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Abstract: We report here selective Tsuji-Trost type allylation of Ugi adducts using a strategy 11 

based on the enhanced nucleophilicity of amide dianions. Ugi adducts derived from aromatic 12 

aldehydes were easily allylated at their peptidyl position with allyl acetate in the presence of 13 

palladium catalysts. These substitutions were compared to more classical transition metal free 14 

allylations using allyl bromides. 15 

 16 

1 Introduction 17 

Since its discovery and even more after the 1980’s, the Ugi reaction has fascinated chemists with the 18 

high diversity brought by its four components nature together with its impressive functional tolerance 19 

(Dömling and Ugi, 2000; Hulme and Gore, 2003; Orru and de Greef, 2003; Zhu and Bienaymé, 20 

2005; Dömling, 2006; Dömling et al., 2012; Zhu et al., 2014; Boyarskiy et al., 2015; Váradi et al., 21 

2016; Lei et al., 2018). Besides important efforts devoted to the preparation of libraries of 22 

heterocycles through cyclization of properly functionalized Ugi adducts (Tempest, 2005; Sunderhaus 23 

and Martin, 2009; Ivachtchenko et al., 2010; Orru and Ruijter, 2010; 2010; Sadjadi and Heravi, 2011; 24 

Eckert, 2012; Sharma et al., 2015), a number of studies have focused on raising the diversity by 25 

letting Ugi adducts react in further intermolecular couplings (Elders et al., 2009; Brauch et al., 2010; 26 

Zarganes-Tzitzikas et al., 2015; Zarganes‐Tzitzikas et al., 2015; Kaur et al., 2016). In contrast with 27 

the previous intramolecular couplings, these strategies (such as the combination of MCRs) are much 28 

more sensitive to steric hindrance and require more attention in selecting the functionalities required 29 

for further couplings. For this reason, most transformations involving the peptidyl position of Ugi 30 

adducts are limited to intramolecular reactions (Bossio et al., 1997; Trifilenkov et al., 2007; Salcedo 31 

et al., 2008; El Kaïm et al., 2011; Tyagi et al., 2013; Zhang et al., 2013; Ben Abdessalem et al., 2015; 32 

Ghandi et al., 2015; Vachhani et al., 2015; Li et al., 2016). We recently proposed a dianionic amide 33 

strategy to raise the nucleophilic behaviour of Ugi adducts derived from aromatic aldehydes and 34 

demonstrated the interest of this approach using bis-electrophilic derivatives prone to trap the 35 
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dianions and form heterocycles (scheme 1) (Zidan et al., 2017; Zidan et al., 2018). Following the 36 

high yielding cyclizations observed in these studies, we decided to explore more thoroughly the 37 

synthetic potential of these dianions (Thompson, 1994; Langer and Freiberg, 2004) towards more 38 

simple electrophiles. We now wish to report further applications of this chemistry in Tsuji-Trost 39 

reactions as well as metal-free alkylations with bromide derivatives (Scheme 1).
 

40 

 Scheme 1 41 

2 Results and discussion 42 

Following our interest in Tsuji-Trost reactions involving isocyanide based MCRs (Dos Santos and El 43 

Kaïm, 2014; Cordier et al., 2015; El Mamouni et al., 2016), we decided to explore the behaviour of 44 

Ugi adducts dianions towards allyl acetate. Besides the efficiency and regioselectivity issues of the 45 

reaction of these dianions with π-allyl palladium complexes, such study might bring interesting 46 

pathways for further enantioselective approaches. For this study, Ugi adduct 1a was selected due to 47 

its good behaviour in our previous studies with propargyl bromide and diiodomethane. It was 48 

prepared in 89% yield from 4-chloro-benzaldehyde, propylamine, acetic acid and tert-49 

butylisocyanide. (Table 1). When 1a was heated with allyl acetate in THF using 2.5 equivalents of 50 

potassium tert-butoxide together with a Pd(dba)2/PPh3 catalytical couple, we were delighted to 51 

observe a selective C-allylation of 1a giving 3a in 65% isolated yield after 2 hours refluxing (entry 1, 52 

Table 1). 53 

Table 1.  54 

Different bases in various solvents were then evaluated using the same palladium/phosphine couple. 55 

The enhanced nucleophilicty of the 1,3-amide dianion towards the π-allyl palladium cationic 56 

complex was confirmed experimentally by comparing the use of 2.5 and 1.3 equiv of KHMDS 57 

(affording respectively 93% and 37% isolated yields : entries 4 and 5, Table 1). NaH in DMSO, gave 58 

the best conditions affording to our delight a nearly quantitative yield of 3a in only one hour at room 59 

temperature (entry 9, Table 1). Further modifications of the catalyst using more complex phosphines 60 

led to longer reaction time and lower yields (entries 10-12, Table 1), while in absence of palladium 61 

source, no product was observed (entry 13, Table 1). 62 

A set of Ugi adducts were then prepared in methanol and submitted to these optimized allylation 63 

conditions. The results are gathered in Scheme 2. As observed in our previous studies (Zidan et al., 64 

2017; Zidan et al., 2018), an aryl group tethering the peptidyl position is required for efficient 65 

allylation. Indeed, Ugi adduct 1j prepared from isovaleraldehyde failed to form the expected 3j 66 

probably due to the inability to form the dianionic intermediate with this less acidic substrate. 67 

Surprisingly, we didn’t observe much correlation between yields and the electronic nature of the 68 

aldehyde as shown by the similar yields obtained with both 4-nitro or 4-methoxy substituted 69 

derivatives 3b and 3c. A much stronger effect of the substitution partner of the aromatic moiety was 70 

observed with 2-chloro substituted Ugi adduct 1h which failed to give any adduct under these 71 

conditions as observed with 1j. The same behaviour was observed for the attempted synthesis of the 72 

fluoro analogue 3i. This lack of reactivity can probably be explained by the steric hindrance brought 73 

by substituents at the ortho position preventing to reach the planar geometry required for benzylic 74 

anion stabilization. Initial trials on enantioselective allylations were rather deceiving. When 75 

triphenylphosphine was replaced by BINAP (5mol %) for the reaction of 1a with 2a, 3a could be 76 

formed rapidly in good yield (89%) but poor enantioselectivity (5%) whereas the use of Trost ligand 77 

(DACH-phenyl) failed to give any allylation reaction. A wider scope of chiral ligands as well as 78 
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alternative solvents allowing lower temperatures will have to be evaluated to reach an 79 

enantioselective version.  The reaction could not be extended to more substituted allylic acetate 80 

derivatives such as cinnamyl acetate. The latter failed to react with Ugi adduct 1a even under 81 

prolonged heating, leading only to saponification of the ester and isolation of cinnamyl alcohol. 82 

Scheme 2. 
 

83 

Submitting propargylamine-derived Ugi adduct 1s to the same reaction conditions didn’t afford any 84 

allylated product but resulted in the clean formation of 2,3-dihydropyrrole 4 (Scheme 3), a reaction 85 

already reported by Miranda et al. in 2012 (Polindara-García and Miranda, 2012).
 
They could isolate 86 

the same dihydropyrrole 4 in 36% yield treating 1s with t-BuOK (2.5 equiv) in THF, while we could 87 

obtain 79% yield with our conditions. This selectivity was not very surprising when considering the 88 

respective intra and intermolecular properties of the two pathways. However, the ability to form 89 

enyne derivatives from Ugi adducts together with the interest of reversing a preferred selectivity were 90 

challenging enough to explore different set of conditions. Indeed, the dihydropyrrole formation 91 

probably involves a first isomerization into allene followed by further 5-endo-trig cyclization. This 92 

could leave some space for a previous intermolecular allylation if the lifetime of the dianion could be 93 

reduced by increasing the kinetic of the allylation step. Introducing the allyl acetate together with the 94 

palladium catalyst and the Ugi adduct in DMSO followed by the addition of the base resulted in a 95 

lower 54% yield of 4 together with a complex mixture of allylated products. We next explored the 96 

use of allyl bromide as a potential electrophilic species in the absence of palladium. When adding the 97 

latter to Ugi adduct 1s followed by NaH, we were delighted to observe the expected enyne 3s 98 

obtained in 58% isolated yield without any trace of dihydropyrrole (Scheme 3). This interesting 99 

control of the selectivity offers an attractive access to enyne derivatives for further cyclization 100 

studies. 101 

Scheme 3.  102 

These conditions settled with allyl bromide proved useful as well for the reaction of other alkyl 103 

bromides and iodides as shown in Scheme 4. The lowest 30% yield of 6c obtained using 3-104 

bromocyclohex-1-ene may be explained by the use of secondary halides together with the high steric 105 

hindrance around the peptidyl position of the Ugi adduct. In order to confirm further the importance 106 

of forming dianionic intermediates, the formation of 3a was attempted using allyl bromide in excess 107 

(1.5 equiv) but reducing the amount of sodium hydride to 0.9 equiv. In this case, only traces of 108 

allylated compound could be identified after 2h at rt whereas the reaction was completed after the 109 

same time when using 2.5 equiv of sodium hydride. Interestingly, whereas under Tsuji-Trost type 110 

conditions we couldn't observe any allylation of both 2-chloro and 2-fluoro substituted derivatives 1h 111 

and 1i, the latter gave us a moderate 40% isolated yields of 3i when using just sodium hydride with 112 

allyl bromide.  113 

Scheme 4.  114 

A further interest of the use of palladium free conditions may be found in the ability to carry the 115 

reaction starting directly from the four Ugi components. Indeed remaining isocyanides after the Ugi 116 

reaction are potentially inhibitor for most classical palladium catalyzed processes making thus one-117 

pot processes difficult to achieve (El Kaim et al., 2008).1 After completion of the Ugi adduct, the 118 

                                                 
1
 However, one-pot processes may be envisioned if the remaining isocyanide is destroyed by an acidic hydrolysis prior 

palladium addition. 
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methanol was evaporated under reduced pressure. The solvent was then replaced by DMSO. Addition 119 

of sodium hydride followed by allyl bromide afforded the final allylated Ugi adducts in good overall 120 

yields (Scheme 5). 121 

Scheme 5.  122 

With this easy allylation of Ugi adducts in hand, we decided to take advantage of the diversity 123 

offered by the latter coupling to explore Ugi/allylation/Ring Closure Methathesis (RCM) strategies 124 

towards various nitrogen based heterocycles. The use of RCM as Ugi post-condensation has already 125 

demonstrated its power for the formation of 5, 6-membered heterocycles as well as macrocyclic 126 

derivatives (Banfi et al., 2003; Beck et al., 2003; Hebach and Kazmaier, 2003; Ribelin et al., 2007; 127 

Ku et al., 2011). However the synthetic potential of these strategies is in a way limited by the need of 128 

introducing the two allylated moieties at an early stage which reduces the diversity offered by the 129 

two-step process. The late stage allylation we propose is highly versatile allowing to settle the 130 

strategy with a single alkenyl moiety in the starting components. Thus using allyl amine, we could 131 

easily prepare a library of piperidines with five points of diversity (Scheme 6). 132 

Scheme 6.  133 

This access to 3,4-dehydropiperidine derivatives 7 could be further enriched by a potential 134 

isomerisation into cyclic enamines as demonstrated by the ruthenium hydride catalysed conversion of 135 

7a into 8 (Scheme 6). The versatility of the method can be pictured by the alternative choice of the 136 

alkenyl moiety on the acidic component such as in cinnamic acid offering now a very simple access 137 

to 3,4-dehydropiperidine-2-one 9 (Scheme 7). 138 

Scheme 7.  139 

3 Conclusion 140 

In summary, we have extended the potential of the Ugi reaction using 1,3-amide dianionic species as 141 

intermediates for efficient allylations at the peptidyl moiety of Ugi adducts. The procedure raises the 142 

diversity of Ugi adducts and offers unique opportunities for the preparation of nitrogen based 143 

heterocycles through association with ring closure metathesis. The power of the latter strategy has 144 

been demonstrated by the preparation of various piperidines which are important scaffolds for 145 

medicinal applications.  146 

 147 

 148 

Scheme 1. Reaction of Ugi amide dianion with mono and biselectrophiles. 149 

Scheme 2. Scope of the Ugi/Tsuji-Trost cascade 150 

Scheme 3. Allylation of Ugi propargyl adduct. 151 

Scheme 4. Scope of alkylating agents 152 

Scheme 5. Cascade one pot reaction 153 

Scheme 6. Ugi/allylation/RCM strategy 154 
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Scheme 7. Ugi/allylation/MCR towards piperidones 155 

3.1 Tables 156 

Table 1. Screening of various conditions
a 157 

 158 

Entry Base (equiv) Solvent Temp (°C) Time (h) Yield (%) 

1 t-BuOK(2.5) THF reflux 2 65 

2 t-BuOK(2.5) DMF 70 12 70 

3 KHMDS (2.5) THF reflux 1 95 

4 KHMDS (2.5) THF 50 1 93 

5 KHMDS (1.3) THF 50 1 37 

6 KHMDS (2.5) THF rt 1 88 

7 NaH (2.5) THF reflux 12 45 

8 NaH (2.5) DMF 70 12 50 

9 NaH (2.5) DMSO rt 1 96 

10
 b
 NaH (2.5) DMSO rt 12 Traces 

11
 c
 NaH (2.5) DMSO rt 12 80 

12 d NaH (2.5) DMSO rt 1 94 

13
e
 KHMDS (2.5) THF rt 12 - 

a
Reaction conditions: 1a (0.5 mmol), 2 (0.75 mmol), Pd(dba)2 (0.025 mmol) and PPh3 (0.05 mmol) 159 

in solvent (0.5 M).
b
Using Xantphos (5 mol%) instead of PPh3. 

c
Using Johnphos (10 mol%) instead of 160 

PPh3. 
dUsing Pd(PPh3)4 (5 mol%) instead of Pd(dba)2/PPh3. 

eReaction without Pd(dba)2 and PPh3.
 161 

 162 
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