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aLaboratoire de Mécanique des Solides, École Polytechnique, F-91128 Palaiseau, France

Keywords: Plasticity, Damage, Variational approach, Dynamical fracture, Fragmentation

1. Introduction

The initiation and propagation of is still an unresolved question in fracture mechanics. Several
models have been studied in different contexts [6, 1, 18, 17], in quasi static and dynamics [38, 19],
and accounting for different phenomena. The objective of this chapter is to explain the development
of the so-called ”gradient damage models” [32] and its extension to ductile materials and dynamic
loading. The main idea of these models is that we represent the by a and and we do not need
to know a-priori its path. However, some attention must be payed to the mesh in order to avoid
creating a preferential direction for [28].

Local models have proven to be not suitable to correctly predict [31, 34]. Softening local damage
models allow in infinitely thin bands and, consequently, cracks with zero energy dissipation [7]. In
finite elements simulations, this implies that the mesh size determines the size of the localization
zones and the results will necessarily depend on the mesh used.

In this context, the localization is controlled by adding a nonlocal term as an integral[37, 29,
30, 23] or a gradient [13, 24, 25]. The family of gradient damage models contain the gradient of
damage weighed by a parameter called the ”” [35] in order to avoid a localization in a band of null
thickness.

These models have been originally proposed for quasi-static , but have also been extended to
[3, 5, 27] and dynamic loading [10, 8, 21]. The main objective of this chapter is to explain the
necessary changes of the original model, in order to account for and inertial effects.

We first present the construction of gradient damage models for brittle softening materials based
on the principle of . We discuss the main hypothesis and the need for regularization. We then briefly
talk about Von-Mises criterion [26] and how to take it into account [2]. We conclude the model by
adding . Once the model is complete, we will briefly talk about the numerical implementation and
show a few examples and results using the FEniCS library [22] and an industrial code.

2. Theoretical Aspects

2.1. Gradient Damage Models

We present here a simplified construction of for brittle where there are no other dissipation ef-
fects. We are going to consider the case of theory and an material. For a more detailed construction
of these models, see [9, 33, 35]. For the proofs of Gamma-convergence, consult [12, 14].
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We denote the by σ, the by ε, the by u and the rigidity tensor by E. The contracted product
of two tensors a and b will be denoted by a:b. When working in a 1-D scenario, we are going to
call the Young’s Modulus simply E.

We recall that ε = 1
2(∇u+∇Tu) and σ = E:ε.

2.1.1. Construction of a Damage Model (non-regularized)

The objective of this section is to describe a family of that can be applied to different types of
materials. We will discuss the qualitative properties of these models.

We will suppose that

1. Damage can be represented by a scalar α ∈ [0, 1]. When α=0 the material is healthy and
when α=1 the material is completely broken. Other choices for α are possible, for instance
α ∈ [0,∞) or α being a tensor, but we decided to keep the model here as simple as possible.

2. The rigidity tensor E(α) is a function of α, the material becomes less rigid when α increases
and E(α=1) = 0 (no rigidity left when the material is broken). It is important to notice that,
for a fixed damage value, the stress-strain relation is supposed to be linear.

3. Damage is , that is, it can only grow in time.

We now need to specify the conditions for . For that, we are going to use an idea similar to
[16], based on the notion of elastic , in its [15].

The can be written as

ψ(ε, α) =
1

2
ε:E(α):ε. (1)

For a fixed deformation, a small increase δα>0 of damage causes a loss of −∂ψ
∂α (ε, α)δα>0 in

the elastic energy. We compare the variation of elastic energy to a threshold k(α). As in Griffith’s
model, the rate of energy restitution is always smaller or equal to a threshold value and the crack
only propagates when we have an equality. For this family of damage models, the propagation
criterion can be written as

− 1

2
ε:E′(α):ε ≤ k(α),

{
α̇ = 0 if − 1

2ε:E
′(α):ε < k(α)

α̇ ≥ 0 if − 1
2ε:E

′(α):ε = k(α)
(2)

where k(α) is a function of α representing the necessary energy restitution necessary for damage
to evolve.

So far, we made only a few hypothesis concerning E(α) and k(α). One of the strengths of such
models is that the specific forms of E(α) can be chosen such as to describe a specific material’s
behavior.

Example 2.1. As a first example, we are going to consider a 1-D bar under traction, where damage
increases uniformly in space. We consider the functions

E(α) = E0(1− α)2 and k(α) = k0, (3)

where k0 is a constant and E0 is the Young’s modulus when the material has not yet suffered any
damage.
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Figure 1: Damage (dashed red) and normalized stress (blue) for a 1-D bar subject to traction, according to the model
given in Example 2.1.

It is easy to see that the damage criterion can be written as

(1− α)E0ε
2 ≤ k0,

{
α̇ = 0 if (1− α)E0ε

2 < k0

α̇ ≥ 0 if (1− α)E0ε
2 = k0

If the initial bar is not damaged, the bar will not be damaged while E0ε
2<k0. We can define a

εc and critical stress σc by

εc =

√
k0

E0
and σc = E0εc =

√
k0E0.

When ε>εc we can use the criterion once again to find that (1− α)E0ε
2 = k0 and thus

α = 1− k0

E0ε2
.

For this model, we can see that while ε≤εc, stress increases linearly with the strain and the bar
suffers no damage. When ε>εc, the bar damages and this causes a stress-strain relation that is no
longer linear.

Figure 1 shows the normalized σ̄ = σ/σc and damage α as a function of the normalized ε̄ = ε/εc.

3



Let w(α) be a function such that w′(α) = k(α). We define the energy density by

W (ε, α) = ψ(ε, α) + w(α). (4)

We can write the stress as

σ =
∂W

∂ε
(ε, α) (5)

and the damage evolution criterion as

∂W

∂α
(ε, α)·α̇ = 0, (6)

where each of the two factors is non-negative.
Now let β̇ ≥ 0 be a small increase of damage in time. We have that

∂W

∂α
(ε, α)·(β̇ − α̇) ≥ 0. (7)

Consider a structure whose initial configuration is given by Ω ⊂ Rn (n=1, 2, 3).
Suppose we have a volume force f acting on the whole structure, an imposed displacement u0 on

∂u ⊂ ∂Ω and a normal stress T on ∂T ⊂ ∂Ω. We also suppose that ∂u
⋂
∂T = ∅ and ∂u

⋃
∂T = ∂Ω.

The static equilibrium can be written as
divσ + f = 0 on Ω

u = uD on ∂u

σ·n = T on ∂T .

(8)

We fix a test function w such that w = 0 on ∂u. Then∫
Ω

(
divσ·w + f ·w

)
dΩ = 0 (9)

and Green’s formula shows that∫
∂u

(σ·n)·wdS︸ ︷︷ ︸
0

+

∫
∂T
T ·wdS −

∫
Ω
σ : ε(w)dΩ +

∫
Ω
f · wdΩ = 0. (10)

We define

C = {u : u=uD on ∂u}
C0 = {w : w=0 on ∂u}

. (11)

The static equilibrium problem consists of finding u ∈ C such that∫
Ω

∂W

∂ε
(ε(u), α):ε(w)dΩ =

∫
Ω
f · wdΩ +

∫
∂T
T ·wdS, ∀w ∈ C0. (12)

If we consider the evolution problem where the time is denoted by t, by integrating (7), we
obtain the following problem: find α̇≥0 such that∫

Ω

∂W

∂α
(ε, α)·(β̇ − α̇)dΩ ≥ 0, ∀β̇ ≥ 0. (13)
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We define the total energy of the system by

E(u, α) =

∫
Ω
W (ε(u), α)dΩ−

∫
Ω
f · udΩ−

∫
∂T
T ·udS. (14)

It is easy to see that the evolution problem, given by equations (12) and (13), is equivalent to
finding u ∈ C and α̇≥0 such that for all v ∈ C and β̇≥0 we have

∂E
∂u

(u, α)(v − u) ≥ 0 and
∂E
∂α

(u, α)(β̇ − α̇) ≥ 0. (15)

2.1.2. Regularized Model

It is now a well-known fact that local softening damage models are not viable ([3], [32]) as they
allow damage localization in infinitely thin bands.

Example 2.2. To illustrated the problem of damage localization, we are going to consider a 1-D
bar of length L and a material such that E(α)=E0(1− α)2 and w(α)=w1α.

When in equilibrium, we know that σ(x) = σ (constant).
We will show that for any 0 < θ < 1 fixed, we can construct a solution to the damage problem

such that there is no damage in the interval (0, θL) and uniform damage in (θL,L).
In fact, for x ∈ (0, θL), we have ε(x) = σ/E0.
For x ∈ (θL,L), the damage criterion can be written as

w1 = −1

2
E′(α)

σ2

E(α)2
= E0(1− α)

σ2

E2
0(1− α)4

=
σ2

E0

1

(1− α)3
. (16)

Therefore, damage in this interval is given by

α∗ = 1− 3

√
σ2

w1E0
. (17)

The dissipated energy can be calculated

D =

∫ L

0
w(α)dx =

∫ L

θL
w1α

∗dx = w1α
∗(1− θ)L (18)

This shows that we have a solution of the damage problem for any θ. We can see that damage
can be localized in an infinitely thin band and if we take θ → 1, the dissipated energy D tends to
zero.

In a finite elements code, the size of the damage band will be determined by the mesh size. This
means that refining the mesh will produce different results and dissipated energies that can tend to
zero.

To solve this problem, a regularizing term is used. The main idea is to add a characteristic
length in order to penalize sharp damage profiles and solve the problem of localization in thin bands
and fracture without energy dissipation.

One simple way of doing this is by adding a term that depends of the norm of the gradient of
damage.

We will use an energy density of the form
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W (ε, α,∇α) = ψ(α, ε) + w(α) +
1

2
w1`

2∇α·∇α, (19)

where ` is the and w1>0 is a normalization constant.
In the previous section, when describing the model, we first proposed an evolution law based

on the energy restitution rate. We then expressed the static equilibrium and damage evolution by
a principle of . For this new energy density, we are going to use directly the principle of minimum
energy to obtain an evolution law, instead of manually proposing it.

We have

σ = E(α):ε =
∂W

∂ε
(ε, α). (20)

We define the dissipated energy by

D(α) =

∫
Ω
w(α) +

1

2
w1`

2∇α·∇αdΩ (21)

and redefine the total energy

E(u, α) =

∫
Ω
W (ε(u), α,∇α)dΩ−

∫
Ω
f · udΩ−

∫
∂T
T ·udS. (22)

The evolution problem consists of finding u ∈ C and α̇≥0 such that

DE(u, α)(v − u, β̇ − α̇) ≥ 0, ∀v ∈ C, ∀β̇ ≥ 0. (23)

Example 2.3. We will show an example where we have a 1-D bar that breaks only in a small
region. For more details, the reader is referred to [36].

We are will assume that fracture occurs in the interval [x0 −∆, x0 + ∆], where x0 is the center
of the damage profile (assumed to be symmetric) and the value of ∆ is unknown.

Since the whole region is damaged, α satisfies the damage criterion in the interval:

1

2
E′(α)ε2 + w′(α)− w1`

2α′′ = 0. (24)

If we write S(α) = 1/E(α), then (omitting α) S′ = −1/E2E′. Thus E′ = −E2S′ and

− 1

2
S′(α)σ2 + w′(α)− w1`

2α′′ = 0. (25)

We multiply this expression by α′ and integrate to obtain

− 1

2
S(α)σ2 + w(α)− w1`

2α
′2

2
= constant = − σ2

2E(0)
. (26)

We define the function H by

H(α) := σ2
( 1

w1E(0)
− S(α)

w1

)
+

2w(α)

w1
. (27)

Then
`2α′2 = H(α). (28)
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The maximum value αmax of α is such that H(αmax) = 0. For a given αmax, we can find the
value of the stress σ on the bar:

σ =

√
2w(αmax)

S(αmax)− 1/E(0)
. (29)

We can then find the damage profile using the relation

x(α) = x0

∫ αmax

α

`

H(β)
dβ. (30)

The different damage profiles are shown in Figure 2.3.
Consider now that E(α)=(1 − α)2 and w(α)=w1α. When the material in completely broken,

we have σ=0 and H(α) = 2α. We then solve `2α′2 = 2α, that is

`dα√
α

=
√

2dx, (31)

which, considering that α(x0) = 1 gives us

√
2`(1−

√
α) = x− x0 (32)

We thus find for x ∈ (x0 −∆, x0 + ∆)

α(x) =
(

1− |x− x0|
`
√

2

)2
and ∆ =

√
2`. (33)

The dissipated energy can now be calculated:

D =

∫ x0+∆

x0−∆

(
w1(α(x)) +

1

2
w1`

2α′2
)
dx = 2

∫ `
√

2

0

(
2w1

(
1− y

`
√

2

)2)
dy. (34)

Thus

D =
4
√

2

3
w1`. (35)

2.1.3. Numerical Implementation of Damage

In the previous subsection, we described the model for brittle damage evolution. For a given
set of boundary conditions, we want to minimize the total energy E(u, α) with respect to u and α,
with the constraint α̇≥0 (irreversibility condition).

We will consider a problem discrete in time, that is, we divide the time in instants t0, t1, t2, ...,
with ti < ti+1, and study the evolution of the system. At an instant ti, we have a displacement ui

and damage ui.
In the , ui and αi must minimize the E of the system. We recall that αi(x) ∈ [0, 1], for all x ∈ Ω,

and if the damage at an iteration i is αi, then the condition is equivalent to αi+1(x) ≥ αi(x), for
all x ∈ Ω.

We want to E for u and α at the same time. The functional E may not be convex for the pair
(u, α). It is, however, convex for each variable. That’s why we use an [11] procedure, that is, we
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Figure 2: Damage profiles for w1=1 and E(α) = (1 − α)2 depending on the maximal value of α, given by equation
30.

alternately E in u for a fixed α and then, for a fixed u, minimize E in α, until we obtain convergence
for the pair (u, α).

This method only guarantees that the solution is a stationary point or, in some cases, a local
minimum of E . It does not ensure the of the solution.

To calculate (ui, αi), we have to know the values of ui−1 and αi−1. At each time iteration i, we
have to:

(1) Update boundary conditions.

(2) Set (u(i,0), α(i,0)) := (ui−1, αi−1).

(3) Iteration j ≥ 1:

(3.1) Solve
u(i,j) := arg min

u
E(u, α(i,j−1));

(3.2) Solve
α(i,j) := arg min

αi−1≤α≤1

E(u(i,j), α);

(3.3) Stop when ‖α(i,j) − α(i,j−1)‖ is sufficiently small.

(4) We then set (ui, αi) := (u(i,j), α(i,j)).

Note: at each minimization, u and α must respect boundary conditions.
One important feature of this is that the energy decreases at each iteration:
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E(u(i,j), α(i,j)) ≤ E(u(i,j−1), α(i,j−1)). (36)

There is no guarantee that the will converge in the general case and the choice of convergence
criterion may influence the results. There are different aspects we can consider when choosing the
convergence criterion:

• the convergence criterion depends on the variables or the total energy;

• relative tolerance or absolute tolerance;

• norm used: we consider only the difference between elements, the sum all over the structure,
whether the gradient of the variables is important;

2.2. Damage Coupled with Plasticity

The family of models we have developed so far cannot account residual strains. In this section,
we want to extend the damage models described in section 2.1.2 to materials.

The main idea is to define the total energy of the body in terms of the displacement field, the
damage, the plastic strain and the cumulated plastic and study the of the system through the
minimization with respect to each variable.

Section 2.1.2 was a review of the used to describe damage evolution for a quasi-static loading.
We start this section by doing the same for . We then present and discuss an energy expression
that can couple these two phenomena and show one example of material behavior.

2.2.1. Perfect Plasticity Model

We will denote the plastic strain by εp. The stress is now given by

σ = E:(ε− εp). (37)

In the general case, σ is admissible if it satisfies f(σ)≤0, where the function f depends on the
criterion used. The evolution law is given by the relation

‖ε̇p‖·f(σ) = 0. (38)

In the case of yield criterion, we have in 1-D

f(σ) = |σ| − σY (39)

and in 3-D

f(σ) =

√
3

2
s:s− σY , (40)

where s := σ − Trσ
3 I is the and σY is the and is a material constant.

We define the cumulated plastic strain from zero to the instant t as

p̄t = p̄0 +

∫ t

0
‖ε̇p‖dτ (41)

and the energy density for a elasto-plastic material as

W 1D(ε, εp, p̄) =
1

2
E(ε− εp)2 + σY p̄ (42)
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in 1-D and as

W 3D(ε, εp, p̄) =
1

2
(ε− εp):E:(ε− εp) +

√
2

3
σY p̄ (43)

in 3-D.
We consider a t0, t1, ... and we can calculate the cumulated plasticity by

p̄i = p̄i−1 + ‖(εp)i − (εp)i−1‖ (44)

2.2.2. Plasticity Evolution in 1-D

We define the function

f(ε, p) =
1

2
Ep2 − Eεp+ σY |p− (εp)i−1|. (45)

It is clear the the minimization of f in p is equivalent to the minimization of W 1D(ε(u), εp) in
εp.

The function f is strictly convex in p and is differentiable everywhere except in p = (εp)i−1. As
a consequence, f has one unique minimum.

We use two auxiliary results:

Proposition 2.4. For a given ε, set σ∗ = E(ε− (εp)i−1). The value p that minimizes f(ε, p) can
be characterized by:

(1) If |σ∗| ≤ σY , then the minimum is attained in (εp)i−1.

(2) If |σ∗| > σY , then the minimum is attained at a point such that ∂f
∂p (ε, p) = 0.

Proof. We write p = (εp)i−1 + e. Then

f(ε, p) = f(ε, (εp)i−1) +
1

2
Ee2 − σ∗e+ σY |e|. (46)

(1) If |σ∗| ≤ σY , then σ∗e ≤ σY |e| and f(ε, p) ≥ f(ε, (εp)i−1) + 1
2Ee

2. Hence, the minimum is
attained when e = 0, that is, when p = (εp)i−1.

(2) If |σ∗| > σY , we put e = hσ∗/|σ∗|, with h > 0. Then

f(p) = f(ε, (εp)i−1) +
1

2
Eh2 − σ∗h+ σY h. (47)

If h is small enough, then f(ε, p) < f(ε, (εp)i−1). Since f is regular everywhere except e = 0,
we must have ∂f

∂p (ε, p) = 0.

Proposition 2.5. In the evolution problem, we set σ∗ = E(εi − (εp)i−1). The minimization of W
in εp is equivalent to:

(1) If |σ∗| ≤ σY :
(εp)i = (εp)i−1. (48)
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(2) If |σ∗| > σY :

(εp)i = (εp)i−1 +
(

1− σY
|σ∗|

)(
εi − (εp)i−1

)
(49)

and ∣∣∣E(εi − (εp)i)
∣∣∣ = σY . (50)

Proof. We have already proved (1) in proposition (2.4).
To prove (2), again by proposition (2.4), we have to find p such that ∂f

∂p (εi, p) = 0.
We notice that for e 6= 0 and |δe| < |e|, we have

|e+ δe| = |e|+ δe
e

|e|
. (51)

Then
∂f

∂p
(εi, p) = Ee− σ∗ + σY

e

|e|
= 0. (52)

Hence,

E(p− (εp)i−1)− E(εi − (εp)i−1) + σY
e

|e|
= 0. (53)

Rearranging the terms,

E(ε(i,j) − p) = σY
e

|e|
. (54)

If we write σ = E(εi − p), then, by taking the absolute values, we obtain |σ| = |σY |.
We can write

e =
σ∗ − σ
E

. (55)

Since we are working on the case |σ| = σY < |σ∗|, we have

e

|e|
=

σ∗ − σ
|σ∗ − σ|

=
σ∗

|σ∗|
. (56)

Finally, by (53),

e =
1

E

(
σ∗ − σY

e

|e|

)
=

1

E

(
σ∗ − σY

σ∗

|σ∗|

)
(57)

and
(εp)i := p = (εp)i−1 + e = (εp)i−1 +

(
1− σY

σY
|σ∗|

)
(εi − (εp)i−1). (58)

This is an elastic prediction - plastic correction procedure: we calculate the current strain and
stress based on the previous time instant assuming that the material is (elastic prediction). If the
stress is inside the , that is, |σ∗| < σY , we keep it and the does not change. On the other hand, if
the stress is not in the elastic domain, we update the ().

This behavior is shown in Figure 3. We can see the normalized strain ε̄:=εE0/σY , normalized
stress and normalized plastic strain.
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Figure 3: Damage (dashed green) and normalized stress (blue).

2.2.3. Plasticity Evolution in 3-D

In this section, we are going to write the same results as in the previous section, but now to a
problem in 3-D.

We consider the usual assumption of plastic incompressibility:

tr(εp) = 0 (59)

and √
3

2
s:s ≤ σY , (60)

where the deviatoric stress tensor s is given by

s = σ − tr(σ)

3
I. (61)

The total energy density is written as

W (ε, εp) =
1

2
(ε− εp):E:(ε− εp) +

√
2

3
σY ‖εp − εp‖, (62)

where
‖e‖ =

√
e:e. (63)

We now define e as the deviatoric part of ε and since tr(εp) = 0, the minimization of W in εp

is equivalent to
min

p : tr(p)=0
f(p), for every point in Ω (64)

where

f(ε, p) := µp:p− 2µe:p+

√
2

3
σY ‖p− (εp)i−1‖. (65)

(The Lamé’s coefficients are denoted by λ and µ.)
We set σ∗ = E:(εi − (εp)i−1) and its deviatoric part is given by s∗ = 2µ(e− (εp)i−1).
The following propositions are the 3-D equivalents of the auxiliary results in section 2.2.3:
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Proposition 2.6. The value p that minimizes f(ε, p) can be characterized by:

(1) if ‖s∗‖ ≤
√

2
3σY , then the minimum is attained in (εp)i−1;

(2) if ‖s∗‖ >
√

2
3σY , then the minimum is attained at a point such that ∂f

∂p (ε, p) = 0.

Proof. We write p = (εp)i−1 + δ. Then

f(ε, p) :=

µp:p− 2µe:p+

√
2

3
σY ‖p− (εp)i−1‖+ f((εp)i−1)− µ(εp)i−1:(εp)i−1 + 2µe:(εp)i−1 =

f((εp)i−1) + µδ:δ + 2µp:(εp)i−1 − 2µ(εp)i−1:(εp)i−1 − 2µe:δ +

√
2

3
σY ‖δ‖ =

f((εp)i−1) + µδ:δ + 2µδ:(εp)i−1 − 2µe:δ +

√
2

3
σY ‖δ‖ =

f((εp)i−1) + µδ:δ +

√
2

3
σY ‖δ‖ − s∗:δ.

(66)

(1) If ‖s∗‖ ≤
√

2
3σY , then f(ε, p) ≥ f(ε, (εp)i−1) + µδ:δ. Hence, the minimum is attained when

δ = 0.

(2) If ‖s∗‖ >
√

2
3σY , we put δ = hs∗/‖s∗‖, with h > 0. Then

f(p) = f((εp)i−1) +

√
2

3
σY h− ‖s∗‖h+ µh2. (67)

If h is small enough, then f(p) < f((εp)i−1). Since f is regular everywhere except δ = 0, we
must have ∂f

∂pf(p) = 0.

Proposition 2.7. The minimization of W in εp is equivalent to:

(1) If ‖s∗‖ ≤
√

2
3σY :

(εp)i = (εp)i−1. (68)

(2) If ‖s∗‖ >
√

2
3σY :

(εp)i = (εp)i−1 +

(
1−

√
2
3σY

|s∗|

)(
ei − (εp)i−1

)
. (69)

Proof. The proof of (1) follows directly from the last proposition.
To prove (2), we have to find p such that ∂f

∂p (ε, p) = 0.
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We derive f and apply it to a tensor δ:

∂f

∂p
(ε, p):δ = 2µ(p− ei):δ +

√
2

3
σY

p− (εp)i−1

‖p− (εp)i−1‖
:δ = 0. (70)

If
σi = E:(εi − p) (71)

and si is its part, we must have

si =

√
2

3
σY

p− (εp)i−1

‖p− (εp)i−1‖
. (72)

It is clear that

‖si‖ =

√
2

3
σY . (73)

We note that
si = s∗ + 2µ((εp)i−1 − p) (74)

and, by equation (72), si and s∗ have the same direction.
Since we know s∗, we obtain

si =

√
2

3
σY

s∗

‖s∗‖
. (75)

Finally, applying this to (72) and (74),

p− (εp)i−1 = si
‖p− pi−1‖√

2
3σY

= si
‖si − s∗‖

2µ
√

2
3σY

= s∗
‖si − s∗‖
2µ‖s∗‖

=

(
1−

√
2
3σY

‖s∗‖

)
s∗

2µ
=

(
1−

√
2
3σY

‖s∗‖

)
(ei − (εp)i−1).

(76)

We conclude by taking (εp)i = p.

2.2.4. Damage-Plasticity Coupling

In this section, in order to construct a family of models that account for and damage, instead
of proposing the for each variable, we work directly with a suitable form of and, by minimizing this
energy, we deduce the . For simplicity, we remove volume forces from our calculations

In section 2.1.2, is was postulated a total energy for brittle damage:

Ebrittle(u, α) =

∫
Ω

(
ψ(α, ε(u)) + w(α) +

1

2
w1`

2∇α·∇α
)
dΩ. (77)

We recall that the evolution of the system for loading can be obtained minimizing this energy
with respect to u and α. A perturbation in the direction u gives us the and a perturbation in α
gives us the .

In section 2.2.1, we showed that the evolution of the plasticity minimizes the energy

E1D
plast(ε, ε

p) =

∫
Ω

(1

2
E(ε− εp)2 + σY p̄

)
dΩ (78)
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in 1-D, and

E3D
plast(ε, ε

p) =

∫
Ω

(1

2
(ε− εp):E:(ε− εp) +

√
2

3
σY p̄

)
dΩ (79)

in 3-D. By examining perturbations in ε and εp, obtain the static equilibrium and the , respectively.
As we can see, the problems for damage and plasticity are similar in the sense that the quasi-

static evolution in both cases in found after minimizing the total energy. For the , we are going to
use an energy form that is, in a way, a combination of the damage energy and the plastic energy.
For that, we are going to assume that the now depends on the damage, that is, σY =σY (α).

We define the the following 1-D and 3-D energies for the damage-plasticity (DP) coupling:

E1D
DP (ε, εp, p̄, α) =

∫
Ω

(1

2
E(α)(ε− εp)2 + σY (α)p̄+ w(α) +

1

2
w1`

2α′2
)
dΩ (80)

and

E3D
DP (ε, εp, p̄, α) =

∫
Ω

(1

2
(ε− εp):E(α):(ε− εp) +

√
2

3
σY (α)p̄+ w(α) +

1

2
w1`

2|∇α|2
)
dΩ. (81)

To obtain the evolution criteria, we the with respect to 3 variables (u, εp and α):

• The minimization of the displacement gives us the static-equilibrium:

divσ = 0 , where σ = E(α):(ε− εp). (82)

• The minimization of the gives us√
3

2
s:s ≤ σY (α) and ‖ε̇p‖ ·

(√3

2
s:s− σY (α)

)
= 0. (83)

• The minimization of α gives us the new damage criterion (after taking the derivative with
respect to α and integrating by parts). In 1-D:

1

2
E(α′)(ε− εp)2 + σ′Y (α)p̄+ w(α′)− w1`

2α′′ ≥ 0 (84)

In 3-D:
1

2
(ε− εp):E′(α):(ε− εp) +

√
2

3
σ′Y (α)p̄+ w′(α)− w1`

2∆α ≥ 0 (85)

We also have α̇ = 0 when we have a strict inequality.

Example 2.8. Consider a bar given by Ω=[0, L] under traction, where the displacement at the
extremities are controlled. We want to calculate the evolution of damage and plastic strain for the
homogeneous case. We consider σ0

Y <
√
w1E0. We take the functions

E(α) = E0(1− α)2 , w(α) = w1α , σY (α) = σ0
Y (1− α)2. (86)

Since we are assuming uniformity in space, we have to calculate the scalars σ, ε, εp and α.
We have 3 different stages:
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Figure 4: Damage (dashed red), normalized stress (blue) and plastic strain (green dots).

• elastic phase: it is easy to see that while ε <
√
σ0
Y /E0, then σ < σY (α)=σ0

Y and there is no

change in the plastic strain. Since there is no plastic strain, the damage criterion is the same
for brittle materials and we see that the bar does not suffer any damage.

• plastic phase: if ε >
√
σ0
Y /E0, then plastic strain evolves. In a pure traction test, the

plastic strain and the cumulated strain are the same and we must have E0(ε−εp)=σ0
Y . Thus

εp=ε−σ0
Y /E0.

The damage criterion becomes

− (1− α)
(σ0
Y )2

E0
− 2(1− α)σ0

Y p̄+ w1 ≥ 0. (87)

It is easy to see that for α=0, we have a strict inequality while εp< w1

2σ0
Y
− σ0

Y
2E0

.

• damage-plastic phase: the plasticity continues to evolve and the criterion gives us εp=ε−σ0
Y /E0.

The damage criterion is now

− (1− α)
(σ0
Y )2

E0
− 2(1− α)σ0

Y p̄+ w1 = 0. (88)

We can thus find

α =

σ0
Y
E0

+ 2p̄− w1

σ0
Y

σ0
Y
E0

+ 2p̄
. (89)

Figure 4 shows these three phases. We see the normalized (in function of damage threshold)
σ̄ = σ/σc and strain ε̄ = σ/εc. We can clearly identify the three phases in the stress curve.
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2.3. Dynamic Gradient Damage

To formulate the evolution of the dynamic system, we are going to use the principle of least
action, as in [20].

Suppose we have a mechanic system Ω whose displacement is u and stress is σ(u). At each
instant t ∈ [t1, t2] we impose a displacement uD(t) on ∂u ⊂ ∂Ω and a normal stress T (t) on ∂T ⊂ ∂Ω.
We also suppose that ∂u

⋂
∂T = ∅ and ∂u

⋃
∂T = ∂Ω. We have the following equations:

ρü = divσ + f on Ω

u = uD(t) on ∂u

σ·n = T (t) on ∂T .

(90)

We fix a test function w such that w(x, t)=0 on ∂u for all t ∈ [t1, t2] and w(t=t1) = w(t=t2) = 0
on Ω. Then ∫

Ω
ρü·wdΩ =

∫
Ω

(
divσ(u)·w + f ·w

)
dΩ (91)

and Green’s formula shows that∫
Ω
ρü · wdΩ =

∫
∂u

(σ·n)·wdA︸ ︷︷ ︸
0

+

∫
∂T
T ·wdA−

∫
Ω
σ(u):ε(w)dΩ +

∫
Ω
f ·wdΩ. (92)

We integrate this equation between instants t1 and t2, and after an integration by parts, we
obtain (∫

Ω
ρu̇·wdΩ

)∣∣∣t2
t1
−
∫ t2

t1

(∫
Ω
ρu̇·ẇdΩ

)
dt =∫ t2

t1

(∫
∂T
T ·wdA

)
dt−

∫ t2

t1

(∫
Ω
σ(u):ε(w)dΩ

)
dt+

∫ t2

t1

(∫
Ω
f ·wdΩ

)
dt.

(93)

We define the kinetic energy of the system

K(u̇) =

∫
Ω

1

2
ρ‖u̇‖2dΩ (94)

and the potential energy

P(u) =
1

2

∫
Ω
σ(u):ε(u)dΩ−

∫
Ω
f ·udΩ−

∫
∂T

T ·udA. (95)

Applying the boundary conditions of w in t1 and t2, we have∫ t2

t1

(∂P
∂u

w − ∂K
∂u̇

ẇ
)
dt = 0, ∀w. (96)

We have thus shown that the problem (90) implies equation (96). It is easy to see that equation
(96) can be obtained by searching for stationary points of an action functional defined by

S(u, u̇) =

∫ t2

t1

P(u(t))−K(u̇(t))dt. (97)
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This motivates us to construct a dynamic gradient model by defining a suitable form of the
action functional. Instead of using a purely

∫
σ:ε, we are going to use the energies defined by

equations (80) and (81) with the terms containing the plastic strain and energy dissipated by the
damage process. We recall that they were written as

E1D
DP (ε, εp, p̄, α) =

∫
Ω

(1

2
E(α)(ε− εp)2 + σY (α)p̄+ w(α) +

1

2
w1`

2α′2
)
dΩ

and

E3D
DP (ε, εp, p̄, α) =

∫
Ω

(1

2
(ε− εp):E(α):(ε− εp) +

√
2

3
σY (α)p̄+ w(α) +

1

2
w1`

2|∇α|2
)
dΩ.

We take the external loads into account and define a as

PDP (u, εp, α) = EDP (ε(u), εp, p̄, α)−
∫

Ω
f · udΩ−

∫
∂T

T · udA. (98)

We define the new by

LDP (u, u̇, εp, p̄, α, t) = PDP (u(t), εp(t), p̄, α(t))−K(u̇(t)) (99)

and the by

SDP (u, u̇, εp, p̄, α) =

∫ t2

t1

LDP (u, u̇, εp, p̄, α, t)dt. (100)

We define the admissible displacement space C and admissible damage space D by

C = {u : u(t)=u0(t) on ∂u}
D = {α ∈ [0, 1] : α̇ ≥ 0 on Ω}

(101)

In order to preserve the of damage and plasticity, instead of searching for stationary points,
we will now only consider the unilateral minimal condition of the action, that is, we search an
displacement u∈C, damage α∈D and εp such that

SDP (u, u̇, εp, p̄, α) ≤ SDP (w, ẇ, p, ‖p− εp‖+ p̄, β) (102)

for any w∈C, β∈D and p.
In particular, if we take β=α and p=εp, we must have

∂SDS
∂u

(w − u) +
∂SDS
∂u̇

(ẇ − u̇) = 0 (103)

and, by following the previous calculations in reverse order, we find the problem given by (90).
We now set w=u and p=εp to study the . If at an instant t the damage is αt then we define

the admissible damage Dt taking αt and the irreversibility condition into account:

Dt = {β : β̇ ≥ 0 and β ≥ αt on Ω}. (104)

For every β∈Dt
∂SDS
∂α

(β − α) ≥ 0. (105)
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From this, it is easy to see that we obtain the same damage criterion for dynamic configurations
and loading:

∂EDP
∂α

(u, εp, p̄, α)·(β − α) ≥ 0. (106)

Finally, the plastic evolution is obtained by taking w=u and β=α. Then, for any p, we must
have

SDP (u, u̇, εp, p̄, α) ≤ SDP (u, u̇, p, ‖p− εp‖+ p̄, α),

which is the same criterion used in the quasi-static case, that is, for any p

EDP (u, εp, p̄, α) ≤ EDP (u, p, ‖p− εp‖+ p̄, α). (107)

The whole set of equations can now be written:

• Dynamic evolution: 
ρü = divσ + f on Ω

u = uD(t) on ∂u

σ·n = T (t) on ∂T .

(108)

• Damage evolution: for any β≥0 admissible, we have

∂EDP
∂α

(u, εp, p̄, α)·(β − α) ≥ 0. (109)

• Evolution of : for any p, we have

EDP (u, εp, p̄, α) ≤ EDP (u, p, ‖p− εp‖+ p̄, α). (110)

3. Numerical Implementation

To calculate the evolution of the system, we have to solve three sets of equation:

1. Dynamic equation. This differential equation gives us the of the system, which can be inte-
grated to obtain the velocity and the displacement. It is the only equation where there is a
dependence in time and is the main issue.

2. Damage evolution. This is a partial differential equation that must be solved globally (because
of the gradient of damage) each time.

3. Plastic evolution. Since this is a local problem, it must be solved on each element indepen-
dently.

The can be represented by the instants t0 < t1 < t2, ... and we use standard finite elements
discretization for spacial representation. The displacement and damage fields consist of polynomials
of degree one (P1 elements) and the , total strain and plastic strain are constant on each element.

To solve the dynamic equation, we will use a slightly modified version of the () scheme, since
it is easy to implement, the total energy is conserved and every term can be obtained explicitly,
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resulting in fast calculations. The down side is that the condition forces the time ∆t to be small
and decreases when we refine the mesh [4].

Once we have a new displacement field ui at the instant ti, search for α and εp that solve
equations (109) and (110) simultaneously. For that, we use an between and damage. We notice
that when E(·) and σY (·) depend on the same way of α, only one iteration is needed.

To study the evolution of the plastic strain, we can use the algorithms described in sections 2.2.2
and 2.2.3. It is, however, important to notice that σY is still a constant in the damage problem,
since it depends only on α and α is fixed during this step.

We consider the displacement ui−1, the velocity vi−1, the plastic strain (εp)i−1 and damage
αi−1 at the instant ti−1 to be known.

(1) Calculate the acceleration ai:

ρai−1 = divσ = div
(
E(αi−1):(ε(ui−1)− (εp)i−1)

)
.

(2) update the displacement:

ui = ui−1 + ∆tvi−1 +
∆t2

2
ai−1.

(3) Set ((εp)(i,0), α(i,0)) := ((εp)(i−1), αi−1).

(4) Iteration j ≥ 1:

(4.1) Using sections 2.2.2 and 2.2.3, solve

(εp)(i,j) := arg min
p
EDP (ui, p, p̄i−1 + ‖p− (εp)i−1‖, α(i,j−1)).

(4.2) Solve
α(i,j) := arg min

αi−1≤α≤1

EDP (ui, (εp)(i,j), p̄i−1 + ‖(εp)(i,j) − (εp)i−1‖, α).

(4.3) Stop when ‖(εp)(i,j) − (εp)(i,j−1)‖ and ‖α(i,j) − α(i,j−1)‖ are sufficiently small.

(5) We then set ((εp)i, αi) := ((εp)(i,j), α(i,j)) and p̄i=p̄+ ‖(εp)(i,j) − (εp)i−1‖.

(6) Calculate the acceleration ai+1 using

ρai+1 = divσ = div
(
E(αi+1):(ε(ui+1)− (εp)i+1)

)
.

(7) Update the velocity:

vi+1 = vi +
∆t

2
(ai + ai+1).

4. Applications

In this first set of examples, we want to show the influence of the plasticity and of the dynamics.
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Figure 5: Damage profile after failure in a 1-D bar as described in subsection 4.1.

4.1. 1-D Fracture

We first study a 1-D bar under traction. We have already studied this behavior for a quasi-static
loading and we were able to break the bar, where damage is localized in one region. The bar was
then split into two bars, and each bar had zero stress.

In , however, we have to take the into consideration. When the bar breaks, the bar is not is
static equilibrium and there are that propagate in the bar and cause the bar to continue breaking,
even after the first .

Another interesting phenomenon is the importance of the waves and vibrations. When a wave
reaches one of the extremities, the wave is reflected and a compression stress becomes a traction
stress and vice-versa. When two waves interpose each other, the resulting wave can have a greater
amplitude than the initial waves.

We show here a simple examples that illustrates this behavior. Damage evolution will only be
considered when the stress is positive and the material is assumed to be .

We will study the shock between two bars. The first bar, on the left, has size L and initial
speed v0 > 0. This bar hits a second bar, of size 2L, which is initially at rest. The two bars are
made of the same material and have the same thickness.

A then propagates between through the bars causing a crack in the middle of the larger bar.
In our model, we consider a single bar of length 3L. The interval [0, L) has initial speed v0 and

(L, 3L] has zero initial speed. The stress is supposed to be zero at the extremities. The can be seen
in Figure 5.

4.2. Material Behavior

In this section, we present a small and far from extensive list of material behaviors that we can
obtain only by changing how the function E(·), w(·) and σY (·) depend on α. In these simulations,
we suppose that the system evolves uniformly in space.
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Figure 6: Evolution of stress and damage for a 1-D brittle material for the case E(α)=(1 − α)2 and w(α)=α; plastic
strains neglected.

In Figure 6, we have E(α)=(1 − α)2 and w(α)=α and we don’t have plastic strain. We can
clearly see an and then a phase where damage evolves. By taking into account the (Figure 7),
we see that we have now three phases (elastic, plastic with no damage and plastic with damage).
It is important to notice that, for both models, the stress is maximal before the beginning of the
damage phase and then it decreases until it reaches zero.

For this next set of models, where we take w(α)=α2, we see that the behavior changes. In
Figure 8, we see the evolution of . There is no longer an elastic phase and, as strain increases, both
damage and the stress increase, even though the relation stress-strain is no longer linear because
of .

Many other evolution laws could be created by taking, for instance, a different polynomial
degree for the previous expressions or by combining them.

4.3. Dimensionless Parameters

In this first example, we are going to study a bar made of a material under traction. The
objective here is to show that the brittle damage model in question depends only on two .

We consider a bar Ω = [0, L]. We write E(α) = E0a(α), where a(α=0)=1 and a(α= 1)=0.
The study of the consists in defining an energy and finding its minimum with respect to α:

E(u, α) =

∫
Ω

(1

2
E0a(α)

(
ε(u)

)2
+ w1α+

1

2
w1`

2(α′)2
)
dΩ. (111)
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Figure 7: Evolution of stress and damage for a 1-D ductile material (using Von-Mises criterion) for the case
E(α)=σY (α)=(1 − α)2 and w(α)=α.

Figure 8: Evolution of stress and damage for a 1-D brittle material for the case E(α)=(1−α)2 and w(α)=α2; plastic
strains neglected.
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Figure 9: Evolution of stress and damage for a 1-D ductile material (using Von-Mises criterion) for the case
E(α)=σY (α)=(1 − α)2 and w(α)=α2.

The dynamic equation in 1-D can be written as

ρü = σ′ = E0

(
a(α)ε(u)

)′
(112)

and we impose a displacement on the extremities:{
u(x=0, t) = 0

u(x=L, t) = ε̇0Lt.
(113)

For this model, we have the following parameters: L, E0, w1, `, ρ and ε̇0.
The first step is to reduce the number of parameters of the problem.
Since we are interested in finding the minimizer of E , it is clear that we can redefine E as

E(u, α) =

∫
Ω

(1

2

E0

w1
a(α)

(
ε(u)

)2
+ α+

1

2
`2(α′)2

)
dΩ. (114)

It is clear that the dynamic equation depends only of E0
ρ . Therefore, we are only interested in

5 values: L, E0
w1

, E0
ρ , `, and ε̇0

We will change the scale of our variables in order to remove 3 parameters from our problem.
We first write x̃ = 1

Lx and t̃ = Tt, for some constant T > 0 that we will specify later.
If x ∈ Ω, then x̃ ∈ [0, 1]. The imposed displacements are now{

u(x̃=0, t) = 0

u(x̃=1, t) = ε̇0Lt.
(115)

If f(x, t) is a function of x and t, we define

f̃(x̃, t̃) := f(x, t). (116)
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We derive it to obtain

df(x, t)

dx
=

1

L

df̃(x̃, t̃)

dx̃
and

df(x, t)

dt
=

1

T

df̃(t̃, t̃)

dt̃
. (117)

Suppose we have a constant U0 > 0. We define{
ũ(x̃, t̃) := 1

U0
u(x, t)

α̃(x̃, t̃) := α(x, t).
(118)

Thus

E(ũ, α̃) =

∫
Ω

(1

2

E0U
2
0

w1L2
a(α̃)

(dũ
dx̃

)2
+ α̃+

1

2

`2

L2

(dα̃
dx̃

)2)
dΩ (119)

and
1

T 2

d2ũ

dt̃2
=

E0

ρL2

d

dx̃

(
a(α̃)

dũ

dx̃

)
. (120)

Since we only assumed T and U0 were two positive constants, we can now fix them. We set

U0 = L
√

w1
E0

and T = L
√

ρ
E0

. We also define ˜̀ := `
L and ˜̇ε0 := ε̇0

TL
U0

.

We have

E(ũ, α̃) =

∫
Ω

(1

2
a(α̃)

(dũ
dx̃

)2
+ α̃+

1

2
˜̀2
(dα̃
dx̃

)2)
dΩ (121)

and the dynamics of the system is
d2ũ

dt̃2
=

d

dx̃

(
a(α̃)

dũ

dx̃

)
. (122)

Considering x̃ and t̃ as the space and time variables (and removing the tilde from out notation),
we obtain the dimensionless problem in Ω = [0, 1] :

• The α minimizes the energy E taking into account the condition, where E is given by

E(u, α) =

∫
Ω

(1

2
a(α)

(
ε(u)

)2
+ α+

1

2
`2
(
α′
)2)

dΩ. (123)

• The time evolution of the displacement u is given by

ü =
(
a(α)ε(u)

)′
, (124)

under the imposed boundary conditions{
u(x=0, t) = 0

u(x=1, t) = ε̇0t.
(125)

Example 4.1. Suppose we want to study the fracture of a bar made of steel. We suppose this bar
is 10 cm long and is being stretched with a constant speed of 100m/s. For this material, we have
a density ρ=8000kg/m3, modulus of elasticity E0=210GPa, fracture toughness KIC=50MPa·m1/2

and an ultimate tensile strength σc=1000MPa.
When using this damage gradient model in a quasi-static scenario, we know that

w1 =
σ2
C

E0
=

(1000 · 106)2

210 · 109
Pa = 4.7MPa.
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The fracture energy Gc rate can be found:

Gc =
K2
IC

E0
=

(50 · 106)2

210 · 109
= 11.7kPa ·m.

The energy dissipated by the fracturing process, given by equation (35), can be written as

Gc = `σC
4
√

2

3
.

We obtain ` = 1.2 · 10−5m and ˜̀= `/L = 1.2 · 10−4.
The values of T and U0 are

T = L

√
ρ

E0
= 0.1

√
8000

210 · 109
s = 2 · 10−5s

U0 = L

√
w1

E0
= 0.1

√
4.7 · 106

210 · 109
m = 4.7 · 10−4m.

The deformation can be now be found:

ε =
du

dx
=
U0

L

dũ

dx̃
= 4.73 · 10−3dũ

dx̃
.

The dimensionless deformation speed is

˜̇ε0 = ε̇0
TL

U0
= 4.3 · 10−3ε̇0 = 0.43.

This bar can be simulated using our model with only two parameters (˜̀ = 1.2 · 10−4 and ˜̇ε0 =
0.43).

When analyzing the results, one must keep in mind that a time of 1 in the simulation is equivalent
to 2 · 10−5 s. In the same way, a deformation of 1 in the simulation is equivalent to ε = 4.73 · 10−3

in the real bar.

4.4. 1-D Period Bar

We are interested in obtaining the number of fragments of a ring under . Instead of working
with a ring in a 3-D scenario, we consider a bar [0, L] and the following periodic conditions in the
strain ε and damage α: {

ε(x+L, t) = ε(x, t), x ∈ R
α(x+L, t) = α(x, t), x ∈ R,

(126)

for every t ∈ R.
We also suppose that we start our study with a completely healthy bar under uniform (in space)

strain rate ε̇0. At the instant t = 0, we have{
ε̇(x, 0) = ε̇0, x ∈ [0, L]

α(x, 0) = 0, x ∈ [0, L].
(127)
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For simplicity, we assume that the initial strain is zero, that is, ε(x, 0) = 0, x ∈ [0, L]. The ring
of initial perimeter L suffers uniform . At an instant t, the perimeter of the ring is L+ε̇0Lt. The
displacement u at the extremities and ε must satisfy∫ L

0
ε(x, t)dx = u(L, t)− u(0, t) = ε̇0Lt. (128)

It is clear that ε(x, t) = ε̇0t satisfies the above equations.
At each time instant t, we write

ε(x, t) = ε∗(x, t) + ε̇0t. (129)

The variable ε∗ is the difference between the real and the uniform strain. It is easy to see that
ε∗ is in x and ∫ L

0
ε∗(x, t) = 0. (130)

We define the function u∗ as the difference between the real displacement and the uniform
displacement, that is,

u∗(x, t) = u(x, t)− ε̇0xt. (131)

By differentiating the above equation, we find that (u∗)′ = ε∗. It is clear that that u∗ is periodic.
The stress can be written as

σ(x, t) = A(α)((u∗)′ + ε̇0t). (132)

The dynamic equation is
ü∗(x, t) = ü(x, t) = σ′. (133)

Finally, we write the total energy as

E(u∗, α) =

∫ L

0

1

2
A(α)((u∗)′ + ε̇0t)

2 + w(α) +
1

2
w1`

2(α′)2. (134)

The problem consists of finding two variables u∗ and α satisfying the dynamic equation and
dE
dα(u∗, α)β = 0 for every β admissible.

4.4.1. Influence of Each Parameter on Damage

We now want to investigate the influence of the parameters in the in the bar. As we have seen,
the gradient damage model can be described by two parameters: the ` and the deformation speed
ε̇0.

There is, however, another parameter we need to pay attention to: the size of elements ∆x.
Even though it is a purely numerical parameter, it is has a great importance in the number of
fragments we are able to obtain. Therefore, for each pair (`, ε̇0) we want to study, we run several
simulations with different values of ∆x and see if they number of fragments converge for ∆x→ 0.
We emphasize that we are interested in the convergence of the number of the fragments, and not
in the convergence of u and α. Since we have a periodic problem, a translation of (u, α) would be
a different numerical result, but the same physical result.

Numerical simulations show that there is only a small difference between the results if the mesh
is fine enough. The seems to converge as ∆x→ 0.
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Figure 10: The displacement u∗ is at the top left and the damage profile is at the bottom right. We can also see the
velocity distribution and the stress σ.

In figure 11, we can see the influence of the mesh and the number of elements used. We recall
that we used standard P1 elements. We note that for 1/` ≤ 1000, a simulation using 2000 elements
(Nelem = 2000) is accurate. For 1/` ≤ 2000, 5000 elements are enough. This holds true for other
values of ` and Nelem. Hence, we will consider that the results are accurate if 1/` ≤ 1

3Nelem or,
equivalently, ` ≥ 3/Nelem. For other values of ε̇0, this relation also seems to be valid.

Again from figure 11, we can see that the number of fragments increases linearly with 1/` for
ε̇0 = 0.5. This linear behavior holds true for every other value of ε̇0 between 10−4 and 102 tested.

We can see the influence of ε̇0 in figure 12. We make ε̇0 vary between 10−4 and 102. The change
from less than 500 to over 1000.

We show in figure 13 the results in a log-log scale. When ε̇0 ≥ 1, the points appear to be in a
straight line.

We conclude with two remarks. Firstly, we can see that the behavior is not monotone. For
close values of ε̇0, we see that there is an oscillation in the number of fragments. But nevertheless,
we see a clear tendency for the number of fragments to increase as the strain rate increases.

Secondly, we remark that a small initial perturbation does not change the in the end. There is,
however, some changes in how they appear and how many of these develop until total failure, but
we emphasize that the number of cracks in the end is the same if the perturbation is sufficiently
small.

4.5. Cylinder under Internal Pressure

The final application concerns the study of the fragmentation of a cylinder under a strong
internal pressure. We want to know when and how the material breaks. In this case, we expect the
cylinder to fragment into multiple parts.

The cylinder has an internal radius of Ri=1.0 and external radius of Re=1.25. We impose an
internal pressure of 1.0 and we assume it to be constant in space and time. The following material
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Figure 11: We see that the number of cracks is almost proportional to 1/` if the mesh is fine enough. In here, ε̇0 = 0.5

constants are used: density ρ=103, Young’s modulus E0=104 and Poisson coefficient ν=0.3.
We first study a brittle cylinder. We consider the dependency of the rigidity tensor with respect

to α as E(α)=E0(1−α)2, which we have already studied (Figure 1). The damage coefficients used
in the energy are w1=8·10−3 and the characteristic length `=10−2. For these parameters, the
critical stress is σc=

√
E0w1=8.9, which is a much larger than the pressure imposed. However, the

internal pressure causes waves of stress to propagate and, by combining with each other, they reach
the stress threshold and cause fracture on the cylinder.

The problem in question is axisymmetric and we could expect a radial symmetry of the results.
In practice, a small perturbation is enough to make damage localize. One could argue that by
changing the perturbation used, we could obtain different results. This is true; however, we are
interested at the moment of fragmentation and the number of fragments, which don’t seem to
change when the perturbation is sufficiently small.

We see the damage profile in Figure 14. We can see the cracks in red and the healthy material
in blue. There are two main aspects that we see in this figure: the first one is that we have several
damage bands and that they are somewhat evenly distributed. The second is the direction of the
cracks. We see that the cracks follow the radial direction almost everywhere.

Next, we consider a cylinder. We consider once again E(α)=E0(1−α)2 and, now, σY (α)=σ0
Y (1−

α)2 (see Figure 4). We take the initial yield stress as σ0
Y =5.0, such that it is greater than the applied

pressure, but smaller than the critical damage stress. This way, we obtain an elastic phase, a phase
where plastic strain occurs but not damage, and a phase with damage and plastic strain evolution.

The damage profile in Figure 15 is different from the one obtained for brittle materials. We
can see once again that we have damage bands that are evenly distributed, but their direction

29



Figure 12: Influence of ε̇0 on the number of cracks for `=2 · 10−4.

has changed. As expected for ductile materials, when combining damage and plasticity, the cracks
evolve in a 45◦ angle.

The last question we want to discuss is the number of fragments. We recall that the character-
istic length is proportional to the thickness of the damage band for a quasi-static loading. For a
dynamic problem this is no longer true, but it is still the most important parameter for determining
the number of cracks. If we decrease the characteristic length, since each crack takes less place, we
should obtain more cracks.

To test this hypothesis, we run a simulation with a characteristic length 10 times smaller
(`=10−3). The result, Figure 16, is very clear. We can see that each crack is now thinner and we
have many more cracks. We also notice that there are now many cracks that cross each other.

5. Conclusion

In this work, we have briefly explained the hypotheses considered in the construction of gradient
damage models for brittle softening materials for a infinitely slow loading, based on the principle
of . We then explained the necessary changes to take plastic strains and inertia into account.

We have shown that these models are very flexible, and only by changing how the rigidity and
yield stress depend on the damage, we can model material behaviors that are very different.

We then concluded by some applications, showing the influence of each parameter of the model
and by studying the fragmentation of a cylinder under initial pressure.
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