (for
instance, by introducing gradient of damage terms in the energy) in order that the damage
localization in a body be limited and controlled. For the construction of the regularized model,
the variational approach should be really useful and even necessary.
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3.3. Application to the triaxial test with containing pressure

3.3.1. Some general properties

Let us reconsider the triaxial test by including now the possibility of damage of the volume
element. The results obtained in Section 2.4 remains valid as long as the plasticity yield criterion
is not reached. In other words, the confining stage and the elastic stage remain unchanged. What
happens after depends in particular on the choice of the functions µ1(α) and K1(α). However
we can obtain some general properties without specifying those functions provided that they
satisfy the following conditions:{

K1(0) = µ1(0) = +∞
K′1(0) = µ′1(0) = −∞

, K1(1) = µ1(1) = 0, (45)

∀α ∈ (0, 1) :


K1(α) > 0, µ1(α) > 0

K′1(α) < 0, µ′1(α) < 0

K′′1(α) > 0, µ′′1(α) > 0

. (46)

Those conditions are inspired by the micro-mechanical model presented in [2]. In particular, the
fact that the hardening moduli are infinite when α = 0 ensures that the elastic moduli K0 and µ0
are those of the undamaged material. In the same manner, the fact that the hardening moduli
vanish when α = 1 corresponds to the total loss of stiffness when the material is fully damaged.
The hypothesis that the second derivatives of K1 et µ1 are positive plays an important role as we
will see below. Let us now establish some general properties based on the above assumptions.

1. Damage evolves only with plasticity. Let us first show that damage can grow only when
plasticity evolves. Indeed, by virtue of the damage criterion, damage evolves only when
Y = D1, i.e. when

−1
2 A
′
1(α)p · p = D1.

Differentiating this relation with respect to t leads to

1
2 A
′′
1(α)p · p α̇ = −A′1(α)p · ṗ (47)

from which one deduces that α̇ = 0 if ṗ = 0, which is the desired result. Let us note
that this result is essentially due to the fact that the stiffness tensor A0 is assumed to be
damage independent.

2. Damage starts at the same time as plasticity. Indeed, by virtue of the hypothesis K′1(0) =
µ′1(0) = −∞, the damage criterion at the onset of damage gives

−1
2 K
′
1(0)(Tr p)2 − µ′1(0)pD · pD ≤ D1

and hence can be satisfied only if p = 0.

3. Form of the strain, plastic strain and stress tensors during the plasticity stage with damage.
The previous properties suggest to search a response such that damage and plasticity evolve
simultaneously. During this damage with plasticity stage, the strain and stress tensors are
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assumed to be of the form3

σ =

 −p0 0 0
0 −p0 0
0 0 σz

 , ε =

 εT 0 0
0 εT 0
0 0 εz

 , p =

 pT 0 0
0 pT 0
0 0 pz


where p0 remains constant and εz is a given function of time which is decreasing from its
critical value given by (27).

4. Relationship between Tr p and α. Inserting the form of the different tensors into the
plasticity flow rule (which does not involve the damage state) gives

pz − pT = −Tr p

2k
. (48)

Reporting this relation into the damage criterion gets Tr p in function of α:

Tr p =

√
6k2D1

−R′(α)
(49)

where R(α) is the following combination of the hardening moduli

R(α) := µ1(α) + 3k2K1(α). (50)

Let us note that, since the second derivatives of K1 and µ1 are positive, Tr p is a strictly
increasing function of α. That means that the required inequality Tr ṗ > 0 is satisfied
provided that α̇ > 0.

5. Relationship between σz and α. The plasticity criterion with the definition of the plasticity
thermodynamical forces give the three following equations:

XT −Xz + 3kXm = 3τc

Xz −XT = σz + p0 + µ1(α)
Tr p

k

3Xm = σz − 2p0 − 3K1(α) Tr p

.

Eliminating XT , Xz, Xm and using (49) allow us to obtain σz as the following function of
α:

(1− k)σz = −3τc − (1 + 2k)p0 −
√

6D1

S′(α)
, (51)

where

S(α) :=
1

R(α)
.

3Let us note that the uniqueness of the response is not guaranteed in presence of damage without making
extra assumptions on the functions µ1(α) and K1(α). This study on the uniqueness will not be made here.
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One then checks that σzis always negative. Its absolute value will be either increasing or
decreasing when α grows according to the second derivative of the compliance function
S(α) is negative or positive. The former case, when S′′(α) < 0, corresponds to a stress-
hardening response, whereas the second one, when S′′(α) > 0, corresponds to a stress-
softening response. Note that the sign of the second derivative of S(α) is not given by the
sign of the second derivative of R(α) and hence constitutes an additional choice for the
model.

6. Relationships between εz, εv and α. The stress-strain relations allow us to express εz and
εv in terms of α. Specifically, taking into account (49) and (51)), one gets:

εz =
σz
E0
−
(

1

k
− 1

)
Tr p

3
+

2ν0p0
E0

, (52)

εv =
σz − 2p0

3K0
+ Tr p . (53)

7. The relation between the axial stress σz and the axial strain εz. The relations (51)-(52)
give the relation between εz and σz under the form of a curve parametrized by α. Let
us note that we are not ensured that εz is a monotonic function of α. Specifically, when
S′′(α) < 0 (stress-hardening behavior), then ε̇z < 0 when α̇ > 0 and hence damage grows
when εz (which is negative) is decreasing. But, when S′′(α) > 0, then the sign of ε̇z is not
guaranteed when α̇ > 0, because the term in σz is increasing whereas the term in Tr p is
decreasing. Therefore a snap-back is possible. If such a snap-back exists, the control of
the axial strain εz necessarily implies a discontinuous evolution of the damage. That can
even lead to a brutal rupture of the volume element with a sudden jump of α to 1 when
εz reaches its limit value.

8. The relation between the volumetric strain εv and the axial strain εz. The relations (51)-
(53) give the relation between εv and σz under the form of a curve parametrized by α. Here
also one can have a competition between the term in σz and the term in Tr p. During the
hardening phases, one has σ̇z < 0 and Tr ṗ > 0. Consequently, according to the respective
weight of the two terms, one will observe either a contractance or a dilatancy. On the
contrary, during the softening phases, since σ̇z > 0 and Tr ṗ > 0, one will alway observe a
dilatancy.

These different properties are illustrated in the next subsection by particularizing the model. Let
us note that in the triaxial test with a fixed confining pressure, the functions µ1(α) and K1(α)
appear only by their combination R(α) (which involves also the internal friction coefficient k).
Therefore, it is sufficient to know the function R(α) and the constants µ0, K0, D1, k and τc to
characterize the model, the confining pressure p0 playing the role of a parameter.

3.3.2. Study of a family of models

Let us consider the following family of functions R(α):

R(α) = R1
(1− α)m

αn
with R1 > 0, m > 1, 0 < n < 1 . (54)
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This choice of function is governed mainly by our intention to control the asymptotic behavior
both at the initiation of damage (α ≈ 0 power law of n) and at the end of microcracking (α ≈ 1
power law of m). One easily checks that such a function α 7→ R(α) is really compatible with the
hypotheses (45)-(46). Indeed R(α) is strictly decreasing from +∞ to 0 when α grows from 0 to
1. Its first and second derivatives are given by

R′(α) = −R1

(
(m− n)α+ n

)(1− α)m−1

αn+1
,

R′′(α) = R1

(
(m− n)(m− n− 1)α2 + 2n(m− n− 1)α+ n(n+ 1)

)(1− α)m−2

αn+2
.

It is also not difficult to verify that R′′(α) > 0 for every α ∈ (0, 1) because m > 1 > n > 0. The
first derivative R′(α) is strictly increasing from −∞ to 0 when α grows from 0 to 1. By virtue
of (49), one deduces that Tr p grows from 0 to +∞ with the evolution of damage.

The compliance function S(α) and its first and second derivatives are given by

S(α) =
1

R1

αn

(1− α)m

S′(α) =
1

R1

(m− n)α+ n

α1−n(1− α)m+1

S′′(α) =
1

R1

(m− n)(m− n+ 1)α2 + 2n(m− n+ 1)α− n(1− n)

α2−n(1− α)m+2

.

The study of the sign of S′′(α) shows that S′′(α) is negative in the interval (0, α0), positive in
the interval (α0, 1) with α0 given by

α0 =
1

m− n

(√
mn

m− n+ 1
− n

)
. (55)

Therefore, by virtue of (51), the absolute value of the axial stress σz increases and one observes
a stress-hardening behavior when α grows from 0 to α0, then |σz| decreases and one observes
a stress-softening behavior when α grows from α0 to 1. Moreover, since S′(0) = S′(1) = +∞,
σz starts from the value given by (26) and corresponding to the end of the elastic stage, then
is increasing (in absolute value) until its maximal value corresponding to the time at which
the damage reaches the value α0, and finally is decreasing (in absolute value) to come back
to the value (26) reached at the end of the elastic stage. The absolute value of the overstress
∆σzassociated with the stress-hardening phase is given by

∆σz =

√
6D1

(1− k)2S′(α0)
. (56)

Let us first study the variations of the axial strain εz in function of the damage α and let us
analyse under which condition a snap-back occurs. Starting from (52) and using the fact that εz
is negative, one deduces that the derivative of εz with respect to α is always negative. Therefore
a snap-back exists if and only if the following condition is satisfied:

S′′(α)

R′′(α)

(
− R′(α)

)3/2(
S′(α)

)3/2 ≤ (1− k)2
E0

3
, ∀α ∈ (0, 1). (57)
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Since R(α) is of the form R1R̄(α), the left hand side above can read as

S′′(α)

R′′(α)

(
− R′(α)

)3/2(
S′(α)

)3/2 =: R1ϕ(α) (58)

where the function α 7→ ϕ(α) depends only the exponents m and n of the model. In the
neighborhood of α = 1, since the different terms behave as follows

R′(α) ∼ −R1m(1− α)m−1, R′′(α) ∼ R1m(m− 1)(1− α)m−2,

S′(α) ∼ m

R1
(1− α)−m−1, S′′(α) ∼ m(m+ 1)

R1
(1− α)−m−2

one gets

ϕ(α) ∼ m+ 1

m− 1
(1− α)m.

Therefore, since ϕ is continuous, negative in the interval (0, α0), positive in the interval (α0, 1)
and since ϕ(α0) = ϕ(1) = 0, the function ϕ reaches its upper bound in the interval (α0, 1), the
upper bound depending only on m and n. Hence, the condition of non snap-back (57) can read
as

R1 ≤
(1− k)2E0

3 maxα∈[α0,1] ϕ(α)
. (59)

In other words, there is no snap-back provided that the hardening modulus R1 is small enough.
Let us note that this condition depends on the parameters E0, k, m and n of the model, but is
independent of D1, τc, and the confining pressure p0.

Let us now study the variations of the volumetric strain εv as a function of the damage α
and let us analysis when one observes a contractance or a dilatancy. We assume that R1 is small
enough and satisfies (59) so that there is no snap-back in the response σz− εz and hence ε̇z < 0.
By virtue of (53), one has ε̇v < 0 and hence contractance if and only if

σ̇z + 3K0 Tr ṗ > 0.

With the help of (49) and (51), that condition can be expressed in terms of ϕ(α) defined by
(58). Specifically, one observes a contractance at the time when the damage reaches the value
α if the following condition is satisfied:

ϕ(α) < −3k(1− k)
K0

R1
. (60)

That can happen only during the phase where ϕ is negative, that is only during the stress-
hardening phases. During the stress-softening phases, since ϕ > 0, one observes a dilatancy.
Therefore, a contractance can happen only at the beginning of the test, as long as α < α0. Since
the behavior of the first and the second derivatives of R and S in the neighborhood of α = 0 is
given by 

R′(α) ∼ −R1nα
−n−1, R′′(α) ∼ R1n(n+ 1)α−n−2,

S′(α) ∼ n

R1
αn−1, S′′(α) ∼ −n(1− n)

R1
αn−2,
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one gets

ϕ(α) ∼ −1 + n

1− n
α−n.

Consequently, since ϕ(0) = −∞, one obtains a contractance when α is small enough. On the
contrary, as soon as α becomes larger than a critical value (which is necessarily less than α0),
one observes a dilatancy until the complete rupture of the volume element. Let us note that
since σ̇z tends to 0 when α tends to 1, one gets by virtue of (52)-(53)

ε̇v ≈ Tr ṗ ≈ − 3k

1− k
ε̇z

when α is close to 1. That is in conformity with the result (29) obtained in the case of a perfect
plasticity behavior without kinematical hardening, situation to which one tends when α becomes
close to 1.

Let us finally study the relation between the axial strain εz and the axial stress σz in the
case when the condition (59) of non snap-back is satisfied. Using the behavior of R′ and S′ in
the neighborhood of α = 0, one deduces from (49) and (51) the following behaviors for Tr p and
σz: 

Tr p =

√
6k2D1

nR1
α(1+n)/2 + · · ·

σz = − 3τc
1− k

− (1 + 2k)p0
1− k

−
√

6D1R1

(1− k2)n
α(1−n)/2 + · · ·

Thus the plastic strain is of the order of α(1+n)/2 while the variation of the elastic strain is of the
order of α(1−n)/2. Hence, at the beginning of the plasticity stage the plastic strain is negligible
by comparison with the variation of the elastic strain. Inserting these estimates into (52), one
deduces that the relation between εz and σz is continuous and continuously differentiable at the
transition between the elastic stage and the plasticity stage, the slope being equal to E0. After
the elastic stage, if the axial strain |εz| is increased until +∞, then |σz| begins by increase, then
passes by a maximum before to decrease to finally take the value that it had at the end of the
elastic stage. All those variations are in fact independent of the confining pressure.

3.3.3. Graphs of the response according to the values of the parameters m, n and R1

In all the pictures presented in the present section, one uses the following values for the
Poisson ratio ν0 and the parameters τc and k of the Drucker-Prager criterion:

ν0 = 0.2, τc = 0, k = 0.2.

One sets

σc :=
√
D1E0, εc :=

√
D1

E0
. (61)

The material constant σc fixes the scale of the stresses whereas the material constant εc fixes
the scale of the strains. The responses depend on the two exponents m and n, and on the two
ratios R1/E0 and p0/σc.
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• Case where m = 2, n = 1/2. The value α0 of the damage from which there is stress-
softening is given by (55) and hence one finds α0 = 0.0883. By virtue of (56), the overstress
due to the stress-hardening phase depends on R1/E0 (but not on the confining pressure
p0) and is given by

∆σz = 1.827

√
R1

E0
σc. (62)

In order that there is no snap-back in the response σz–εz, it is necessary that the condition
(59) be satisfied. For the considered values of m and n, one gets maxα∈[α0,1] ϕ(α) = 0.775
and hence the non snap-back condition requires that R1 ≤ 0.275E0.

Are plotted on the figure 1 the graphs of σz and εv as functions of εz when there is no
confining pressure (p0 = 0) and in the case where R1 = 0.1E0 (hence there is no snap-back).
In that case the value of the overstress is ∆σz = 0.578σc. On the figure 2 are plotted the
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Figure 1: Graphs of the axial stress σz (left) and of the volumetric strain εv (right) versus the axial strain εz
when R1 = 0.1E0 and p0 = 0 (uniaxial compression test).

same graphs for different values of R1/E0. One can note that the larger R1, the larger
the overstress, which is conform to (62), but also the more rapid is the decrease of the
axial stress after the peak. A similar behavior can be seen for the volumetric strain: the
larger R1, the greater the maximal contraction, but also the more rapid the growing of the
dilatancy after the peak.

When R1 is greater than 0.275E0, the graph of σz contains a snap-back which induces, dur-
ing a test where the axial strain is controlled and continuously decreasing, a discontinuity
of the evolution of the axial stress and the damage, cf figure 3. The graph of the axial
stress vs the axial strain for a given confining pressure during the damage-plasticity phase
is simply a translation of that corresponding to the uniaxial compression test, the trans-
lation being given by the values of the axial strain and the axial stress at the end of the
elastic stage, cf Figure 4. This property is due to the linear character of Drucker-Prager
criterion. That would not be true any more if one used a more general plasticity criterion
like Hoek-Brown criterion [12, 7].

22



0.05

0.1

0.15

0.2
0.25

1 2 3 4
-Εz�Εc

0.2

0.4

0.6

0.8

1.0
-Σz�Σc

0.05

0.1

0.15
0.2

0.25

0.5 1.0 1.5 2.0 2.5 3.0
-Εz�Εc

-0.5

0.5

1.0

1.5

2.0
Εv�Εc

Figure 2: Influence of R1/E0 on the graphs of the axial stress and the volumetric strain versus the axial strain
when there is no confining pressure (uniaxial compression test). The value of R1/E0 associated with each graph
is indicated in red on the graph.
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Figure 3: When R1/E0 is large enough, the graph of σz vs εz contains a snap-back (here R1 = 0.4E0). Consequently,
when the axial strain reaches the value corresponding to the limit point A, the response jumps from A to B.
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Figure 4: Graph of the axial stress vs the axial strain for different values (in red on the graphs) of the confining
pressure (in fact of the ratio p0/σc) when R1 = 0.1E0. The first part (the linear part) of the graphs correspond
to the hydrostatic and elastic stages.
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• Influence of the exponents m and n. The shape of the graphs giving the axial stress in
term of the axial strain (during an uniaxial compression test without confining pressure)
is always the same whatever the values of m and n provided that they remain inside the
admissible intervals, i.e. m > 1 > n > 0. One can see the dependence of the response on
m an n in the figure 5.
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Figure 5: Influence of the exponent m (left) and n (right) on the graph of the axial stress vs the axial strain in
a uniaxial compression test (p0 = 0). The values of m and n are indicated in red on the graph. In the left figure
where m varies, one takes n = 1/2, whereas on the right figure where n varies, one takes m = 2. In all cases
R1 = 0.1E0.

We note that as expected the m parameter influence mainly the post-pic stress behavior (for
m = 1 the ultimate damage state achieved even for the finite value of εz), while n parameter
alternate mainly the initial harderning state leaving the large |εz| asymptote intact. Both
parameters (m and n) contributes (55)-(56) to the overstress ∆σz estimation, that reads as :

∆σz =
φ(m,n)

1− k

√
R1

E0
σc

where φ(m,n) is only dependent on m and n. At given n, φ(m,n) is a decreasing function of
m, whereas at given m, φ(m,n) is first a decreasing function, then an increasing function of n
when n varies from 0 to 1, cf Figure 6.
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Figure 6: Dependence of the overstress ∆σz on the exponents m and n of the model. Left, dependence on m
when n = 1/2; right, dependence on n when m = 2. In all cases R1 = 0.1E0 and k = 0.2.

24



• Possible parameter fitting strategy. Even so our model depends just on three ”dam-
age” parameters (R1, n,m) the common task of parameter choice for the given material
could be a rather laborious exercise. Nevertheless, based on the obtained earlier parameter
influence properties one could develop straight experimental data fitting strategy. From
the experimental data set characterizing geomaterials one has usually access to dilatancy
(Tr ε(loading)) and softening curves (σz(loading)). The softening post-pic behavior would
allow us to fit first the m value. Once the m parameter fixed one could proceed to R1

value choice which allow to adjust the strength of dilatancy curve. Finally the experimental
overstress threshold could be fixed by adapting the last n parameter.

4. Conclusion and Perspectives

Starting from low-scale mechanical properties of micro-cracked elastic materials taking into
account the closed cracks friction between its lips we propose a phenomenological model with
an associative elasto-plastic behavior coupled with damage. The main feature of the model
which is inspired by the micro-mechanical considerations is that the free energy contains not
only the usual elastic energy but also a stored energy which is due at the micro-level to the
friction between the lips of the micro-cracks. This blocked energy is assumed to depend at the
macro-level on the damage state and the plastic strain and induces a kinematical hardening
in the plasticity yield criterion. Considering a Drucker-Prager yield criterion and adopting
the normality rule for the plasticity flow rule, we have applied such a model to a triaxial test
with a fixed confining pressure. It turns out that the model is able to account for the main
observed properties of geomaterials in such a situation, like contractance or dilatancy effect on
the evolution of volumetric strain and stress-hardening or stress-softening effect for the axial
stress.

The next step will be to identify from experimental results the parameters of the proposed
model (which can be enriched by considering more complex yield criterion than the Drucker-
Prager one). Its validity will be also tested by comparing its predictions with other families of
experimental tests like the oedometric test or cyclic tests. An interesting issue is also to use
such a model to calculate the response of a true three-dimensional sample (and no more of the
volume element). Since the damage evolution is accompanied by stress-softening effect, one can
expect that the response of the sample is no more homogeneous (in space). That could require
to enhance the damage model by introducing non local terms like in [4, 20].

References

[1] Alessi, R., J.-J. Marigo, and S. Vidoli: 2015, ‘Gradient damage models coupled with plas-
ticity: variational formulation and main properties’. Mechanics of Materials 80, 351–367.

[2] Andrieux, S., Y. Bamberger, and J.-J. Marigo: 1986, ‘Un modèle de matériau microfissuré
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